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SUMMARY

We study optimal control problems for linear systems with prescribed initial and terminal states. We analyze
the exact penalization of the terminal constraints. We show that for systems that are exactly controllable, the
norm-minimal exact control can be computed as the solution of an optimization problem without terminal
constraint but with a nonsmooth penalization of the end conditions in the objective function, if the penalty
parameter is sufficiently large. We describe the application of the method for hyperbolic and parabolic
systems of partial differential equations, considering the wave and heat equations as particular examples.
Copyright © 2016 John Wiley & Sons, Ltd.

Received 3 September 2015; Revised 10 December 2015; Accepted 10 January 2016

KEY WORDS: exact controllability; optimal control; terminal constraint; exact penalization; wave
equation; heat equation; moment equations; method of moments; L1 optimal control;
abstract Cauchy problems; nonsmooth optimization

1. INTRODUCTION

The notion of exact controllability plays an essential role for the understanding of control systems.
A system is said to be exactly controllable if, in a given control time, starting from an initial state
with a certain regularity and given a final target state, the system can be steered exactly from one to
another with controls of a given regularity.

Similarly, in constrained optimization, the notion of exact penalization plays a fundamental role.
Given a constrained optimization problem, a penalty function is said to be exact, if for a suffi-
ciently large penalty parameter the minimizers of the sum of the original objective function and the
penalty term also solve the original constrained optimization problem. In this case, the solution of
a constrained optimization problem is equivalent to the solution of an unconstrained optimization
problem. In general, this only works with a non-smooth penalty term.

Typically, the lower bound for the successful penalty parameters is given by the norm of the
multipliers corresponding to the penalized constraint. Thus, the existence of a finite bound for the
penalty parameter is connected with the regularity of the multipliers. Due to this fact, in state-
constrained optimal control problems for partial differential equation (PDE) with pointwise space-
time state constraints, often, exact penalization is impossible on account of the lack of regularity of
the multipliers.

In this paper, we show that the situation is different for terminal constraints that are given by end
conditions of the type that appear in exact controllability problems. In these terminal constraints, the
state at the given terminal time T (that is the terminal state) is prescribed exactly. We consider sys-
tems that are exactly controllable and replace the end conditions that we regard as state constraints
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1330 M. GUGAT AND E. ZUAZUA

in the optimal control problems by a non-smooth penalty term. We show that in this situation, exact
penalization is possible. In other words, we can characterize optimal exact controls as solutions of
problems without end conditions and with non-smooth objective functions.

Hence, exact controllability implies exact penalizability. In the context of exact null-
controllability (when the final target is the trivial null state), the lower bound for the successful
penalty parameters is given by the product of the norm of initial state and the square of the exact
controllability constant from the definition of the exact controllability. In the Hilbert-space case, this
constant makes sure that the norm-minimal exact control is given by a bounded linear operator.

For conservative systems, the penalization in the standard energy-norm suffices to guarantee the
efficiency of the method. The particular case of the 1D wave equation was treated in [1]. If the initial
states are more regular, then the penalization with weaker norms suffices. This is related with the
fact that, for time-reversible systems, the optimal control inherits the stronger regularity of the data
to be controlled [2].

To illustrate our approach, we continue this Introduction with a motivating example in the finite-
dimensional context. But our results apply for infinite-dimensional systems too.

Note that the exact penalization leads to optimal control problems with objective functions
that contain non-smooth norm-terms depending on the terminal state. Recently, there have been
several studies of optimization problems with non-differentiable objective functions where the non-
differentiable term depends on the control (for example, [3], [4]). Also, in [5] and [6], an objective
function of this type is considered. In this case, the L1-norm of the control is a part of the objective
function that leads to sparsity of the optimal controls.

1.1. A motivating example

To illustrate our approach, we present an example with an ordinary differential equation. Consider
the optimal control problem 8̂̂̂

<̂
ˆ̂̂̂:

minu2L2.0;1/
1
2
kuk2

L2.0;1/

subject to
y0.t/ � y.t/ D exp.t/ u.t/

y.0/ D �1
y.1/ D 0:

(1)

Then, the unique optimal control is the constant function u�.t/ D 1.
In order to avoid the terminal constraint y.1/ D 0 in the optimal control problem, we consider

the penalized problems with a penalty parameter � > 08̂̂
<
ˆ̂:

minu2L2.0;1/
1
2
kuk2

L2.0;1/
C � jy.1/j

subject to
y0.t/ � y.t/ D exp.t/ u.t/

y.0/ D �1:

(2)

If � 2 Œ0; exp.�1//; the solution is u� .t/ D e�; and if � > exp.�1/, the solution is u� .t/ D 1. This
means that for � > exp.�1/, the solution is independent of � and equal to the solution of (1). The
corresponding optimal value as a function of the penalty parameter � is

v.�/ D
1

2
ku�k

2
L2.0;1/

C �
ˇ̌
y� .1/

ˇ̌
;

where y� denotes the state generated by u� . It is given by

v.�/ D

´
e � � 1

2
e2 �2 if � 2 Œ0; exp.�1//;

1
2

if � > exp.�1/:

In particular, the optimal value is constant for � sufficiently large. Here, the optimal value is
differentiable as a function of � . The control to state map for our system is given by
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EXACT PENALIZATION OF TERMINAL CONSTRAINTS 1331

y.t/ D exp.t/

�
�1C

Z t

0

u.s/ ds

�
:

This means that (2) is equivalent to the unconstrained problem

min
u2L2.0;T /

J� .u/ WD
1

2
kuk2

L2.0;1/
C �e

ˇ̌̌
ˇ
Z 1

0

u.s/ ds � 1

ˇ̌̌
ˇ : (3)

For � > exp.�1/; this is an exact penalization of an optimization problem with the moment equationR 1
0 u.s/ ds D 1 as equality constraint. For the convenience of the reader, we show that u� .t/ D 1 is

optimal for � > exp.�1/. In fact, for all ı 2 L2.0; 1/, ı 6D 0 we have

J� .u� C ı/ D
1

2
C

Z 1

0

ı.s/ ds C
1

2
kık2

L2.0;1/
C �e

ˇ̌̌
ˇ
Z 1

0

ı.s/ ds

ˇ̌̌
ˇ

> 1

2
C
1

2
kık2

L2.0;1/
C �e

ˇ̌̌
ˇ
Z 1

0

ı.s/ ds

ˇ̌̌
ˇ �

ˇ̌̌
ˇ
Z 1

0

ı.s/ ds

ˇ̌̌
ˇ > 1

2
D J� .u� /:

In Section 3, we will consider problems of a similar type with a sequence of moment equations as
constraints that arise in PDE-constrained optimal control problems.

1.2. Structure of the paper

This paper has the following structure: First, we consider problems of L2-norm minimal control. In
Section 2, we consider the penalization by the natural norm in Hilbert state spaces. We apply the
result to boundary control problems for wave equations and the heat equation. We also present a
result that gives an upper bound for the optimal value of the penalized problems as a function of
the penalty parameter. The upper bound is a polynomial of degree two of the penalty parameter and
helps to understand how the optimal values increase with the penalty parameter until they saturate
to remain constant.

In Section 3.3, we turn to optimal control problems where the end conditions are replaced by a
sequence of moment equations. As examples, we consider optimal control problems for the wave
equation with Neumann and Dirichlet boundary control. First, we look at L2-norm objective func-
tions. We give sufficient conditions for exact penalizability of these end conditions by an l2-norm
penalty term. In Section 3.4, we consider the corresponding problem with a penalization by an
l1-norm penalty term. This result illustrates how the regularity of the problem data influences the
norms for which the penalization is exact. In Section 3.5, we present a result about penalization by
an l1-norm penalty term. This penalization is suitable for L1-norm optimal control problems.

In the last section, we consider problems of L1-norm optimal control and give a sufficient
condition for a non-smooth penalization to be exact.

2. PENALIZATION BY STATE SPACE NORMS: OPTIMAL CONTROL WITH ABSTRACT
CAUCHY PROBLEMS

In this section, we study our problem in a Hilbert space setting. Let X and U be Hilbert spaces
with the inner products h�; �iX , h�; �iU , respectively, and the corresponding norms k � kX , k � kU ,
respectively. Let T > 0 be given. The space X contains the current state and the space U is used as
a framework for the control functions in L2.0; T IU/.

2.1. Exact controllability

As in [7], let A: D.A/ � X ! X be the generator of a strongly continuous semigroup, and let B
denote an admissible control operator. As in [7], Proposition 4.2.5., we consider a control system of
the form

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1329–1354
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1332 M. GUGAT AND E. ZUAZUA

²
x0.t/C Ax D Bu;

x.0/ D x0:
(4)

For all u 2 L2.0; T IU/, the Cauchy problem (4) has a unique solution x 2 C.Œ0; T �IX/ [8].
Moreover, the solution varies continuously with the data in the sense that

kxkL1.0;T IX/ 6 CT
�
kx0kX C kukL2.0;T IU/

�
:

We use the following stability property: For controls un and the corresponding states xn, if .un/n
converges weakly in L2.0; T IU/ to u�, then .xn/n weakly� converges in L1.0; T IX/, and in
addition, xn.T / weakly converges in X to the state at the time T that is generated by u�.

Important examples that satisfy this assumption of well-posedness of the Cauchy problem are
presented in [7].

Assume that (4) is exactly controllable using L2-controls in time T , that is, there exists a constant
C1 > 0 such that for all initial states x0 2 X and all final states x1 2 X , there is a control
u 2 L2.0; T IU/ such that the solution x 2 C.Œ0; T �IX/ of (4) satisfies²

x.T / D x1;

kukL2.0;T IU/ 6 C1.kx0kX C kx1kX /:
(5)

2.2. Penalization by state space norms in Hilbert space

We consider the following optimization problem:

EP:

8<
:

minu2L2.0;T IU/
1
2
kuk2

L2.0;T IU/
C �kx.T /kX

subject to
x0.t/C Ax D Bu; x.0/ D x0:

In problem EP, the end condition x.T / D 0 does not appear. And, for each � > 0, Problem EP has
a unique solution.

This can be seen as follows: by means of a straightforward application of the Direct Method of the
Calculus of Variations. Let Ox.t/ denote the solution with null control u � 0. Then, for the optimal
value v.�/ of EP, we have the upper bound

v.�/ 6 �k Ox.T /kX ;

which corresponds to the value of the functional with u � 0. Let .un/n denote a minimizing
sequence for EP and xn.t/ the corresponding solutions of (4). Then we have

v.�/ D lim inf
n!1

1

2
kunk

2
L2.0;T IU/

C �kxn.T /kX 6 �k Ox.T /kX :

In particular, the sequence .un/n is bounded in L2.0; T IU/; and the sequence .xn.T //n is bounded
in X . Hence, there exists a weakly convergent subsequence that, with a slight abuse of notation, we
denote again by ..un; xn.T ///n, the limit being .u�; x/. The well-posedness of the Cauchy problem
implies that x D x�.T /, where x� is the solution of (4) corresponding to the limit control u�. Then
the sequential weak lower semicontinuity of the objective function implies

v.�/ D lim inf
n!1

1

2
kunk

2
L2.0;T IU/

C �kxn.T /kX >
1

2
ku�k2

L2.0;T IU/
C �kx�.T /kX :

On the other hand, we have 1
2
ku�k2

L2.0;T IU/
C �kx�.T /kX > v.�/, thus

v.�/ D
1

2
ku�k2

L2.0;T IU/
C �kx�.T /kX :

Hence u� is a solution of EP. The uniqueness follows from the strict convexity of the
objective function.

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1329–1354
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EXACT PENALIZATION OF TERMINAL CONSTRAINTS 1333

In the sequel, we use the notation u� for the solution of EP for � > 0. The corresponding state is
x� . Our goal is to show that, because of the property of exact controllability using L2–controls of
the system, for � sufficiently large at time T , the state x� satisfies the desired end condition

x� .T / D 0:

Moreover, the method of penalization with � large leads to the control of minimal norm that steers
the system exactly to the desired target state.

Theorem 1
Assume that the system is exactly controllable using L2-controls in time T . If

� > C 21 kx0kX ; (6)

where C1 is as in (5), the solution of problem EP is independent of � and solves the optimal control
problem EC with the terminal constraint x.T / D 0, defined as

EC:

8̂̂<
ˆ̂:

minu2L2.0;T IU/
1
2
kuk2

L2.0;T IU/

subject to
x0.t/C Ax D Bu; x.0/ D x0;
x.T / D 0:

Problem EC has a unique solution.

Proof
Similar as for EP, an application of the Direct Method of the Calculus of Variations shows that a
solution of EC exists. The strict convexity of the objective function 1

2
k � k2

L2.0;T IU/
implies that the

solution of EC is uniquely determined, because for all solutions u0, u1 of EC also u0Cu1
2

is feasible
and must have the same objective value, which is only possible if u0 D u1.

Suppose that x� .T / 6D 0. Then the objective functional of EP is differentiable at .u� ; x� / and
satisfies the necessary optimality conditionsZ T

0

hu� ; viU dt C �
hx� .T /; y.T /iX

kx� .T /kX
D 0 (7)

for all v 2 L2.0; T IU/; where y.t/ solves

y0 C Ay D Bv; y.0/ D 0:

This implies Z T

0

hu� ; viU dt D ��
hx� .T /; y.T /iX

kx� .T /kX
:

Let u� denote the solution of EC. Because u� is a feasible control for EP, evaluating the objective
function of EP at u� yields the inequality

ku�k
2
L2.0;T IU/

6 ku�k2L2.0;T IU/: (8)

Because of the exact controllability of the system, in view of (5), this implies the upper bound

ku�kL2.0;T IU/ 6 C1 kx0kX : (9)

Hence, the linear functionals

'� .v/ D

Z T

0

hu� ; viU dt;

are uniformly bounded with respect to �

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1329–1354
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1334 M. GUGAT AND E. ZUAZUA

j'� .v/j 6 C1 kx0kX kvkL2.0;T IU/:

On the other hand, '� admits the representation

'� .v/ D ��
hx� .T /; y.T /iX

kx� .T /kX
:

Because of the exact controllability of the system, we can choose v in such a way that

y.T / D
1

kx� .T /kX
x� .T /:

and

kvkL2.0;T IU/ 6 C1: (10)

This implies

'� .v/ D ��;

thus

j'� .v/j D � 6 C 21 kx0kX ;

which is a contradiction to (6). Hence, we have x� .T / D 0. Therefore x� is feasible for EC, so

ku�k
2
L2.0;T IU/

6 ku�k2L2.0;T IU/:

Because of (8), this implies ku�k2L2.0;T IU/ D ku�k
2
L2.0;T IU/

. Hence u� is a solution of problem
EC. Because the solution of EC is uniquely determined, this implies u� D u� . �

2.3. Why non-smooth penalization?

In this section, we explain why the exact penalization term jjx.T /jjX needs to be non-smooth. In
optimization, this fact is well-known. It is illustrated by the following lemma.

Lemma 1
Let a differentiable penalty function p W X ! Œ0;1/ be given with p.0/ D 0 and p.x/ > 0 for all
x 6D 0. We consider the following optimization problem:

DP:

8<
:

minu2L2.0;T IU/
1
2
kuk2

L2.0;T IU/
C � p.x.T //

subject to
x0.t/C Ax D Bu; x.0/ D x0:

If the solution u� of EC is not zero, for all � > 0, we have x� .T / 6D 0, where x� denotes the optimal
state for DP. This means that the differentiable penalization by p is not exact, and this whatever the
value of the penalization parameter � is.

Proof
Let � > 0 be given. Suppose that x� .T / D 0. Then p.x� .T // D 0, thus the optimal value of DP is
given by 1

2
ku�k

2
L2.0;T IU/

> 0. Because p is differentiable at zero, and this is the global minimum,
we have p0.0/ D 0 and p.0/ D 0, hence

lim
x!0

p.x/

kxk
D 0: (11)

Choose ı 2 L2.0; T IU/. Because u� is the optimal control, we have

1

2
ku� C ık

2
L2.0;T IU/

C � p.xı.T // >
1

2
ku�k

2
L2.0;T IU/

;

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1329–1354
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EXACT PENALIZATION OF TERMINAL CONSTRAINTS 1335

where xı is the state generated by ı starting with the zero initial state. This implies the inequality

hu� ; ıiL2.0;T IU/ C
1

2
kık2

L2.0;T IU/
C �p.xı.T // > 0:

Hence, we have

p.xı.T // > �
1

�
hu� ; ıiL2.0;T IU/ �

1

2�
kık2

L2.0;T IU/
:

For � 2 .0; 1�, choose ı.�/ D ��u� 6D 0. Then we have

p.xı.�/.T // >
1

�
�ku�k

2
L2.0;T IU/

�
1

2�
�2ku�k

2
L2.0;T IU/

:

Because of the linearity of our system, we have xı.�/ D � xı.1/. Suppose that xı.1/.T / D 0, then the
aforementioned inequality implies 0 > ku�k2L2.0;T IU/ �

1
2
ku�k

2
L2.0;T IU/

, which is a contradiction.
If xı.1/.T / 6D 0, we have

lim inf
�!0

p.xı.�/.T //

kxı.�/.T /kX
>
ku�k

2
L2.0;T IU/

� kxı.1/.T /kX
> 0;

which is a contradiction to (11). Hence, we have proved that x� .T / 6D 0. In other words, the
differentiable penalization is not exact. �

2.4. Example 1. The wave equation

In this section, we consider a system that is governed by the wave equation on a two-dimensional
domain. Let � � R2 be a domain with C 2-boundary � . Assume that y0 2 L2.�/, y1 2 H�1.�/.
Consider the Dirichlet boundary control problem

ECD2

8̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

minu2L2.��.0;T //
1
2

TR
0

R
�

ju.t; x/j2 dx dt

subject to
yt t ��y D 0 in � � .0; T /

y.0; �/ D y0; yt .0; �/ D y1 in �
y.t; �/ D u.t; �/ on � � .0; T /
y.T; �/ D yt .T; �/ D in �:

(12)

For T sufficiently large, the system is exactly controllable using L2-controls [9]. Such result is
well-known, in fact, in a more general setting under the so-called geometric control condition.

Hence, there exists a positive constant C1 > 0 such that the exact control of minimal L2-
norm satisfies

TZ
0

Z
�

ju.t; x/j2 dx dt 6 C1
�
ky0k

2
L2.�/

C ky1k
2
H�1.�/

�
: (13)

This specific control problem for the wave equation can be put in the form EC in a suitable func-
tional setting, see [7] and Theorem 1 is applicable. Thus, if � is sufficiently large, the following
problem involving non-smooth penalization is equivalent to ECD2:

EPD2

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

minu2L2.��.0;T //
1
2

TR
0

R
�

ju.t; x/j2 dx dt C �
q
ky.�; T /k2

L2.�/
C kyt .�; T /k

2
H�1.�/

subject to
yt t ��y D 0 in � � .0; T /

y.0; �/ D y0; yt .0; �/ D y1 in �
y.t; �/ D u.t; �/ in � � .0; T /:

(14)
Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1329–1354
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1336 M. GUGAT AND E. ZUAZUA

2.5. Example 2: The Euler–Bernoulli beam

Let us consider the boundary control problem for a vibrating Euler–Bernoulli beam.
Let � D .0; 1/ and assume that y0 2 H 2

0 .�/, y1 2 H
1
0 .�/. Consider the Dirichlet boundary

control problem

ECbeam

8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

minu2L2.0;T /
1
2

TR
0

ju.t/j2 dt

subject to
yt t C yxxxx D 0 in � � .0; T /
y.0; �/ D y0; yt .0; �/ D y1 in �

y.t; 0/ D 0; yxx.t; 0/ D u.t/ in .0; T /
y.t; 1/ D 0; yxx.t; 1/ D 0 in .0; T /

y.T; �/ D yt .T; �/ D 0 in �:

(15)

For all T > 0, the system is exactly controllable using L2-controls ([7], 10.4). Hence, there exists a
constant C1 > 0 such that

TZ
0

ju.t/j2 dt 6 C1
�
ky0k

2
H2.�/

C ky1k
2
H1.�/

�
; (16)

for the control of minimal norm u 2 L2.0; T /.
Theorem 1 is applicable. Thus, if � is sufficiently large, the following problem with non-smooth

penalization is equivalent to ECbeam:

EPbeam

8̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

min 1
2

TR
0

ju.t/j2 dt C �
q
ky.�; T /k2

H2.�/
C kyt .�; T /k

2
H1.�/

subject to
yt t C yxxxx D 0 in � � .0; T /

y.0; �/ D y0; yt .0; �/ D y1 in �
y.t; 0/ D 0; yxx.t; 0/ D u.t/ in .0; T /
y.t; 1/ D yxx.t; 1/ D 0 in .0; T /:

(17)

Note that the controllability problem for this 1D beam equation can also be dealt with by the method
of moments [10]. This will be discussed in Section 3.

2.6. Example 3: an example with the heat equation

Here, we consider an example with distributed control of the heat equation.
Let a smooth domain � in Rn (n 2 ¹1; 2; 3; :::º/ with boundary � and an initial state y0 2

L2.�/ D X be given. Let ! � � be a given nonempty subdomain of �. Consider the distributed
optimal control problem

HEAT2

8̂̂̂
<̂
ˆ̂̂̂:

min 1
2
kuk2

L2..0;T /�!/
subject to

y0 D �y C 1!u
y.t; x/ D 0 for all x 2 �
y.0; x/ D y0.x/

y.T; x/ D 0:

(18)

The system is exactly controllable using L2–controls to x1 D 0 for arbitrarily short times T > 0,
which implies that HEAT2 has a solution.

Now, we consider the application of Theorem 1 to the problem HEAT2. For the penalization, we
consider a norm with exponential weights, namely

kf kX D

vuut 1X
jD0

ˇ̌̌
Of .j /

ˇ̌̌2
exp.c0

q
�j /; (19)

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1329–1354
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EXACT PENALIZATION OF TERMINAL CONSTRAINTS 1337

where as usual Of .j / denotes the coefficient in the expansion of f in the eigenfunctions of the oper-
ator �� with homogeneous Dirichlet boundary conditions on � with the corresponding increasing
sequence of positive eigenvalues .�j /j . Then the system governed by the heat equation is exactly
controllable to x1 D 0: There exists a constant C� > 0 such that for each initial state y0 2 L2.�/;
there exists a control u 2 L2..0; T / ��/ such that for the generated state, we have y.T / D 0 and
kuk2

L2..0;T /��/
6 C1 ky0k2L2.�/.

Moreover, there exist constants c0 > 0, C2 > 0 such that for each final state yT 2 X , there exists
a control v 2 L2..0; T /��/ that steers the system starting from the zero initial state to y.T / D yT
and [11]

kvk2
L2..0;T /��/

6 C 22
1X
jD0

ˇ̌̌
ˇ OyT .j / exp.c0

q
�j /

ˇ̌̌
ˇ
2

D C 22 kyT k
2
X : (20)

In addition, starting from the zero initial state, controls u 2 L2..0; T / ��/ generate system states
y.T / 2 X . Thus the system satisfies the controllability condition (5), and we can apply Theorem 1,
which implies that for � sufficiently large, the penalization is exact, that is, the problem

EPHEAT2

8̂̂<
ˆ̂:

min 1
2
kuk2

L2..0;T /�!/
C �ky.T; �/kX subject to

y0 D �y C 1!u
y.t; x/ D 0 for all x 2 @�
y.0; x/ D y0.x/

(21)

is equivalent to HEAT2.

2.7. An upper bound for the optimal value function

Theorem 1 implies that for � sufficiently large, the optimal value of problem EP as a function of �
remains constant. In the following Lemma, we give an upper bound for the optimal value that holds
also for small values of � > 0. In Section 1.1, we have seen an example where the optimal value
function is given as a polynomial in � of degree two for � less than the critical value. The following
lemma generalizes this result.

Lemma 2
Let the assumptions of Theorem 1 hold. Define

�0 D inf¹� > 0 W x� .T / D 0 for all � > �º:

Let

J� .u/ D
1

2
kuk2

L2.0;T IU/
C �kx.T /kX ;

denote the objective function of EP, u� denote the solution of EP, u� denote the solution of EC,
and x2 be the solution of

x02 C Ax2 D 0; x2.0/ D x0:

If �0 > 0, for all � 2 Œ0; �0� for the optimal value of EP as a function of � , we have the upper bound

J� .u� / 6
1

2

�2

�20
ku�k

2
L2.0;T IU/

C �

�
1 �

�

�0

�
kx2.T /kX (22)

6 �0 kx2.T /kX : (23)

Note that for � > 0, we also have

J� .u� / 6
1

2
ku�k

2
L2.0;T IU/

:
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If �0 D 0, for all � > 0, we have

J� .u� / D
1

2
ku�k

2
L2.0;T IU/

D 0

and x2 is the optimal state.

Proof
Let u� denote the solution of EC. For � 2 Œ0; �0�, consider the control function u0 D

�
�0
u� . We

decompose the initial state in the form x0 D
�
�0
x0 C .1 �

�
�0
/x0. Because of the linearity of the

system, the control u0 steers the initial state �
�0
x0 to zero at time T . By superposition, we obtain for

the state x generated by u0 the final state x.T / D .1 � �
�0
/x2.T /. This yields

J� .u� / 6 J� .
�

�0
u�/ D

1

2

�2

�20
ku�k

2
L2.0;T IU/

C �

ˇ̌̌
ˇ1 � �

�0

ˇ̌̌
ˇ kx2.T /kX

and (22) follows.
The definition of �0 implies that for all � > �0, the optimal state satisfies the terminal con-

straint x� .T / D 0. Thus for all � > �0, u� is also feasible for EC, which yields the inequality
1
2
ku�k

2
L2.0;T IU/

6 1
2
ku�k

2
L2.0;T IU/

. Hence, inserting the control u D 0 in the objective function of
EP with � > �0 yields the inequality

1

2
ku�k

2 C 0 6 1
2
ku�k

2
L2.0;T IU/

C 0 6 0C �kx2.T /kX :

Because we can choose � > �0 arbitrarily, this implies 1
2
ku�k

2 6 �0kx2.T /kX : Together with (22),
this yields (23).

If �0 D 0, for all � > 0, we have x� .T / D 0. Because u� solves EP, this implies

1

2
ku�k

2
L2.0;T IU/

6 1
2
ku�k

2
L2.0;T IU/

:

Hence u� is a solution of EC. Because the solution of EC is unique, this yields u� D u� for all
� > 0. On the other hand, as mentioned earlier, we obtain 1

2
ku�k

2 6 �0kx2.T /kX D 0; which
implies the assertion for �0 D 0. �

Remark 1
In this section, we have worked in a Hilbert space setting for the state space. The proof of Theorem 1
is based upon the fact that except at zero, Hilbert space norms are differentiable. However, also in
a Banach space setting, the corresponding result holds. Note, however, that the application of the
Direct Method of the Calculus of Variations for proving the existence of optimal controls of the
penalized problems requires the Banach space to be reflexive. With this assumption, it is possible to
show a Banach space version of Theorem 1.

3. PENALIZATION OF OPTIMAL CONTROL PROBLEMS WITH MOMENT EQUATIONS

In the applications, the end conditions for control systems are often equivalent to a sequence of
moment equations for the control u. For problems of optimal damping of vibrations, in particular
the vibrating string and the Euler-Bernoulli beam, this relation is discussed in detail in [10], both for
the cases of distributed control and boundary control. Also, problems of optimal control of a Timo-
shenko beam lead to problems of this structure [12, 13]. The difference between the two models is
that for the Timoshenko beam, the time T has to be sufficiently large to allow the exact controlla-
bility of the system, whereas for the Euler–Bernoulli beam, exact controllability for arbitrarily short
time intervals holds. These problems lead to trigonometric moment problems. In contrast to this,
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DOI: 10.1002/oca



EXACT PENALIZATION OF TERMINAL CONSTRAINTS 1339

problems of optimal control of heating processes lead to exponential moment problems that are also
presented in [10].

Now, we present 1D examples with the wave equation to illustrate that the end conditions in the
optimal control problems are equivalent to sequences of moment equations. So the end conditions
that appear as constraints in the optimal control problems can be replaced by the corresponding
sequence of moment equations.

3.1. An example with Dirichlet control

Example 1
Consider the following optimal Dirichlet boundary control system with the wave equation in
dimension one:

ECD2

8̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:

min 1
2
kuk2

L2.0;T /
subject to

y00 D yxx
y.t; 0/ D 0

y.t; 1/ D u.t/

y.0; x/ D y0.x/

y0.0; x/ D y1.x/

y.T; x/ D 0

y0.T; x/ D 0:

(24)

with x 2 Œ0; 1�, t > 0, and .y0; y1/ 2 L2.0; 1/ �H�1.0; 1/. The control function u is in L2.0; T /.
This is a well-known system that has been considered, for example, in [14] and in [1]. It is exactly
controllable using L2-controls in time T > 2 to x1 D 0. The moment problem corresponding to the
end conditions

y.T; x/ D 0; y0.T; x/ D 0;

is stated in [15] (see also [16]), where the system is started at the null state and controlled to a
nonzero state, but because of the time-reversability for the wave equation, this is an equivalent
problem. The corresponding moment problem is8̂̂̂

<
ˆ̂̂:

min 1
2
kuk2

L2.0;T /
subject toR T

0 u.s/ sin.�js/ ds D �.�1/j
R 1
0 y0 sin.j�x/ dx;R T

0
u.s/ cos.�js/ ds D �.�1/j 1

�j

R 1
0
y1 sin.j�x/ dx;

for all j 2 ¹1; 2; 3; :::º:

(25)

3.2. An example with Neumann control

Example 2
Consider the following optimal Neumann boundary control problem with the wave equation.

ECN2

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂̂̂:

min 1
2
kuk2

L2.0;T /
subject to

y00 D yxx
yx.t; 0/ D �u.t/
yx.t; 1/ D u.t/

y.0; x/ D y0.x/

y0.0; x/ D y1.x/

y.T; x/ D 0

y0.T; x/ D 0:

(26)

with x 2 Œ0; 1�, t > 0, and constant states .y0; y1/. The control function u is in L2.0; T /. This is
a well-known system that has been considered, for example, in [17]. It is exactly controllable using
L2-controls in time T > 2 to x1 D 0. The end conditions

y.T; x/ D 0; y0.T; x/ D 0;
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correspond to the moment problem stated in [17] ((14)–(17)), where the system is started at the null
state and controlled to a nonzero state, but because of the time-reversability for the wave equation,
this is an equivalent problem. ECN2 can be written in the following form with a sequence of moment
equations as constraints:8̂̂̂

ˆ̂<
ˆ̂̂̂̂:

min 1
2
kuk2

L2.0;T /
subject toR T

0
u.s/ .s � T

2
/ ds D y0

2
� T

2
y1
2
;R T

0 u.s/ ds D
y1
2
;R T

0 u.s/ sin.2�js/ ds D 0;R T
0
u.s/ cos.2�js/ ds D 0; for all j 2 ¹1; 2; 3; :::º:

(27)

The two examples earlier motivate us to consider problems of optimal exact controllability that
are given in the form

MOM:
²

min 1
2
kuk2

L2.0;T IU/

subject to hu; skiL2.0;T IU/ D yk; for all k 2 ¹1; 2; 3; :::º:

where .sk/k is a given sequence of functions in L2.0; T IU/ and .yk/k 2 l2 such that there exists
Ou 2 L2.0; T IU/ that solves the moment problem

h Ou; skiL2.0;T / D yk; for all k 2 ¹1; 2; 3; :::º:

Then MOM has a unique solution that we denote by u� .
In the sequel, we consider the penalization of MOM with l2-norms and weighted l1–norms,

where the weights can be chosen according to the regularity of the problem data. Moreover, we
consider the corresponding problem with the L1-norm of the control as the objective function.

3.3. Penalization by l2-norms

In this section, we focus on problems with given data of minimal regularity.
For a penalty parameter � > 0, we consider the penalized problem

EPMOM2: min 1
2
kuk2

L2.0;T IU/
C �

qP1
kD1

ˇ̌
hu; skiL2.0;T IU/ � yk

ˇ̌2
In the following Theorem, we assume that the sequence .sk/k has a biorthogonal Bessel sequence
[18].

Theorem 2
Assume that the sequence .sk/k has a biorthogonal sequence .Nsk/k , that is, a Bessel sequence with
bound M 2 and that

spanhsj ; j 2 Ni � spanhNsj ; j 2 Ni: (28)

If

� > Mku�kL2.0;T IU/; (29)

the solution of EPMOM2 is independent of � and equal to the solution of MOM.

Proof
Let .Nsk/k denote the biorthogonal sequence with

hNsk; sj iL2.0;T IU/ D ıkj ;

where ıkj is Kronecker’s symbol. Because the sequence .Nsk/k is a Bessel sequence, for all sequences
.˛k/k 2 l

2, we have the inequality
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k

1X
jD1

˛j Nsj k
2
L2.0;T IU/

6M 2

1X
jD1

j˛j j
2:

We have

u� D

1X
jD1

yj Nsj :

Let d 2 L2.0; T IU/ be given, d 6D 0. Let K denote the closure of the span hNsj ; j 2 N i. Because
the corresponding biorthonormal sequence .Nsk/k is complete in K, we can write d in the form

d D d? C

1X
jD1

ıj Nsj ;

with a sequence ı D .ıj /j 2 l2 and d? 2 K?. We have

ˇ̌
hu� ; d iL2.0;T IU/

ˇ̌
D

ˇ̌̌
ˇ̌̌hu� ; 1X

jD1

ıj Nsj iL2.0;T IU/

ˇ̌̌
ˇ̌̌

6 ku�kL2.0;T IU/

������
1X
jD1

ıj Nsj

������
L2.0;T IU/

6 ku�kL2.0;T IU/ M

vuut 1X
jD1

jıj j2:

Let h denote the objective function of EPMOM2, that is

h.u/ D
1

2
kuk2

L2.0;T IU/
C �

vuut 1X
kD1

ˇ̌
hu; skiL2.0;T IU/ � yk

ˇ̌2
:

Then, using (28), we obtain

h.u� C d/ D h.u�/C hu� ; d iL2.0;T IU/ C
1

2
kdk2

L2.0;T IU/

C �

vuut 1X
kD1

ˇ̌
hd; skiL2.0;T IU/

ˇ̌2

> h.u�/ � ku�kL2.0;T IU/ M

vuut 1X
kD1

jıkj2

C �

vuut 1X
jD1

ˇ̌
ıj C hd?; sj iL2.0;T IU/

ˇ̌2

D h.u�/C .� � ku�kL2.0;T IU/ M/

vuut 1X
jD1

jıj j2

> h.u�/;

hence u� solves EPMOM2 and the assertion follows. �
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Remark 2
Proposition 2.3 (ii) in [19] states that the Riesz–Fischer sequences in a separable Hilbert space are
precisely the families for which a biorthogonal Bessel sequence exists. Young states in [20] that
it is not known whether every incomplete sequence of complex exponentials admits a complete
biorthogonal sequence.

Example 3
Consider problem ECD2 from Example 1. If T D 2k, that is, T is an even natural number, the
functions

s2j .s/ D
p
2 sin.�js/; s2j�1.s/ D

p
2 cos.�js/;

form an orthonormal system in L2.0; 1/. Hence, we can choose Nsj D sj as biorthogonal system and
Theorem 2 is applicable.

Example 4

Consider Example 2. Define the functions Qs1.s/ D
s�T2p
T 3=12

, s2.s/ D 1p
T

, and for natural numbers

j 2 ¹1; 2; 3; :::º

s2jC1.s/ D

r
2

T
sin.2�js/; s2jC2.s/ D

r
2

T
cos.2�js/:

If T is a natural number, the sequence .sj /1jD2 is an orthonormal system. For the corresponding
problem of L2-norm minimal optimal control where the constraint with s1 is omitted, the assump-
tions of Theorem 2 hold. To obtain a problem where our assumptions can easily be verified for the
complete sequence of moment equations, we orthogonalize Qs1: We define

Os1 D Qs1 �

1X
jD2

hQs1; sj isj :

With this function Os1, we can replace the first moment equation by

hOs1; ui D hQs1; ui �

1X
jD2

hQs1; sj i hu; sj i:

In our example, we have

Os1 D Qs1 C

1X
jD1

p
6

T

1

�j
s2jC1;

and

hOs1; ui D hQs1; ui D
y0

2
�
T

2

y1

2
:

Then the assumptions of Theorem 2 hold with s1 D Os1=kOs1k for .sj /1jD1 if T > 1 is a natural
number.

For general T > 1, it is more complicated to verify that the assumptions of Theorem 2 hold, but
it is still possible [10]. The verification that the sequence is a Riesz–Fischer sequence is based upon
a trigonometric inequality by Ingham [21].

3.4. Penalization by l1-norms

In this section, we focus on problems with given data that have more than the minimal regularity.
Our aim is to show that for a given data with higher regularity, a weaker penalization is still exact.
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For the problem of a vibrating string with Dirichlet boundary control and an initial state with L1

regularity, a result of this type (in this case with L1-penalization) is stated in [1], Theorem 5.1.
Here, we consider a penalization with a weighted norm, and the weights can be chosen according

to the regularity of the initial data (terminal data respectively). We introduce weighted l1-norms
that can be adapted to the regularity of the data. Let .wk/k be a sequence of positive weighting
parameters, wk > 0. For a sequence .ık/k , we define the weighted l1-norm

kık1;w D sup¹wk jıkj; k 2 Nº:

For a penalty parameter � > 0, we consider the penalized problem

EPMOM1 Wmin
1

2
kuk2L2.0;T IU/ C � sup

®
wk

ˇ̌
hu; skiL2.0;T IU/ � yk

ˇ̌
; k 2 N

¯
:

In the following Theorem, we assume that the sequence .sk/k is a Riesz–Fischer sequence [18],
which implies that it is minimal. A definition of minimality is given in [10].

Theorem 3
Assume that the sequence .sk/k is a Riesz–Fischer sequence with a biorthogonal sequence
.Nsk/k , that

spanhsj ; j 2 Ni � spanhNsj ; j 2 Ni;

and that

1X
jD1

1

wj

ˇ̌̌
ˇ̌̌* 1X

kD1

yk Nsk; Nsj

+
L2.0;T IU/

ˇ̌̌
ˇ̌̌ D ba <1: (30)

If

� > ba; (31)

the solution of EPMOM1 is independent of � and equal to the solution of MOM.

Proof
Because the sequence .sk/k is a Riesz–Fischer sequence, there exists a biorthonormal sequence
.Nsk/k such that

hNsk; sj iL2.0;T IU/ D ıkj ;

where ıkj is Kronecker’s symbol. Moreover, we have

u� D

1X
jD1

yj Nsj : (32)

The regularity of the optimal control (30) implies

1X
jD1

1

wj

ˇ̌
hu� ; Nsj iL2.0;T /

ˇ̌
D ba <1:

Let d 2 L2.0; T IU/ be given, d 6D 0. Let K denote the closure of the span hNsj ; j 2 N i. Because
the corresponding biorthonormal sequence .Nsk/k is complete in K, we can write d in the form

d D d? C

1X
jD1

ıj Nsj ;
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with a sequence ı D .ıj /j 2 l2 and d? 2 K?. We have

ˇ̌
hu� ; d iL2.0;T IU/

ˇ̌
D

ˇ̌̌
ˇ̌̌*u� ; 1X

jD1

ıj Nsj

+
L2.0;T IU/

ˇ̌̌
ˇ̌̌

D

ˇ̌̌
ˇ̌̌*u� ; 1X

jD1

1

wj
ıjwj Nsj

+
L2.0;T IU/

ˇ̌̌
ˇ̌̌

6 kık1;w

1X
jD1

1

wj

ˇ̌
hu� ; Nsj iL2.0;T IU/

ˇ̌
D ba kık1;w ;

where the last equation follows from (30). Let h denote the objective function of EPMOM1, that is

h.u/ D
1

2
kuk2

L2.0;T IU/
C � sup

®
wk

ˇ̌
hu; skiL2.0;T IU/ � yk

ˇ̌
; k 2 N

¯
:

Then we have

h.u� C d/ D h.u�/C hu� ; d iL2.0;T IU/ C
1

2
kdk2

L2.0;T IU/

C � sup
®
wk

ˇ̌
hd; skiL2.0;T IU/

ˇ̌
; k 2 N

¯
> h.u�/ � ba kık1;w

C � sup

8<
:wk

ˇ̌̌
ˇ̌̌* 1X

jD1

ıj Nsj ; sk

+
L2.0;T IU/

ˇ̌̌
ˇ̌̌ ; k 2 N

9=
;

> h.u�/C .� � ba/ kık1;w

> h.u�/;

hence u� solves EPMOM1 and the assertion follows. �

Remark 3
Assumption (30) is valid if sk D Nsk for all k 2 N, .yk/k 2 l1 and wj D 1. This is the case in
Example 3 if y0 and y1 are sufficiently regular.

Now, we discuss the choice of the weights .wj /j depending on the regularity of the problem
data. Consider problem ECD2 from Example 1. If T D 2k, that is, T is an even natural number,
the functions

s2j .s/ D
p
2 sin.�js/; s2j�1.s/ D

p
2 cos.�js/;

form an orthonormal system in L2.0; 1/. Hence, we can choose Nsj D sj as biorthogonal system. In
this case (30) is equivalent to

1X
jD1

1

wj
jyj j <1: (33)

Let q > 2. If y0 and Y1 D
R
y1 are in Lq.0; 1/, for the corresponding Fourier coefficients, we have

. Oy0.j //j , . OY1.j //j 2 lp , where 1
p
C 1

q
D 1 ([22], Chapter 4). In particular, (25) implies that we

have .yj /j 2 lp . Thus (33) implies that for any sequence .wj /j such that . 1
wj
/j 2 l

q , condition

(30) holds. For example, with ˛ > 1, we can choose wj D j ˛=q .
If the periodic extensions of y0 and Y1 D

R
y1 are .r � 1/ times absolutely continuous and

r > 1, for the corresponding Fourier coefficients, we have . Oy0.j / j r/j , . OY1.j / j r/j 2 l2 [22]. In
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particular, (25) implies that we have .yj j r/j 2 l2. Thus (33) implies that for any sequence .wj /j
such that . 1

j r wj
/j 2 l

2, condition (30) holds. For example, with ˛ > 1, we can choosewj D j ˛�r .
In particular, this implies that for r > 2, we can choose weights wj with limj!1wj D 0.

Consider now the case that .Nsk/k is a sequence of exponentials .exp.i�kt //k with �nC1 � �n >
	 > 0. Let T D �=	. Then Ingham’s trigonometric L1-inequality [23] states that

k.hd; sj iL2.0;T IU//j k1 6
1

T

Z T

�T

ˇ̌̌
ˇ̌̌ 1X
jD1

hd; sj iL2.0;T IU/ Nsj

ˇ̌̌
ˇ̌̌ dt:

Now the proof of Theorem 3 implies that in this case and if the assumption of Theorem 3 hold with
wj D 1 also, the penalization

min
1

2
kuk2

L2.0;T IU/
C �

1

T

Z T

�T

ˇ̌̌
ˇ̌̌ 1X
jD1

�
hu; sj iL2.0;T IU/ � yj

�
Nsj

ˇ̌̌
ˇ̌̌ dt;

is exact. This study is partly motivated by Theorem 5.1 in [1] where the L1-penalization of the
terminal state of the wave equation is considered, and it is shown that for an initial state .y0; y1/ 2
L1.0; 1/ �W �1;1.0; 1/, this penalization is exact.

3.5. Penalization by l1-norms

In this section, we consider problems of L1-norm minimal control (Example 5). Such problems
occur, for example, as auxiliary problems for the solutions of problems of time-optimal control
under L1-norm control constraints. Analytic solutions of some L1-optimal Neumann boundary
control problems for the wave equation are presented in [24] and [25].

Example 5
Let .y0; y1/ 2 W 1;1.0; 1/ � L1.0; 1/ be given. We assume that y0 and y1 are even with respect
to the point 1=2, that is, y� .1=2C x/ D y� .1=2 � x/, 
 2 ¹0; 1º. Consider the Neumann optimal
control problem with L1 objective function

ECN1

8̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂̂:

min kukL1.0;T / subject to
y00 D yxx

yx.t; 0/ D �u.t/
yx.t; 1/ D u.t/

y.0; x/ D y0.x/

y0.0; x/ D y1.x/

y.T; x/ D 0

y0.T; x/ D 0:

(34)

In [24], it is shown that this problem is equivalent to the problem8̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂ˆ̂̂:

min kukL1.0;T / subject toR T
0
u.s/ ds D

y0
1

2
;R T

0 u.s/ .s �
T
2
/ ds D

y0
0

2
�
T y0

1

4
;R T

0 u.s/ sin.2�js/ ds D �j
y
2j
0p
2
;R T

0
u.s/ cos.2�js/ ds D

y
2j
1

2
p
2
; j 2 ¹1; 2; 3; :::º;

(35)

where yj� D
R 1
0 y� .x/'j .x/ dx .
 2 ¹0; 1º/ and '0.x/ D 1, 'j .x/ D

p
2 cos.j�x/.
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The form (35) of the Neumann optimal boundary control problems allows to show an interesting
result on the structure of the optimal controls: For initial states with velocity zero, that is, y1 D 0,
there exists an optimal control that is odd with respect to the midpoint of the time interval. More
precisely, we have the following:

Lemma 3
Assume that T > 2 is a natural number. There exists an optimal control u that solves (35) and is
odd with respect to the point T=2 on Œ0; T �, that is

u.T
2
C t / D �u.T

2
� t /; (36)

for all t 2 Œ0; T=2�, if and only if y1 D 0.

Lemma 3 is related with a similar result by Bennighof and Boucher where, as in Example 2 ,only
constant states .y0; y1/ but arbitrary times T are considered [26].

Proof
Assume that y1 D 0. Let an optimal control u for (35) be given. Define Nu.t/ D Œu.t/�u.T � t /�=2.
Then Nu satisfies (36) and k NukL1.0;T / 6 kukL1.0;T /. Moreover, we have

R T
0
Nu.s/ ds D 0 andR T

0 Nu.s/ .s�
T
2
/ ds D

R T
0 u.s/ .s�

T
2
/ ds. In addition,

R T
0 Nu.s/ sin.2�js/ ds D

R T
0 u.s/ sin.2�js/ ds

and
R T
0 Nu.s/ cos.2�js/ ds D 0. Hence Nu is feasible for (35), and because k NukL1.0;T / 6

kukL1.0;T /, this implies that Nu is also a solution of (35). On the other hand, if an odd function
solves (35), the corresponding moment equations imply y01 D 0 and y2j1 D 0 for all j 2 N, hence
y1 D 0. �

If T > 2 is a natural number, y1 D 0 and y0 is constant, an optimal control (which is in this
special case unique) is given by u.t/ D �2 y0=T 2 for t 2 Œ0; T=2� and u.t/ D 2 y0=T

2 for
t 2 .T=2; T �. This illustrates that in general, EC1 does not have periodic solutions. It is important
that in general, EC1 does not have solutions with bang–bang structure. Examples are given in [24].
The values of the control that are not extremal are particularly difficult to compute.

Our problems have the form

MOM1 W
²

min kukL1.0;T IU/
subject to hu; skiL2.0;T IU/ D yk; k 2 N;

where .sk/k is a given sequence of functions in L2.0; T IU/ and .yk/k 2 l2 such that there exists
Ou 2 L1.0; T IU/ such that

h Ou; skiL2.0;T / D yk; k 2 N:

Assume that the sequence .sk/k is minimal with a biorthogonal sequence .Nsk/k , where Nsk 2
L1.0; T IU/. For a penalty parameter � > 0, we consider the l1-norm penalized problem

EPMOM1 Wmin kukL1.0;T IU/ C �
1X
kD1

kNskkL1.0;T IU/
ˇ̌
hu; skiL2.0;T IU/ � yk

ˇ̌
:

The following Theorem is applicable, for example, for problems with the heat equation (Exam-
ple 2.6), where the corresponding biorthogonal sequence is typically not uniformly bounded in L1

but grows exponentially.

Theorem 4
Assume that the sequence .sk/k is minimal with a biorthogonal sequence .Nsk/k in L1.0; T IU/
and that

spanhsj ; j 2 Ni � spanhNsj ; j 2 Ni:
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For a penalty parameter � > 0, we consider the weighted l1-norm penalized problem EPMOM1.
If � is sufficiently large, more precisely, if

� > 1; (37)

the solution of MOM1 is also a solution of EPMOM1. In particular, for � > 1, the optimal value
of EPMOM1 is independent of � .

Remark 4
In contrast to the previous lower bounds for � that imply the exactness of the penalization of the
terminal state in Theorem 4, neither the optimal control nor the initial state nor the right-hand sides
yk of the moment equations that depend in turn on the inital state appear explicitly in the bound.
This is because in the proof of Theorem 4, we use an inequality of a different type because in the
control cost in contrast to the other cases, no square appears. Note that in Theorem 5, the situation
is similar: Also for the L1-control cost, the lower bound on � is independent of the initial state and
the optimal control.

Proof
Because sequence .sk/k is minimal, there exists a biorthonormal sequence .Nsk/k such that

hNsk; sj iL2.0;T IU/ D ıkj :

Let d 2 L1.0; T IU/ be given, d 6D 0. Let K denote the closure of the span hNsj ; j 2 Ni.
Because the corresponding biorthonormal sequence .Nsk/k is complete in K, we can write d in
the form

d D d? C

1X
jD1

ıj Nsj ;

with a sequence ı D .ıj /j 2 l
2 and d? 2 K?. Let u� 2 L1.0; T IU/ denote a solution of

MOM1. For all d? 2 K?, u� C d? satisfies the moment equations. Because of the optimality of
u� , this implies

ku� C d
?kL1.0;T IU/ > ku�kL1.0;T IU/ D h.u�/:

Because of the biorthogonality, we have

1X
kD1

kNskkL1.0;T IU/
ˇ̌
hd; skiL2.0;T IU/

ˇ̌
D

1X
kD1

kNskkL1.0;T IU/ jıkj :

Moreover, we have

k

1X
jD1

ıj Nsj kL1.0;T IU/ 6
1X
jD1

jıj j kNsj kL1.0;T IU/:

Let h denote the objective function of EPMOM1, that is

h.u/ D kukL1.0;T IU/ C �

1X
kD1

kNskkL1.0;T IU/
ˇ̌
hu; skiL2.0;T IU/ � yk

ˇ̌
:
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Then, we have

h.u� C d/ > ku� C d
?kL1.0;T IU/ � k

1X
jD1

ıj Nsj kL1.0;T IU/

C �

1X
kD1

kNskkL1.0;T IU/
ˇ̌
hd; skiL2.0;T IU/

ˇ̌

> h.u�/ �

1X
kD1

kNskkL1.0;T IU/ jıkj C �

1X
kD1

kNskkL1.0;T IU/ jıkj

D h.u�/C .� � 1/

1X
kD1

kNskkL1.0;T IU/ jıkj

> h.u�/;

hence u� solves EPMOM1 and the assertion follows. �

Example 6
Consider the optimal Dirichlet boundary problem with the wave equation from Example 1 with the
objective function replaced by the L1-norm.

To make sure that MOM1 has a solution, we have to assume higher regularity of the initial state,
namely, .y0; y1/ 2 L1.0; 1/ � W �1;1.0; 1/. The weakness of the bang–bang principle for L1

Dirichlet boundary control problems is studied in [27].
For natural numbers j 2 ¹1; 2; 3; :::º define the functions

s2j .s/ D sin.�js/; s2j�1.s/ D cos.�js/:

If T D 2; which is the minimal time where exact controllability holds, the family .sj /j together
with a constant function s0 D 1p

2
form a complete orthonormal system that is uniformly bounded

in L1.0; T /.
If T > 4 is an even integer, the family .sj /j forms an orthogonal system that can be normalized

to an orthonormal system that is uniformly bounded in L1.0; T /.

4. PENALIZATION FOR L1-NORM OPTIMAL CONTROL PROBLEMS

In order to complete our study, we also consider optimal control problems where the control cost is
given by an L1-norm. A motivating example is the minimization of the total fuel consumption of a
vehicle, the control variable being the motor thrust [28]. The L1-frame is also a natural setting for
the corresponding time-optimal control problem with fuel constraints.

These topics have been widely discussed in the PDE setting. For instance, time-optimal control
problems for the heat equation are discussed in [29]. Problems ofL1-norm optimal Dirichlet bound-
ary control problems for the wave equation have, for example, been considered, for example, in
[30]. In order to allow for states in spaces of the type C.Œ0; T �IL1.�//, � being an open subset
of a finite-dimensional Euclidean space, we assume that X and U are Banach spaces. As before,
let A: D.A/ � X ! X be the generator of a strongly continuous semigroup and let B denote an
admissible control operator. Again, for x0 2 X , we consider a control system of the form²

x0.t/C Ax D Bu;

x.0/ D x0:
(38)

Let a time T > 0 be given. In this section, we assume that for all u 2 L1.0; T IU/, the Cauchy
problem (38) has a unique solution x 2 C.Œ0; T �IX/.
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Assume that (38) is exactly controllable using L1-controls in time T , that is, there exists a con-
stant C1 > 0 such that for all initial states x0 2 X and all final states x1 2 X , there is a control
u 2 L1.0; T IU/ such that the solution x 2 C.Œ0; T �IX/ of (38) satisfies²

x.T / D x1;

kukL1.0;T IU/ 6 C1 .kx0kX C kx1kX / :
(39)

Let us return to the motivating example from Section 1.1. If we replace the objective function by
the L1-norm of the control, we obtain the optimal control problem8̂̂

ˆ̂<
ˆ̂̂̂:

minu2L1.0;1/ kuk2
L1.0;1/

subject to
y0.t/ � y.t/ D exp.t/ u.t/

y.0/ D �1
y.1/ D 0:

(40)

As in Section 1.1, the constant function u�.t/ D 1 is an optimal control. However, it is not uniquely
determined, because every control with L1-norm equal to 1 that satisfies the moment equationR 1
0
u.s/ ds D 1 is also an optimal control. So, we see that we have a huge set of optimal controls. In

particular, we can find sequences of optimal controls that approximate Dirac measures, for example,
by considering for k 2 ¹1; 2; 3; :::º the optimal controls

uk.t/ D

´
2k for t 2 Œ0; 1

2k
�;

0 for t 2 . 1
2k
; 1�:

Example (40) illustrates that nonuniqueness is an important issue for L1-norm optimal controls.
Another important issue is nonexistence. Consider the problem8̂̂

ˆ̂<
ˆ̂̂̂:

infu2L1.0;1/ kuk2
L1.0;1/

subject to
y0.t/ � y.t/ D u.t/

y.0/ D �1
y.1/ D 0:

(41)

Suppose that u� is a solution of (41). Then the control

Qu.t/ D

´
u�.t/C exp

�
�1
2

�
u�
�
t C 1

2

�
for t 2

	
0; 1
2



;

0 for t 2
	
1
2
; 1


:

also generates a state that satisfies the end condition y.1/ D 0 because it satisfies the moment
equation

R 1
0 Qu.t/ e�t dt D

R 1
0 u
�.t/ e�t dt D 1. We have

R 1
0 j Qu.t/j dt 6

R 1=2
0 ju�.t/j dt CR 1

1=2 ju
�.t/j exp.�1=2/ dt: Because we have supposed u� to be a solution of (41), this implies that

u�.t/ D 0 for t 2 Œ1=2; 1� almost everywhere. By induction, we show that for all k 2 ¹1; 2; 3; ::º;
we have u�.t/ D 0 for t 2 Œ1=2k; 1� almost everywhere. For this purpose, define

Quk.t/ D

8<
:
u�.t/C exp

�
� 1

2k

�
u�
�
t C 1

2k

�
for t 2

h
0; 1
2k

i
;

0 for t 2
h
1

2k
; 1
i
:

Then assuming that u� D 0 for t 2 Œ 1

2k�1
; 1� almost everywhere, we obtain

R 1
0 Quk.t/ e�t dt DR 1=2k�1

0 u�.t/ e�t dt D
R 1
0 u
�.t/ e�t dt D 1. This implies that Quk generates a state that satisfies the

end condition y.1/ D 0:

We have
R 1
0 j Quk.t/j dt 6

R 1=2k
0 ju�.t/j dt C

R 1=2k�1
1=2k

ju�.t/j exp.�1=2k/ dt: Because we have

supposed u� to be a solution of (41), this implies that u�.t/ D 0 for t 2 Œ1=2k; 1=2k�1� almost
everywhere.
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Because u�.t/ D 0 for t 2 Œ1=2k; 1� almost everywhere for all k 2 ¹1; 2; 3; :::º, u�.t/ cannot
exist as an L1-function, which implies that (41) does not have a solution.

This is because of the lack of closeness of L1 with respect to the weak convergence in the
sense of measures. The closure of the optimization problem leads to consider controls that are in
M.0; T IU/, where M denotes the space of measures. The same optimal control problems that we
consider with controls in L1.0; T IU/ can be considered in M.0; T IU/. In that functional setting,
the existence of optimal controls becomes automatic by the Direct Method of the Calculus of Varia-
tions. In some cases, optimal controls achieved that way turn out to become more regular and belong
to L1.0; T IU/. But for this to be proved, one has to analyze in detail the optimality system and use
the regularizing effects of the state and adjoint equations.

The fact that controls might be more smooth (in particular with respect to the time variable) than
what they are originally imposed to be has been observed in different contexts. For instance, in
[31], it is observed that for the interior control of the wave equations, controls that are optimal in
L2.0; T IL2.!// belong actually to C.0; T IL2.!//. Note, however, that this does not occur in the
context of boundary control. In [2], it is stated that both for boundary and internal control, even if
controls are computed to be optimal inL2, if the data to be controlled are more smooth, the resulting
controls can be actually H s . This is actually a property of ellipticity or regularizing effect of the
Gramian operator.

In order to deal with the situation of possibly empty solution sets and solution sets with more than
one element, let us look at the notion of the equivalence of optimization problems.

Definition 1
Two optimization problems are called equivalent, if they have the same (possibly empty) set of
solutions.

Now, we consider the penalization with L1-controls:

EP1 W
²

inf kukL1.0;T IU/ C � kx.T /kX
subject to x.0/ D x0; x

0.t/C Ax D Bu:

In problem EP1, the end condition x.T / D 0 does not appear. In the statement of EP1, we have
written inf instead of min to emphasize that there are cases where the solution set is empty.

Theorem 5 states that if � is sufficiently large, the optimization problems EP1 are equivalent to
optimization problems with L1-control cost and terminal constraints. Thus, also in the L1-case, the
penalization provides a nice way to avoid the terminal constraint. However, it does not avoid the
issues of non-uniqueness of L1-norm minimal controls and possible non-existence of such controls.
Note that as we have stated in Remark 4, because the L1-norm appears in the objective function of
the penalized problem without a square, in Theorem 5, the lower bound for � is independent of the
initial state.

Theorem 5
Assume that the system is exactly controllable using L1-controls in time T . If

� > C1; (42)

the set of solutions of problem EP1 is independent of � and equal to the set of solutions of the
optimal control problem

EC1 W

8<
:

inf kukL1.0;T IU/
subject to x.0/ D x0; x

0.t/C Ax D Bu
x.T / D 0:

Hence, if (42) holds, EP1 and EC1 are equivalent.
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Proof
First, we consider the case that the set of solutions of EC1 is nonempty. In this case, we can choose
an element u� 2 L1.0; T IU/ that is a solution EC1 (the solution of EC1 is in general not uniquely
determined) and let x� denote the corresponding state. Then we have

x�.T / D 0: (43)

For u 2 L1.0; T IU/ define

J� .u/ D kukL1.0;T IU/ C �kx.T /kX :

Then we have J� .u�/ D ku�kL1.0;T IU/.
Let d 2 L1.0; T IU/ be given, d 6D 0. Define xd as the solution of the initial value problem²

x0
d
.t/C Axd D Bd;

xd .0/ D 0:
(44)

Then the control u D u� C d generates the state x� C xd that solves (38). On account of (39), there
exists a control dmin 2 L

1.0; T IU/ such that for the solution of²
x0min.t/C Axmin D Bdmin;

xmin.0/ D 0;
(45)

we have xmin.T / D xd .T / and

kdminkL1.0;T IU/ 6 C1 kxd .T /kX :

Define ı D d � dmin. Then, for the solution of²
x0
ı
.t/C Axı D Bı;

xı.0/ D 0;
(46)

we have xı.T / D 0. Thus u� C ı is admissible for EC1. Because u� is a solution of EC1,
this implies

ku� C ıkL1.0;T IU/ > ku�kL1.0;T IU/:

For the objective function, this implies

J� .u� C d/ D ku� C dkL1.0;T IU/ C �kxd .T /kX

D ku� C ı C dminkL1.0;T IU/ C �kxd .T /kX

> ku� C ıkL1.0;T IU/ � kdminkL1.0;T IU/ C �kxd .T /kX

> ku�kL1.0;T IU/ � kdminkL1.0;T IU/ C .�=C1/kdminkL1.0;T IU/

D ku�kL1.0;T IU/ C

�
�

C1
� 1

�
kdminkL1.0;T IU/

> ku�kL1.0;T IU/ D J� .u�/:

This implies that u� is a solution of EP1. Hence, the set of solutions of EC1 is a subset of the set of
solutions of EP1.

Moreover, if u� C d is not a solution of EC1, we have xd .T / 6D 0 (and thus dmin 6D 0) or ku� C
dkL1.0;T IU/ > ku�kL1.0;T IU/. Similarly, as provided earlier, this yields the inequality J� .u�Cd/ >
ku�kL1.0;T IU/; hence u� C d is also not a solution of EP1.

This implies that if the set of solutions of EC1 is nonempty, it is equal to the set of solutions
of EP1.

Now, we consider the case that the set of solutions of EC1 is empty. Let � denote the optimal
value of EC1. For all controls ua 2 L1.0; T IU/ that generate a state xa with xa.T / D 0, we have
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kuakL1.0;T IU/ > � . Moreover, for all " > 0, there exists a control u" such that x".T / D 0 and
ku"kL1.0;T IU/ 6 � C ".

Suppose that EP1 has a solution. If for a solution us of EP1, we have xs.T / D 0, this
implies J� .us/ D kuskL1.0;T IU/ > � , which is a contradiction, because with the choice " D
1
2

�
kuskL1.0;T IU/ � �

�
, we can find a control with J� .u"/ D ku"kL1.0;T IU/ < kuskL1.0;T IU/ D

J� .us/. Thus, for every solution of EP1, we have xs.T / 6D 0. On account of (39), there exists a
control dmin 2 L

1.0; T IU/ such that for the solution of²
x0min.t/C Axmin D Bdmin;

xmin.0/ D 0;
(47)

we have xmin.T / D xs.T / and

kdminkL1.0;T IU/ 6 C1 kxs.T /kX :

Define ı D us � dmin. Then for the solution of²
x0
ı
.t/C Axı D Bı;

xı.0/ D x0;
(48)

we have xı.T / D 0. This implies

J� .ı/ D kıkL1.0;T IU/

D kus � dminkL1.0;T IU/

6 kuskL1.0;T IU/ C kdminkL1.0;T IU/

6 kuskL1.0;T IU/ C C1 kxs.T /kX

< kuskL1.0;T IU/ C � kxs.T /kX

D J� .us/:

This is a contradiction because us was chosen from the set of solutions of EP1. Thus, also EP1
does not have a solution, and the assertion follows. �

5. CONCLUSION

In the statement of optimal control problems with finite time horizon for time-dependent systems
that are exactly controllable, often, it makes sense to require that at the terminal time, the system
state is equal to a desired terminal state by including the appropriate terminal constraint.

We have shown that often these end conditions can be replaced by a non-smooth penalty term in
the objective function. If the corresponding penalty parameter is sufficiently large, minimizing the
objective function with the penalty term yields optimal controls that generate states that satisfy the
end conditions exactly. This is a useful tool for the analysis of numerical algorithms, because most
reasonable numerical algorithms proceed similarly, for example, by coupling the end conditions to
the objective via a Lagrange multiplier approach. Our approach can be used to analyze the behavior
of merit functions with a non-smooth penalty term.

The non-smooth penalty term leads to objective functions that are not differentiable. There exist
many efficient methods for solving non-smooth convex optimization problems (for example [32],
[33]. Another approach to deal with this problem numerically is to approximate the non-smooth
penalty term by family of smooth functions. For problems with inequality constraints, this approach
has been studied in [34] and [35].

Discretizations that are based upon moment equations have been considered in [36], where the
moment equations are replaced by moment inequalities to achieve a regularization of the solutions
of the discretized problem. The numerical treatment of unconstrained problems that are based upon
the exact penalization for moment constraints needs to be studied in more detail in future research.
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