
Minimal controllability time for the heat equation under state constraints
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The Problem

Consider the 1−D heat equation

ẏ(t, x) = ∂2
xy(t, x) (t ∈ IR∗+ , x ∈ (0, 1)) ,

∂xy(t, 0) = v0(t) (t ∈ IR∗+) ,

∂xy(t, 1) = v1(t) (t ∈ IR∗+) ,

with initial condition y0 > 0, given,

y(0, x) = y0(x) (x ∈ (0, 1)) .

The aim is to control this system to a constant steady state y1 > 0

y(T , x) = y1 (x ∈ [0, 1] a.e.) ,

It is well known that

for every time T > 0 there exists controls v0 and v1 ∈ L2(0,T ) such that
y(T , ·) = y1

if v0 = v1 = 0, y is non-negative.

Is it possible to find T > 0 and controls v0 and v1 such that y satisfies y(T , ·) = y1

together with,
y(t, x) > 0 (t > 0 , x ∈ (0, 1) a.e.) ?
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First considerations I

If inf
x∈(0,1)

y0(x) > y1, then y1 cannot be reached in arbitrarily small time T .

The constraint y(t, x) > 0 ensures that

y(t, 0) > 0 and y(t, 1) > 0

for every x ∈ (0, 1),

y0(x) > inf
x∈(0,1)

(
y0(x)

)
sinπx

due to the comparison principle,

y(t, x) > e−π
2t inf

x∈(0,1)

(
y0(x)

)
sinπx

in particular,

y(t, 1
2
) > e−π

2t inf
x∈(0,1)

(
y0(x)

)
finally,

y(t, 1
2
) > y1 for t ∈

[
0,

1

π2
ln

inf y0

y1

)
.
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J. Lohéac (IRCCyN) Control with state constraints 23/02/2017 3 / 1



First considerations I

If inf
x∈(0,1)

y0(x) > y1, then y1 cannot be reached in arbitrarily small time T .

The constraint y(t, x) > 0 ensures that

y(t, 0) > 0 and y(t, 1) > 0

for every x ∈ (0, 1),

y0(x) > inf
x∈(0,1)

(
y0(x)

)
sinπx

due to the comparison principle,

y(t, x) > e−π
2t inf

x∈(0,1)

(
y0(x)

)
sinπx

in particular,

y(t, 1
2
) > e−π

2t inf
x∈(0,1)

(
y0(x)

)

finally,

y(t, 1
2
) > y1 for t ∈

[
0,

1

π2
ln

inf y0

y1

)
.
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First considerations II

Due to the comparison principle, the constraint

y(t, x) > 0

is equivalent to the constraint

y(t, 0) > 0 and y(t, 1) > 0 .
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Preliminaries
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Preliminaries

Controllability and Observability I

Consider the dynamical system

ẏ = Ay + Bu , y(0) = y0 ,

with y(t) ∈ X the state and u ∈ U the control, X and U are assumed to be two Hilbert
spaces identified with their dual. By Duhamel formula, the solution for u ∈ L2

loc(IR,U) is

y(t) = etAy0 + Φtu ,

with Φtu =

∫ t

0

e(t−s)ABu(s)ds.

We say that (A,B) is null-controllable in time T > 0 if for every y0, there exist a control
u such that

eTAy0 + ΦTu = 0 .

That is to say

Ran eTA ⊂ RanΦT .
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Preliminaries

Controllability and Observability II

Using the closed graph theorem, this is equivalent to

∃c(T ) > 0 s.t. ‖eTA
∗
z1‖2

X 6 c(T )‖Φ∗T z1‖2
L2(IR+,U) (z1 ∈ X ) ,

that is to say,

‖z(0)‖2
X 6 c(T )

∫ T

0

‖B∗z(t)‖2
U dt ,

where z is solution of the adjoint system

−ż = A∗z , z(T ) = z1 .

We say that (A∗,B∗) is final state observable in time T .
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Preliminaries

Controllability and Observability III

One can look for a control of minimal norm,

min 1
2

∫ T

0

‖u(t)‖2
U dt

y(T ) = 0 .

Using Fenchel-Rockafellar duality, we obtain that the minimal control is givan by

u(t) = B∗z(t) ,

where z is solution of the adjoint problem and is the minimizer of

min 1
2

∫ T

0

‖B∗z(t)‖2
U dt + 〈z(0), y0〉X := J(z1) .

From which we obtain that there exist a null control u satisfying∫ T

0

‖u(t)‖2
U dt 6 c(T )‖y0‖2

X .
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Preliminaries

Controllability to steady states I

A steady state ȳ ∈ X for ẏ = Ay + Bu is an element in X such that there exists ū ∈ U
such that

Aȳ + Bū = 0 .

Proving the controllability to a steady state is equivalent as proving the
null-controllability. In fact setting ỹ = y − ȳ and ũ = u − ū, we have

˙̃y = Aỹ + Bũ , ỹ(0) = y0 − ȳ .
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1−D heat equation
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1−D heat equation Constrained Dirichlet control problem

The constrained Dirichlet control problem

Consider the 1−D heat equation

ẏ(t, x) = ∂2
xy(t, x) (t > 0 , x ∈ (0, 1)) ,

y(t, 0) = u0(t) (t > 0) ,

y(t, 1) = u1(t) (t > 0) ,

with constant initial condition y0 ∈ L2(0, 1), given,

y(0, x) = y0(x) (x ∈ (0, 1)) .

The aim is to control this system to a constant steady state y1 > 0

y(T , x) = y1 (x ∈ [0, 1] a.e.) ,

with the control constraint

u0(t) > 0 and u1(t) > 0 (t > 0 a.e.).
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1−D heat equation Constrained Dirichlet control problem

Existence of controls I
The constrained Dirichlet control problem

Proposition

There exists a time T large enough and positive controls u0, u1 ∈ H1(0,T ) such that
y(T , ·) = y1.

This allows us to define

T
(
y0, y1

)
= inf

{
T > 0 , ∃u0, u1 ∈ L1(0,T ) s.t. u0 > 0 , u1 > 0 and y(T , ·) = y1

}
> 0 ,

proof. (see also Schmidt 1980)
Setting ỹ(t, x) = y(t, x)− y1, ũ0(t) = u0(t)− y1 and ũ1 = u1 − y1, we aim to prove
(omitting the tildes) that there exists a time T > 0 and controls u0 and u1 satisfying,

u0(t) > −y1 and u1(t) > −y1

such that the solution y with initial condition

y(0, x) = y0(x)− y1 (x ∈ (0, 1)) ,

satisfies y(T , ·) = 0.
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J. Lohéac (IRCCyN) Control with state constraints 23/02/2017 13 / 1



1−D heat equation Constrained Dirichlet control problem

Existence of controls II
The constrained Dirichlet control problem

For any T > 0 the existence of controls u0, u1 ∈ H1(0,T ) such that y(T , ·) = 0 is
ensured by Fattorini-Russel 1971.
In terms of the adjoint system,

−ż(t, x) = ∂2
x z(t, x) (t > 0 , x ∈ (0, 1)) ,

z(t, 0) = z(t, 1) = 0 (t > 0) ,

z(T , x) = z0(x) (x ∈ (0, 1)) ,

there exists a constant c̃(T ) > 0 such that,

‖z(0, ·)‖2
L2(0,1) 6 c̃(T )

(
‖∂xz(·, 0)‖2

H−1(0,T ) + ‖∂xz(·, 1)‖2
H−1(0,T )

)
(z0 ∈ L2(0, 1)) .

This inequality being true in any time interval, we also have

‖z(T
2
, ·)‖2

L2(0,1) 6 c̃(T
2

)
(
‖∂xz(·, 0)‖2

H−1(0,T ) + ‖∂xz(·, 1)‖2
H−1(0,T )

)
Using the dissipativity properties,

‖z(0, ·)‖2
L2(0,1) 6 e−C0

T
2 ‖z(T

2
, ·)‖2

L2(0,1) .

Consequently,

‖z(0, ·)‖2
L2(0,1) 6 e−C0

T
2 c̃(T

2
)
(
‖∂xz(·, 0)‖2

H−1(0,T ) + ‖∂xz(·, 1)‖2
H−1(0,T )

)
.
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1−D heat equation Constrained Dirichlet control problem

Existence of controls III
The constrained Dirichlet control problem

By duality this means that the controls u0 and u1 can be chosen such that

‖ui‖2
H1(0,T ) 6 e−C0

T
2 c̃(T

2
) ‖y0 − y1‖2

L2(0,1) (i ∈ {0, 1})

Using the embedding H1(0,T ) ⊂ L∞(0,T ),

‖ui‖2
L∞(0,T ) 6 Ce−C0

T
2 c̃(T

2
) ‖y0 − y1‖2

L2(0,1) (i ∈ {0, 1})

Thus, for T large enough,

‖u0‖L∞(0,T ), ‖u1‖L∞(0,T ) < y1

and hence,
u0(t) > −y1 and u1(t) > −y1 (t ∈ [0,T ] a.e.) .

�
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1−D heat equation Constrained Dirichlet control problem

Minimal control time I
The constrained Dirichlet control problem

Theorem

Let y0 ∈ L2(0, 1) and y1 ∈ IR∗+ with y0 6= y1. Then,

1 T := T
(
y0, y1

)
> 0,

2 there exist non-negative controls u0, u1 ∈M(0,T ) such that the solution y with
controls u0 and u1 satisfies y(T , ·) = y1.

The solution y , of the Dirichlet control problem with controls in the set of Radon
measures, is defined by transposition.

Remark

T
(
y0, y1

)
> 0 even if y0 < y1.
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1−D heat equation Constrained Dirichlet control problem

Minimal control time II
The constrained Dirichlet control problem

Proof.
• T > 0:

Define yn(t) =

∫ 1

0

y(t, x) sin(nπx) dx . y being solution of the heat equation, we have

ẏn(t) =

∫ 1

0

∂2
xy(t, x) sin(nπx) dx = −nπ

∫ 1

0

∂xy(t, x) cos(nπx)dx

= nπ (u0(t)− (−1)nu1(t))− (nπ)2yn(t)

with yn(0) =

∫ 1

0

y0(x) sin(nπx)dx := y0
n. Thus,

yn(T ) = e−(nπ)2Ty0
n + nπ

∫ T

0

e−(nπ)2(T−t) (u0(t)− (−1)nu1(t)) dt .

On the other hand, if y(T , x) ≡ y1, we have yn(T ) =

∫ 1

0

y1 sin(nπx) dx =
1− (−1)n

nπ
y1.

Consequently,

1− (−1)n

nπ
y1 − e−(nπ)2Ty0

n = nπ

∫ T

0

e−(nπ)2(T−t) (u0(t)− (−1)nu1(t)) dt .
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1−D heat equation Constrained Dirichlet control problem

Minimal control time III
The constrained Dirichlet control problem

For n = 2p, ∫ T

0

e(2pπ)2t (u0(t)− u1(t)) dt =
y0

2p

2pπ
,

For n = 2p + 1,

2 y1

(2p + 1)π
− e−(2p+1)2π2T y0

2p+1 = (2p + 1)π

∫ T

0

e−(2p+1)2π2(T−t) (u0(t) + u1(t)) dt .

But,

e−(2p+1)2π2T 6 e−(2p+1)2π2(T−t) 6 1 (t ∈ [0,T ]) .

u0 and u1 being non-negative,

e−(2p+1)2π2T

∫ T

0

(u0(t) + u1(t)) dt 6
∫ T

0

e−(2p+1)2π2(T−t) (u0(t) + u1(t)) dt

6
∫ T

0

(u0(t) + u1(t)) dt ,

J. Lohéac (IRCCyN) Control with state constraints 23/02/2017 18 / 1



1−D heat equation Constrained Dirichlet control problem

Minimal control time IV
The constrained Dirichlet control problem

We have obtained,

2 y1

(2p + 1)2π2
− e−(2p+1)2π2T y0

2p+1

(2p + 1)π
6
∫ T

0

(u0(t) + u1(t)) dt

6 e(2p+1)2π2T 2 y1

(2p + 1)2π2
−

y0
2p+1

(2p + 1)π
.

If for every T > 0 there exists non-negative controls uT
0 and uT

1 steering y0 to y1 in time
T , then

lim
T→0

∫ T

0

(
uT

0 (t) + uT
1 (t)

)
dt =

2 y1

(2p + 1)2π2
−

y0
2p+1

(2p + 1)π
:= γ ∈ IR (p ∈ IN) .

Hence,

y0
2p+1 =

2y1

(2p + 1)π
− (2p + 1)πγ (p ∈ IN) .

y0 ∈ L2(0, 1), ensures that
∞∑
n=0

∣∣∣y0
n

∣∣∣2 <∞ and hence γ = 0, y0
2p+1 =

2y1

(2p + 1)π
and

lim
T→0

∫ T

0

(
uT

0 (t) + uT
1 (t)

)
dt = 0 .
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1−D heat equation Constrained Dirichlet control problem

Minimal control time V
The constrained Dirichlet control problem

Since uT
0 > 0 and uT

1 > 0, we can also conclude

lim
T→0

∫ T

0

uT
0 (t)dt = lim

T→0

∫ T

0

u1(t)dt = 0 .

consequently passing to the limit T → 0 in∫ T

0

e(2pπ)2t
(
uT

0 (t)− uT
1 (t)

)
dt =

y0
2p

2pπ
,

we obtain
y0

2p = 0 (p ∈ IN∗) .

All in all, since the family
{√

2 sin(nπ ·)
}

n∈IN∗
is an orthonormal basis of L2(0, 1), we

conclude that y0 can be steered to y1 in arbitrarily small time with non-negative controls
if and only if

y0(x) = y1 (x ∈ (0, 1)) .
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1−D heat equation Constrained Dirichlet control problem

Minimal control time VI
The constrained Dirichlet control problem

• Controllability in the minimal time T :
Define (εk)k∈IN a sequence of positive numbers converging to 0.
For every k ∈ IN, there exist non-negative controls uk

0 , u
k
1 ∈ L1(0,T + εk), so that the

solution y satisfies y(T + εk , ·) = y1.
Define ε̄ = sup

k∈IN
εk .

According to

2 y1

(2p + 1)π
− e−(2p+1)2π2T y0

2p+1 = (2p + 1)π

∫ T

0

e−(2p+1)2π2(T−t)
(
uk

0 (t) + uk
1 (t)

)
dt ,

we obtain,

‖uk
0‖L1(0,T+ε̄) + ‖uk

1‖L1(0,T+ε̄) =

∫ T+εk

0

(
uk

0 (t) + uk
1 (t)

)
dt

6 inf
p∈IN

(
e(2p+1)2π2(T+εk ) 2 y1

(2p + 1)2π2
−

y0
2p+1

(2p + 1)π

)
6

2eπ
2(T+ε̄) |y1|
π2

+
|y0

1|
π
6∞ .
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e−(2p+1)2π2(T−t)
(
uk

0 (t) + uk
1 (t)

)
dt ,

we obtain,

‖uk
0‖L1(0,T+ε̄) + ‖uk

1‖L1(0,T+ε̄) =

∫ T+εk

0

(
uk

0 (t) + uk
1 (t)

)
dt

6 inf
p∈IN

(
e(2p+1)2π2(T+εk ) 2 y1

(2p + 1)2π2
−

y0
2p+1

(2p + 1)π

)
6

2eπ
2(T+ε̄) |y1|
π2

+
|y0

1|
π
6∞ .
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1−D heat equation Constrained Dirichlet control problem

Minimal control time VII
The constrained Dirichlet control problem

In conclusion,

The sequences (uk
0 )k and (uk

1 )k are bounded in L1(0,T + ε̄),

(uk
0 )k and (uk

1 )k have their support contained in [0,T + εk ], with εk → 0,

Thus, they are (up to a subsequence) weakly convergent in the sense of measures to
some non-negative controls ui in M([0,T ]),

These limits ensure the control requirements in the minimal control time T .

�
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1−D heat equation Constrained Dirichlet control problem

Minimal control time VIII
The constrained Dirichlet control problem

When y0 is a constant initial condition, T := T
(
y0, y1

)
satisfies

1 if y1 < y0,

T >
1

π2
log

y0

y1
and sup

p∈IN∗

1

(2p + 1)2

(
y1

y0
− e−(2p+1)2π2T

)
6

y1

y0
eπ

2T − 1 ;

2 if y1 > y0,
y1

y0
− e−π

2T 6 inf
p∈IN∗

1

(2p + 1)2

(
y1

y0
e(2p+1)2π2T − 1

)
,
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1−D heat equation Constrained Dirichlet control problem

Numerical examples
The constrained Dirichlet control problem

From y0 = 5 to y1 = 1, T
(
y0, y1

)
' 0.1931.

/home/loheac/ownCloud/Articles/ConstOpt/IPOPT/film/D1.png

From y0 = 1 to y1 = 5, T
(
y0, y1

)
' 0.0438.

/home/loheac/ownCloud/Articles/ConstOpt/IPOPT/film/D3.png
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1−D heat equation Consequences

Consequences for the 1−D heat equation with non-negative state
constraints I

Consider the 1−D heat equation

ẏ(t, x) = ∂2
xy(t, x) + 1ω(x)w(t, x) (t > 0 , x ∈ (0, 1)) ,

∂xy(t, 0) = v0(t) (t > 0) ,

∂xy(t, 1) = v1(t) (t > 0) ,

with initial condition y0 > 0, given,

y(0, ·) = y0 ∈ L2(0, 1) (x ∈ (0, 1)) .

The aim is to control this system to a constant steady state y1 > 0

y(T , x) = y1 (x ∈ (0, 1) a.e.) ,

with the state constraint,

y(t, x) > 0 (t > 0 , x ∈ (0, 1) a.e.).

We assume ω ⊂ (0, 1) is such that there exists an interval (a, b) ⊂ (0, 1) \ ω.
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1−D heat equation Consequences

Consequences for the 1−D heat equation with non-negative state
constraints II

For v0, v1 ∈ L2(0,T ) and w ∈ L2((0,T )× ω), define

ua(t) := y(t, a) and ub(t) := y(t, b) .

We have (see Lions-Magenes 1968), ua, ub ∈ L2(0,T ).
Furthermore, y |(a,b) is solution of

ẏ(t, x) = ∂2
xy(t, x) (t > 0 , x ∈ (a, b)) ,

y(t, a) = ua(t) (t > 0) ,

y(t, b) = ub(t) (t > 0) ,

Consequently, if v0, v1 and w are controls in time T > 0 such that

y(t, x) > 0 and y(T , x) = y1 ,

then we have
ua(t) > 0 and ub(t) > 0 (t ∈ [0,T ] a.e.)

and hence T cannot be arbitrarily small.
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1−D heat equation Consequences

Numerical example I
Consequences for the 1−D heat equation with non-negative state constraints

Consider the 1−D heat equation with Neumann controls

ẏ(t, x) = ∂2
xy(t, x) (t > 0 , x ∈ (0, 1)) ,

∂xy(t, 0) = v0(t) (t > 0) ,

∂xy(t, 1) = v1(t) (t > 0) ,

with the state constraint,

y(t, x) > 0 (t > 0 , x ∈ (0, 1) a.e.).

From y0 = 5 to y1 = 1, T (y0, y1) ' 0.1938.
/home/loheac/ownCloud/Articles/ConstOpt/IPOPT/film/N2.png

Remind that with Diriclet controls, we had,
/home/loheac/ownCloud/Articles/ConstOpt/IPOPT/film/D1.png
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d−D heat equation
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d−D heat equation Constrained Dirichlet control problem

The constrained Dirichlet control problem in a ball

Set D = B(0, 1) ⊂ IRd . We consider the control system

ẏ(t, x) = ∆y(t, x) (t > 0 , x ∈ D) ,

y(t, x) = u(t, x) (t > 0 , x ∈ ∂D) ,

with the initial condition given in L2(D),

y(0, x) = y0(x) (x ∈ D) .

The aim is to steer y to a constant target y1 ∈ IR∗+ with non-negative controls
u ∈ L2(0,T ; L2(∂D)), i.e.

u(t, x) > 0 (t > 0 , x ∈ ∂D a.e.) .

Proposition (Existence of a control in long time)

Set y0 ∈ L2(D) and y1 ∈ IR∗+ with y0 6= y1.
Then there exists T > 0 and a strictly positive control u ∈ L2(0,T , L2(∂D)), such that y
satisfies y(T , ·) = y1.

Thus we can define,

T
(
y0, y1

)
= inf

{
T > 0 , ∃u ∈ L1((0,T )× ∂D) s.t. u > 0 and y(T , ·) = y1

}
> 0 .
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J. Lohéac (IRCCyN) Control with state constraints 23/02/2017 29 / 1



d−D heat equation Constrained Dirichlet control problem

The constrained Dirichlet control problem in a ball

Set D = B(0, 1) ⊂ IRd . We consider the control system
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d−D heat equation Constrained Dirichlet control problem

Minimal control time I
The constrained Dirichlet control problem in a ball

Theorem

Given y0 ∈ L2(D) and y1 ∈ IR∗+, with y0 6= y1, there exists a time T
(
y0, y1

)
> 0 such

that if there exists a time T > 0 and a control u ∈ L1([0,T ]× ∂D) so that

u(t, x) > 0 ((t, x) ∈ [0,T ]× ∂D a.e.)

and so that y satisfies y(T , ·) = y1, then we have:

T > T
(
y0, y1

)
> 0 .

Proof (for y0 ∈ IR).
Define (λn)n∈IN∗ and (pn)n∈IN∗ solutions of the Sturm-Liouville problems:

p′′n (r) +
d − 1

r
p′n(r) = −λnpn(r) (r ∈ (0, 1)) ,

pn(1) = p′n(0) = 0 ,

in order to fix pn, we enforce:

pn(0) = 1 and define αn = p′n(1) .
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d−D heat equation Constrained Dirichlet control problem

Minimal control time II
The constrained Dirichlet control problem in a ball

We have λn > 0 and λn two by two distinct (Pöschel-Trubowitz 1987).
Let us then define:

ϕn(x) = pn(|x |) (x ∈ D) ,

so that we have,

∆ϕn(x) = −λnϕn(x) (x ∈ D) ,

ϕn(0) = 1 ,

ϕn(x) = 0 (x ∈ ∂D) ,

∇ϕn(x) · n(x) = αn (x ∈ ∂D) .
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d−D heat equation Constrained Dirichlet control problem

Minimal control time III
The constrained Dirichlet control problem in a ball

Let T > 0 and uT ∈ L1((0,T )× ∂D) be a non-negative control such that y (with initial
condition y0 ∈ IR∗+) satisfies y(T , ·) = y1.

For every n ∈ IN∗, we define yn(t) =

∫
D

y(t, x)ϕn(x)dx . Integrating by parts, we obtain,

ẏn(t) =

∫
D

∆y(t, x)ϕn(x)dx

= −
∫
∂D

y(t, x)∇ϕn(x) · n(x) dΓx +

∫
D

y(t, x)∆ϕn(x) dx

= −λnyn(t)− αn

∫
∂D

uT (t, x) dΓx

and hence,

yn(T ) = e−λnT yn(0)− αn

∫ T

0

e−λn(T−t)

∫
∂D

uT (t, x) dΓx dt .

Setting yi
n = yi

∫
D

ϕn(x) dx = −ωd−1
αn

λn
yi for i ∈ {0, 1}, we obtain

ωd−1

λn

(
y1 − e−λnTy0

)
=

∫ T

0

e−λn(T−t)

∫
∂D

uT (t, x)dΓx dt .
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d−D heat equation Constrained Dirichlet control problem

Minimal control time III
The constrained Dirichlet control problem in a ball

Since uT > 0 and λn > 0, we obtain:

e−λnT

∫ T

0

∫
∂D

uT (t, x)dΓx dt 6
ωd−1

λn

(
y1 − e−λnTy0

)
6
∫ T

0

∫
∂D

uT (t, x)dΓx dt ,

that is to say,

ωd−1

λn

(
y1 − e−λnTy0

)
6
∫ T

0

∫
∂D

uT (t, x)dΓx dt 6
ωd−1

λn

(
eλnTy1 − y0

)
.

Thus, if, for every T > 0, such a non-negative control uT exists, we have

lim
T→0

∫ T

0

∫
∂D

uT (t, x) dΓx dt =
ωd−1

λn

(
y1 − y0

)
:= γ ∈ IR (n ∈ IN∗) .

This is impossible since the λn are two by two distinct and y0 6= y1. �
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d−D heat equation Consequences

Consequences for the d−D heat equation with non-negative state
constraints I

Consider the control problem:

ẏ(t, x) = div (A∇y(t, x)) + 1ω(x)w(t, x) (t > 0 , x ∈ Ω) ,

∇y(t, x) · n(x) = v(t, x) (t > 0 , x ∈ ∂Ω) ,

with the constant and non-negative initial condition,

y(0, x) = y0 ∈ IR∗+ (x ∈ Ω) ,

where Ω is an open bounded and regular set of IRd , A ∈ IRd×d is a positive matrix, and
ω ⊂ Ω.
Given y1 ∈ IR∗+, the aim is to find controls v and w such that

y(T , ·) = y1 and y(t, x) > 0 .

Assume there exists x0 ∈ Ω and ε > 0 such that B(x0, ε) ⊂ Ω \ ω.

Setting A = P>P, x̃ = Px and ỹ(P>x) = y(x), it is enough to control the system

˙̃y(t, x̃) = ∆ỹ(t, x̃) + 1Pω(x̃)w̃(t, x̃) (t > 0 , x̃ ∈ PΩ) ,

∇ỹ(t, x̃) · ñ(x̃) = ṽ(t, x̃) (t > 0 , x̃ ∈ P∂Ω) ,

ỹ(0, x̃) = y0 ∈ IR∗+ (x̃ ∈ PΩ) ,

with the constraints ỹ(T , x̃) = y1 and ỹ(t, x̃) > 0.
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d−D heat equation Consequences

Consequences for the d−D heat equation with non-negative state
constraints II

Hence, we have to control,

ẏ(t, x) = ∆y(t, x) + 1ω(x)w(t, x) (t > 0 , x ∈ Ω) ,

∇y(t, x) · n(x) = v(t, x) (t > 0 , x ∈ ∂Ω) ,

y(0, x) = y0 ∈ IR∗+ (x ∈ Ω) ,

with the constraints,
y(T , ·) = y1 and y(t, x) > 0 .

where there exists x0 ∈ Ω and ε > 0 such that B(x0, ε) ⊂ Ω \ ω.

Set T > 0 and assume the exists such controls v and w with v ∈ L2((0,T )× ∂Ω) and
w ∈ L2((0,T )× ω), due to regularity results (see Lions-Magenes 1968), we have
u0 ∈ L2((0,T )× ∂B(x0, ε)), with

u0(t, ·) = y(t, ·)|∂B(x0,ε) .

Further more, y > 0 ensures that u0 > 0 and consequently, T cannot be arbitrarily small.
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J. Lohéac (IRCCyN) Control with state constraints 23/02/2017 35 / 1



Conclusion

J. Lohéac (IRCCyN) Control with state constraints 23/02/2017 36 / 1



Conclusion

Our proofs are based on spectral decomposition and this can be used to prove similar
results for:

Parabolic equation of the form ẏ = ∂x (a(x)∂xy)− p(x)∂xy with internal and/or
boundary control;

Finite dimensional systems with the particular structure

ẏ =

(
A0 A1

Ã0 Ã1

)
y +

(
0

B̃1

)
u .

But cannot be used for

Non-linear heat equations;

Linear heat equation with time and space dependent parameters.

Some over open questions

d−D heat equations with space dependent coefficients.
For this problem, it is also possible to considered a spectral decomposition.
However, it is not possible to reduce our self to a Sturm-Liouville problem.

Structure and uniquenesse of the controls in the minimal time T?

THANK YOU FOR YOUR ATTENTION!
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