
Numerical aspects of large-time optimal control of Burgers equation

Navid Allahverdi Alejandro Pozo Enrique Zuazua

1 Introduction

In this work, we analyze the numerical approximation of the inverse design problem for the Burgers
equation, both in the viscous and in the inviscid case:

min
u0
Jν(u0) = min

u0

1

2

∫
R

(uν(x, T)− u∗(x))2 dx, (1)

subject to

∂tu

ν + ∂x

(
(uν)2

2

)
= ν∂xxu

ν , x ∈ R, t > 0,

uν(x, 0) = u0(x), x ∈ R,
(2)

distinguishing the viscous, ν > 0, and the inviscid case, ν = 0. Given a time T > 0 and a target
function u∗ the aim is to identify the initial datum u0 so that the solution, at time t = T , reaches
the target u∗ or gets as close as possible to it. In particular, we focus on problems with large values
of T , for which convergence of the numerical schemes in the classical sense of numerical analysis
might not suffice to obtain accurate results.

This issue is motivated by the challenging problem of sonic-boom minimization for supersonic
aircrafts, which is governed by a Burgers-like equation. The travel time of the signal to the ground
is larger than the time scale of the initial disturbance by orders of magnitude and this motivates
our study of large time control of the sonic-boom propagation.

2 Description of the numerical algorithms

To implement the problem numerically, we opt for a discretization of (2) using classical conservative
schemes. Let us denote spatial nodes xj+1/2 = ∆x(j + 1/2), j ∈ Z, and time instants tn = n∆t,
n ∈ N ∪ {0}, where ∆x,∆t > 0 are the mesh size and time-step respectively. We approximate the
solution u of (2) by a piecewise constant function u∆ such that

u∆(x, t) = unj , x ∈ [xj−1/2, xj+1/2), t ∈ [tn, tn+1),

where

un+1
j = unj −

∆t

∆x
(gnj+1/2 − g

n
j−1/2)

+
ν∆t

∆x2 (unj−1 − 2unj + unj+1), j ∈ Z, n = 0, . . . , N,

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z.

(3)

1

Here, N = dT/∆te is the number of time-steps needed to reach T . We denote gnj+1/2 = g(unj , u
n
j+1),

where the function g is the numerical flux. In this paper we compare two fluxes:

Engquist-Osher (EO): gEO(v, w) =
v(v + |v|)

4
+
w(w − |w|)

4
,

Modified Lax-Friedrichs (MLF): gMLF (v, w) =
v2 + w2

4
− ∆x

∆t

(
w − v

4

)
.

In the simulations we follow the discrete approach to optimization. For the discretization of (1),
we consider a simple quadrature rule:

J∆(u0
∆) =

∆x

2

∑
Z

(uNj − u∗j)2, (4)

where the target function u∗ has been discretized in the same manner as the initial data u0 in (3).
Regarding the optimization technique, we use the classical gradient descent method based on

the adjoint methodology. Following the discrete approach, it is easy to obtain the corresponding
discrete adjoint system for (3):

ρnj = ρn+1
j + ∆t

∆x

(
∂vg(unj , u

n
j+1)

(
ρn+1
j+1 − ρ

n+1
j

)
+∂wg(unj−1, u

n
j)
(
ρn+1
j − ρn+1

j−1

))
+ ν∆t

∆x2
(ρn+1
j−1 − 2ρn+1

j + ρn+1
j+1), j ∈ Z, n = N − 1 . . . , 0,

ρNj = uNj − u∗j , j ∈ Z,

(5)

To minimize (4), we will take the descent direction given by:

δu0
j = −ρ0

j , j ∈ Z.

This direction is straightforwardly obtained following the same arguments as for the continuous
level. Thus, the new initial data u0,ε

∆ will be given by

u0,ε
j = u0

j − ερ0
j , j ∈ Z

for some ε > 0 small enough.
The pseudocode for the complete algorithm can be found in Algorithm 1. Note that it is valid

both for the viscous and the inviscid case of the Burgers equation.

3 Numerical viscosity

It is well known that (3) can be rewritten in its viscous form in the following manner:

un+1
j − unj

∆t
+

(unj+1)2 − (unj−1)2

4∆x
= R(unj , u

n
j+1)−R(unj−1, u

n
j) +

ν

∆x2 (unj−1 − 2unj + unj+1),

where R is uniquely defined by

R(u, v) =
1

2∆x

(u2

2
+
v2

2
− 2g(u, v)

)
.

2

Algorithm 1 Solve discrete optimization problem

Input: ∆x, ∆t, N, {u0
j}j=0,...,M , {u∗j}j=0,...,M

1: for j = 0 to M do
2: set u0,new

j = u0
j

3: end for
4: compute {unj }

n=1,...,N
j=0,...,M from {unew,0j }j=0,...,M using (3)

5: compute functional J (u0,new
∆) using (4)

6: while stopping criteria are not met do
7: for j = 0 to M do
8: set u0,old

j = u0,new
j

9: set ρNj = uNj − u∗j
10: end for
11: compute {ρ0

j}j=0,...,M from {ρNj }j=0,...,M and {unj }
n=1,...,N
j=0,...,M using (5)

12: compute descending step-size ε
13: for j = 0 to M do
14: set u0,new

j = u0,old
j − ερ0

j

15: end for
16: compute {unj }

n=1,...,N
j=0,...,M from {unew,0j }j=0,...,M using (3)

17: compute functional J (u0,new
∆) using (4)

18: end while
19: for j = 0 to M do
20: set u∗,0j = u0,new

j

21: end for
Output: Optimal solution {u∗,0j }j=0,...,M

3

In the case of the numerical fluxes that we consider in this paper, we have:

RMLF (u, v) =
v − u
4∆t

,

REO(u, v) =
1

4∆x
(v|v| − u|u|).

Both schemes are convergent in the classical sense of the numerical analysis. However, the large-
time behavior of u∆ depends on the degree of homogeneity of the term R. In other words, let us
assume that there exists α ∈ R such that

R(µu, µv) = µαR(u, v), ∀u, v ∈ R and ∀µ > 0.

It is clear that α = 2 for Engquist-Osher and α = 1 for modified Lax-Friedrichs. Thus, the numerical
viscosity inherent in MLF drives the system into a diffusive wave too early and, consequently,
continuous metastable states are not reproduced numerically.

-0.05

 0

 0.05

 0.1

 0.15

-4 -2 0 2 4 6

Solutions by EO and MLF (T=1)

EO
MLF

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-10 -5 0 5 10 15

Solutions by EO and MLF (T=100)

EO
MLF

-0.005

 0

 0.005

 0.01

-40 -20 0 20 40 60

Solutions by EO and MLF (T=5000)

EO
MLF

Figure 1: Solutions of (2) with ν = 10−6 at t = 1, t = 100 and t = 5000, using (3) with ∆x = 0.2,
∆t = 0.5 and numerical fluxes EO (blue) and MLF (red).

The main aim of our work is to emphasize that ignoring the dynamics of the continuous model
at the numerical level can produce undesired results in optimal control problems in large time
horizons. On one hand, we show that the gradient descent method performs successfully whenever
the numerical flux and the mesh sizes are chosen appropriately. On the other hand, we present
examples where excessive numerical viscosity dominates the physical one.

4

	Introduction
	Description of the numerical algorithms
	Numerical viscosity

