Minimal controllability time for the heat equation under state constraints

Jérôme Lohéac, joint work with E. Trélat and E. Zuazua

Institut de Recherche en Communications et Cybernétique de Nantes

Seminar DeustoTech

J. Lohéac (IRCCyN)

Control with state constraints

23/02/2017 1 / 1

< □ > < 同 > < 回 > <

The Problem

Consider the 1-D heat equation

$$egin{aligned} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t \in \mathbb{R}^+_+, \ x \in (0,1)) \,, \ \partial_x y(t,0) &= v_0(t) & (t \in \mathbb{R}^+_+) \,, \ \partial_x y(t,1) &= v_1(t) & (t \in \mathbb{R}^+_+) \,, \end{aligned}$$

with initial condition $y^0 \ge 0$, given,

$$y(0,x) = y^{0}(x)$$
 $(x \in (0,1)).$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T, x) = y^1$$
 ($x \in [0, 1]$ a.e.),

The Problem

Consider the 1-D heat equation

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t \in \mathbb{R}^+_+, \ x \in (0,1)), \\ \partial_x y(t,0) &= v_0(t) & (t \in \mathbb{R}^+_+), \\ \partial_x y(t,1) &= v_1(t) & (t \in \mathbb{R}^+_+), \end{split}$$

with initial condition $y^0 \ge 0$, given,

$$y(0,x) = y^{0}(x)$$
 $(x \in (0,1)).$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 (x $\in [0,1]$ a.e.),

It is well known that

- for every time T>0 there exists controls v_0 and $v_1\in L^2(0,\,T)$ such that $y(\,T,\,\cdot\,)={\rm y}^1$
- if $v_0 = v_1 = 0$, y is non-negative.

Is it possible to find T > 0 and controls v_0 and v_1 such that y satisfies $y(T, \cdot) = y^1$ together with,

$$y(t,x) \ge 0$$
 $(t \ge 0, x \in (0,1) \text{ a.e.})?$

If $\inf_{x\in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time \mathcal{T} .

・ロト ・部ト ・モト ・モト

If $\inf_{x\in(0,1)}y^0(x)>y^1,$ then y^1 cannot be reached in arbitrarily small time $\mathcal{T}.$

• The constraint $y(t, x) \ge 0$ ensures that

 $y(t,0) \ge 0$ and $y(t,1) \ge 0$

*ロト *個ト * ヨト * ヨト

If $\inf_{x \in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

 $y(t,0) \ge 0$ and $y(t,1) \ge 0$

• for every $x \in (0, 1)$,

 $y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$

<ロ> <問> <問> < 回> < 回>

If $\inf_{x\in(0,1)}y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

$$y(t,0) \geqslant 0$$
 and $y(t,1) \geqslant 0$

• for every $x \in (0, 1)$,

$$y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$$

• due to the comparison principle,

$$y(t,x) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right) \sin \pi x$$

(日) (日) (日) (日) (日)

If $\inf_{x \in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

$$y(t,0) \geqslant 0$$
 and $y(t,1) \geqslant 0$

• for every $x \in (0, 1)$,

$$y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$$

• due to the comparison principle,

$$y(t,x) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right) \sin \pi x$$

• in particular,

$$y(t, \frac{1}{2}) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right)$$

(日) (日) (日) (日) (日)

If $\inf_{x \in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

$$y(t,0) \geqslant 0$$
 and $y(t,1) \geqslant 0$

• for every $x \in (0,1)$,

$$y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$$

• due to the comparison principle,

$$y(t,x) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right) \sin \pi x$$

• in particular,

$$y(t, \frac{1}{2}) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right)$$

• finally,

$$y(t, \frac{1}{2}) > y^1$$
 for $t \in \left[0, \frac{1}{\pi^2} \ln \frac{\inf y^0}{y^1}\right]$.

J. Lohéac (IRCCyN)

Due to the comparison principle, the constraint

 $y(t,x) \ge 0$

is equivalent to the constraint

 $y(t,0) \ge 0$ and $y(t,1) \ge 0$.

(日) (日) (日) (日) (日)

J. Lohéac (IRCCyN)

Preliminaries

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ○ 2 ⊙ 2 ⊙

Consider the dynamical system

$$\dot{y} = Ay + Bu$$
, $y(0) = y^0$,

with $y(t) \in X$ the state and $u \in U$ the control, X and U are assumed to be two Hilbert spaces identified with their dual. By Duhamel formula, the solution for $u \in L^2_{loc}(\mathbb{R}, U)$ is

$$y(t)=e^{tA}y^0+\Phi_t u\,,$$

with $\Phi_t u = \int_0^t e^{(t-s)A} Bu(s) ds$. We say that (A, B) is *null-controllable* in time T > 0 if for every y^0 , there exist a control u such that

$$e^{TA}\mathbf{y}^0 + \Phi_T u = 0.$$

That is to say

$$\operatorname{Ran} e^{TA} \subset \operatorname{Ran} \Phi_T$$

▲ロト ▲圖ト ▲屋ト ▲屋ト

Controllability and Observability II

Using the closed graph theorem, this is equivalent to

$$\exists c(T) > 0 \quad \text{s.t.} \quad \|e^{TA^*} z^1\|_X^2 \leqslant c(T) \|\Phi_T^* z^1\|_{L^2(\mathbb{R}_+,U)}^2 \qquad (z^1 \in X)\,,$$

that is to say,

$$||z(0)||_X^2 \leq c(T) \int_0^T ||B^*z(t)||_U^2 dt$$

where z is solution of the adjoint system

$$-\dot{z} = A^* z$$
, $z(T) = z^1$.

We say that (A^*, B^*) is final state observable in time T.

メロト メポト メヨト メ

Controllability and Observability III

One can look for a control of minimal norm,

min
$$\frac{1}{2} \int_0^T ||u(t)||_U^2 dt$$

| $y(T) = 0.$

Using Fenchel-Rockafellar duality, we obtain that the minimal control is givan by

$$u(t)=B^*z(t)\,,$$

where z is solution of the adjoint problem and is the minimizer of

$$\min \tfrac{1}{2} \int_0^T \|B^* z(t)\|_U^2 \,\mathrm{d}t + \langle z(0), \mathrm{y}^0 \rangle_X := J(\mathrm{z}^1) \,.$$

From which we obtain that there exist a null control u satisfying

$$\int_0^T \|u(t)\|_U^2 \,\mathrm{d} t \leqslant c(T) \|y^0\|_X^2 \,.$$

< □ > < 同 > < 回 > <

Controllability to steady states I

A steady state $\bar{y} \in X$ for $\dot{y} = Ay + Bu$ is an element in X such that there exists $\bar{u} \in U$ such that

$$A\bar{y} + B\bar{u} = 0.$$

Proving the controllability to a steady state is equivalent as proving the null-controllability. In fact setting $\tilde{y} = y - \bar{y}$ and $\tilde{u} = u - \bar{u}$, we have

$$\dot{\tilde{y}} = A\tilde{y} + B\tilde{u}, \qquad \tilde{y}(0) = y^0 - \bar{y}.$$

(日)

J. Lohéac (IRCCyN)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

The constrained Dirichlet control problem

Consider the 1-D heat equation

$$egin{aligned} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t>0\,,\,x\in(0,1)) \ y(t,0) &= u_0(t) & (t>0\,)\,, \ y(t,1) &= u_1(t) & (t>0)\,, \end{aligned}$$

with constant initial condition $y^0 \in L^2(0, 1)$, given,

$$y(0,x) = y^{0}(x)$$
 $(x \in (0,1))$.

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 (x $\in [0,1]$ a.e.),

with the control constraint

 $u_0(t) \ge 0$ and $u_1(t) \ge 0$ (t > 0 a.e.).

< □ > < □ > < □ > < □ > < □ >

Existence of controls I

The constrained Dirichlet control problem

Proposition

There exists a time T large enough and positive controls $u_0, u_1 \in H^1(0, T)$ such that $y(T, \cdot) = y^1$.

< □ > < 同 > .

Existence of controls I

The constrained Dirichlet control problem

Proposition

There exists a time T large enough and positive controls $u_0, u_1 \in H^1(0, T)$ such that $y(T, \cdot) = y^1$.

This allows us to define

$$\underline{\mathcal{T}}\left(\mathrm{y}^{0},\mathrm{y}^{1}\right)=\inf\left\{\mathcal{T}>0\,,\,\,\exists \textit{u}_{0},\textit{u}_{1}\in\textit{L}^{1}(0,\,\mathcal{T})\,\,\mathrm{s.t.}\,\,\textit{u}_{0}\geqslant0\,,\,\,\textit{u}_{1}\geqslant0\,\,\mathrm{and}\,\,\textit{y}(\mathcal{T},\cdot)=\mathrm{y}^{1}\right\}\geqslant0\,,$$

< □ > < 同 > .

Existence of controls I

The constrained Dirichlet control problem

Proposition

There exists a time T large enough and positive controls $u_0, u_1 \in H^1(0, T)$ such that $y(T, \cdot) = y^1$.

This allows us to define

 $\underline{\mathcal{T}}\left(\mathrm{y}^{0},\mathrm{y}^{1}\right) = \inf\left\{\mathcal{T} > 0\,, \ \exists u_{0}, u_{1} \in L^{1}(0,\mathcal{T}) \text{ s.t. } u_{0} \geqslant 0\,, \ u_{1} \geqslant 0 \text{ and } y(\mathcal{T},\cdot) = \mathrm{y}^{1}\right\} \geqslant 0\,,$

proof. (see also Schmidt 1980) Setting $\tilde{y}(t, x) = y(t, x) - y^1$, $\tilde{u}_0(t) = u_0(t) - y^1$ and $\tilde{u}_1 = u_1 - y^1$, we aim to prove (omitting the tildes) that there exists a time T > 0 and controls u_0 and u_1 satisfying,

$$u_0(t)>-\mathrm{y}^1$$
 and $u_1(t)>-\mathrm{y}^1$

such that the solution y with initial condition

$$y(0,x) = y^0(x) - y^1$$
 (x $\in (0,1)$),

satisfies $y(T, \cdot) = 0$.

J. Lohéac (IRCCyN)

・ロト ・聞 と ・ ヨ と ・ ヨ と

Existence of controls II The constrained Dirichlet control problem

For any T > 0 the existence of controls $u_0, u_1 \in H^1(0, T)$ such that $y(T, \cdot) = 0$ is ensured by Fattorini-Russel 1971.

In terms of the adjoint system,

$$\begin{split} -\dot{z}(t,x) &= \partial_x^2 z(t,x) & (t>0, \ x\in(0,1)), \\ z(t,0) &= z(t,1) = 0 & (t>0), \\ z(T,x) &= z^0(x) & (x\in(0,1)), \end{split}$$

there exists a constant $\tilde{c}(T) > 0$ such that,

$$\|z(0,\cdot)\|_{L^{2}(0,1)}^{2} \leq \tilde{c}(T) \left(\|\partial_{x} z(\cdot,0)\|_{H^{-1}(0,T)}^{2} + \|\partial_{x} z(\cdot,1)\|_{H^{-1}(0,T)}^{2} \right) \qquad (z^{0} \in L^{2}(0,1)).$$

This inequality being true in any time interval, we also have

$$\|\boldsymbol{z}(\tfrac{\tau}{2},\cdot)\|_{L^2(0,1)}^2\leqslant \tilde{\boldsymbol{c}}(\tfrac{\tau}{2})\left(\|\partial_{\boldsymbol{x}}\boldsymbol{z}(\cdot,\boldsymbol{0})\|_{H^{-1}(0,T)}^2+\|\partial_{\boldsymbol{x}}\boldsymbol{z}(\cdot,1)\|_{H^{-1}(0,T)}^2\right)$$

Using the dissipativity properties,

$$||z(0,\cdot)||^2_{L^2(0,1)} \leq e^{-C_0\frac{T}{2}} ||z(\frac{T}{2},\cdot)||^2_{L^2(0,1)}.$$

Consequently,

$$\|z(0,\cdot)\|_{L^2(0,1)}^2 \leqslant e^{-C_0\frac{T}{2}} \tilde{c}(\frac{T}{2}) \left(\|\partial_x z(\cdot,0)\|_{H^{-1}(0,T)}^2 + \|\partial_x z(\cdot,1)\|_{H^{-1}(0,T)}^2 \right).$$

J. Lohéac (IRCCyN)

Existence of controls III The constrained Dirichlet control problem

By duality this means that the controls u_0 and u_1 can be chosen such that

$$\|u_i\|_{H^1(0,T)}^2 \leqslant e^{-C_0\frac{T}{2}} \tilde{c}(\frac{T}{2}) \|y^0 - y^1\|_{L^2(0,1)}^2 \qquad (i \in \{0,1\})$$

Using the embedding $H^1(0, T) \subset L^{\infty}(0, T)$,

$$\|u_i\|_{L^{\infty}(0,T)}^2 \leqslant C e^{-C_0 \frac{T}{2}} \tilde{c}(\frac{T}{2}) \|y^0 - y^1\|_{L^2(0,1)}^2 \qquad (i \in \{0,1\})$$

Thus, for T large enough,

$$\|u_0\|_{L^{\infty}(0,T)}, \|u_1\|_{L^{\infty}(0,T)} < y^1$$

and hence,

$$u_0(t)>-\mathrm{y}^1 \quad ext{ and } \quad u_1(t)>-\mathrm{y}^1 \quad (t\in [0,T] ext{ a.e.}) \,.$$

Minimal control time I The constrained Dirichlet control problem

Theorem

Let
$$\mathrm{y}_0\in L^2(0,1)$$
 and $\mathrm{y}_1\in {I\!\!R}^*_+$ with $\mathrm{y}_0
eq \mathrm{y}_1.$ Then,

- there exist non-negative controls <u>u</u>₀, <u>u</u>₁ ∈ M(0, <u>T</u>) such that the solution y with controls <u>u</u>₀ and <u>u</u>₁ satisfies y(T, ·) = y¹.

The solution y, of the Dirichlet control problem with controls in the set of Radon measures, is defined by transposition.

Remark

$$\underline{\mathcal{T}}\left(\mathrm{y}^{0},\mathrm{y}^{1}\right) > 0 \text{ even if } \mathrm{y}^{0} < \mathrm{y}^{1}.$$

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimal control time II The constrained Dirichlet control problem

Proof.

• <u>T</u> > 0:

Define $y_n(t) = \int_0^1 y(t,x) \sin(n\pi x) dx$. y being solution of the heat equation, we have

$$\dot{y}_n(t) = \int_0^1 \partial_x^2 y(t, x) \sin(n\pi x) \, \mathrm{d}x = -n\pi \int_0^1 \partial_x y(t, x) \cos(n\pi x) \, \mathrm{d}x$$
$$= n\pi \left(u_0(t) - (-1)^n u_1(t) \right) - (n\pi)^2 y_n(t)$$

with
$$y_n(0) = \int_0^1 y^0(x) \sin(n\pi x) \, dx := y_n^0$$
. Thus,
 $y_n(T) = e^{-(n\pi)^2 T} y_n^0 + n\pi \int_0^T e^{-(n\pi)^2 (T-t)} \left(u_0(t) - (-1)^n u_1(t) \right) \, dt$.

On the other hand, if $y(T, x) \equiv y_1$, we have $y_n(T) = \int_0^1 y_1 \sin(n\pi x) dx = \frac{1 - (-1)^n}{n\pi} y_1$. Consequently,

$$\frac{1-(-1)^n}{n\pi} y^1 - e^{-(n\pi)^2 T} y^0_n = n\pi \int_0^T e^{-(n\pi)^2 (T-t)} \left(u_0(t) - (-1)^n u_1(t) \right) \, \mathrm{d}t \, .$$

J. Lohéac (IRCCyN)

Minimal control time III

The constrained Dirichlet control problem

For n = 2p, $\int_0^T e^{(2p\pi)^2 t} \left(u_0(t) - u_1(t) \right) dt = \frac{y_{2p}^0}{2p\pi} ,$

For n = 2p + 1,

$$\frac{2 y^1}{(2p+1)\pi} - e^{-(2p+1)^2 \pi^2 T} y_{2p+1}^0 = (2p+1)\pi \int_0^T e^{-(2p+1)^2 \pi^2 (T-t)} (u_0(t) + u_1(t)) dt.$$

But,

$$e^{-(2p+1)^2\pi^2T} \leqslant e^{-(2p+1)^2\pi^2(T-t)} \leqslant 1$$
 $(t \in [0, T]).$

 u_0 and u_1 being non-negative,

$$\begin{split} e^{-(2p+1)^2\pi^2 T} \int_0^T \left(u_0(t) + u_1(t) \right) \, \mathrm{d}t &\leq \int_0^T e^{-(2p+1)^2\pi^2 (T-t)} \left(u_0(t) + u_1(t) \right) \, \mathrm{d}t \\ &\leq \int_0^T \left(u_0(t) + u_1(t) \right) \, \mathrm{d}t \,, \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Minimal control time IV The constrained Dirichlet control problem

We have obtained,

$$\begin{split} \frac{2\,\mathrm{y}^1}{(2\rho+1)^2\pi^2} &- e^{-(2\rho+1)^2\pi^2\,\mathcal{T}}\,\frac{\mathrm{y}_{2\rho+1}^0}{(2\rho+1)\pi} \leqslant \int_0^{\mathcal{T}} \left(u_0(t)+u_1(t)\right)\,\mathrm{d}t \\ &\leqslant e^{(2\rho+1)^2\pi^2\,\mathcal{T}}\,\frac{2\,\mathrm{y}^1}{(2\rho+1)^2\pi^2} - \frac{\mathrm{y}_{2\rho+1}^0}{(2\rho+1)\pi}\,. \end{split}$$

If for every T > 0 there exists non-negative controls u_0^T and u_1^T steering y_0 to y_1 in time T, then

$$\lim_{T \to 0} \int_0^T \left(u_0^T(t) + u_1^T(t) \right) \, \mathrm{d}t = \frac{2 \, \mathrm{y}^1}{(2\rho + 1)^2 \pi^2} - \frac{\mathrm{y}_{2\rho+1}^0}{(2\rho + 1)\pi} := \gamma \in \mathbb{R} \qquad (\rho \in \mathbb{N}) \,.$$

Hence,

$$y_{2p+1}^{0} = \frac{2y^{1}}{(2p+1)\pi} - (2p+1)\pi\gamma \qquad (p \in \mathbb{N}).$$

$$y^{0} \in L^{2}(0,1), \text{ ensures that } \sum_{n=0}^{\infty} \left|y_{n}^{0}\right|^{2} < \infty \text{ and hence } \gamma = 0, \ y_{2p+1}^{0} = \frac{2y^{1}}{(2p+1)\pi} \text{ and}$$
$$\lim_{T \to 0} \int_{0}^{T} \left(u_{0}^{T}(t) + u_{1}^{T}(t)\right) \, \mathrm{d}t = 0.$$

Minimal control time V The constrained Dirichlet control problem

Since $u_0^T \ge 0$ and $u_1^T \ge 0$, we can also conclude

$$\lim_{T\to 0}\int_0^T u_0^T(t)\,\mathrm{d}t = \lim_{T\to 0}\int_0^T u_1(t)\,\mathrm{d}t = 0\,.$$

consequently passing to the limit $T \rightarrow 0$ in

$$\int_0^T e^{(2\rho\pi)^2 t} \left(u_0^T(t) - u_1^T(t) \right) \, \mathrm{d}t = \frac{y_{2\rho}^0}{2\rho\pi} \,,$$

we obtain

$$\mathbf{y}_{2p}^{0} = \mathbf{0} \qquad (p \in \mathbb{N}^{*}).$$

All in all, since the family $\left\{\sqrt{2}\sin(n\pi \cdot)\right\}_{n\in\mathbb{N}^*}$ is an orthonormal basis of $L^2(0,1)$, we conclude that y^0 can be steered to y^1 in arbitrarily small time with non-negative controls if and only if

$$y^{0}(x) = y^{1}$$
 $(x \in (0, 1)).$

< ロ > < 同 > < 回 > < 回 >

Minimal control time VI

The constrained Dirichlet control problem

Controllability in the minimal time <u>T</u>:
 Define (ε_k)_{k∈ℕ} a sequence of positive numbers converging to 0.
 For every k ∈ ℕ, there exist non-negative controls u₀^k, u₁^k ∈ L¹(0, <u>T</u> + ε_k), so that the solution y satisfies y(<u>T</u> + ε_k, ·) = y¹.
 Define ε
 ⁼ sup ε_k.
 ^{k∈ℕ}

<ロト < 同ト < 回ト < ヨト

Minimal control time VI The constrained Dirichlet control problem

 Controllability in the minimal time <u>T</u>: Define (ε_k)_{k∈ℕ} a sequence of positive numbers converging to 0. For every k ∈ ℕ, there exist non-negative controls u₀^k, u₁^k ∈ L¹(0, <u>T</u> + ε_k), so that the solution y satisfies y(<u>T</u> + ε_k, ·) = y¹. Define ε
 = sup ε_k.
 k∈ℕ

According to

$$\frac{2y^1}{(2p+1)\pi} - e^{-(2p+1)^2\pi^2 T} y_{2p+1}^0 = (2p+1)\pi \int_0^T e^{-(2p+1)^2\pi^2(T-t)} \left(u_0^k(t) + u_1^k(t) \right) \, \mathrm{d}t \,,$$

we obtain,

$$\begin{split} \|u_{0}^{k}\|_{L^{1}(0,\underline{T}+\bar{\varepsilon})} + \|u_{1}^{k}\|_{L^{1}(0,\underline{T}+\bar{\varepsilon})} &= \int_{0}^{\underline{T}+\varepsilon_{k}} \left(u_{0}^{k}(t) + u_{1}^{k}(t)\right) \, \mathrm{d}t \\ &\leq \inf_{\rho \in \mathbb{N}} \left(e^{(2\rho+1)^{2}\pi^{2}(\underline{T}+\varepsilon_{k})} \, \frac{2\,y^{1}}{(2\rho+1)^{2}\pi^{2}} - \frac{y_{2\rho+1}^{0}}{(2\rho+1)\pi}\right) \\ &\leq \frac{2e^{\pi^{2}(\underline{T}+\bar{\varepsilon})} \, |y^{1}|}{\pi^{2}} + \frac{|y_{1}^{0}|}{\pi} \leqslant \infty \, . \end{split}$$

Minimal control time VII The constrained Dirichlet control problem

In conclusion,

- The sequences $(u_0^k)_k$ and $(u_1^k)_k$ are bounded in $L^1(0, \underline{T} + \bar{\varepsilon})$,
- $(u_0^k)_k$ and $(u_1^k)_k$ have their support contained in $[0, \underline{T} + \varepsilon_k]$, with $\varepsilon_k \to 0$,
- Thus, they are (up to a subsequence) weakly convergent in the sense of measures to some non-negative controls <u>u</u>_i in M([0, <u>T</u>]),
- These limits ensure the control requirements in the minimal control time \underline{T} .

<ロト < 同ト < 回ト < ヨト

Minimal control time VIII The constrained Dirichlet control problem

When y^0 is a constant initial condition, $\underline{\mathcal{T}}:=\underline{\mathcal{T}}\left(y^0,y^1\right)$ satisfies \bullet if $y^1 < y^0$,

$$\begin{split} \underline{T} &> \frac{1}{\pi^2} \log \frac{y^0}{y^1} \qquad \text{and} \qquad \sup_{\rho \in \mathbb{N}^*} \frac{1}{(2\rho+1)^2} \left(\frac{y^1}{y^0} - e^{-(2\rho+1)^2 \pi^2 \underline{T}} \right) \leqslant \frac{y^1}{y^0} e^{\pi^2 \underline{T}} - 1 \,; \\ \mathbf{@} \quad \text{if } y^1 &> y^0, \\ \qquad \qquad \frac{y^1}{y^0} - e^{-\pi^2 \underline{T}} \leqslant \inf_{\rho \in \mathbb{N}^*} \frac{1}{(2\rho+1)^2} \left(\frac{y^1}{y^0} e^{(2\rho+1)^2 \pi^2 \underline{T}} - 1 \right) \,, \end{split}$$

Numerical examples The constrained Dirichlet control problem

• From
$$y^0 = 5$$
 to $y^1 = 1$, $\underline{T}(y^0, y^1) \simeq 0.1931$.

• From
$$y^0 = 1$$
 to $y^1 = 5$, $\underline{T}(y^0, y^1) \simeq 0.0438$.

・ロト ・四ト ・ヨト ・ヨト

Consequences for the $1\!-\!D$ heat equation with non-negative state constraints I

Consider the 1-D heat equation

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) + \mathbf{1}_{\omega}(x) w(t,x) & (t > 0, \ x \in (0,1)), \\ \partial_x y(t,0) &= v_0(t) & (t > 0), \\ \partial_x y(t,1) &= v_1(t) & (t > 0), \end{split}$$

with initial condition $y^0 > 0$, given,

$$y(0, \cdot) = y^0 \in L^2(0, 1)$$
 $(x \in (0, 1)).$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 (x $\in (0,1)$ a.e.),

with the state constraint,

$$y(t,x) \ge 0$$
 $(t \ge 0, x \in (0,1)$ a.e.).

We assume $\omega \subset (0,1)$ is such that there exists an interval $(a,b) \subset (0,1) \setminus \omega$.

Consequences for the 1-D heat equation with non-negative state constraints II

For $v_0, v_1 \in L^2(0, T)$ and $w \in L^2((0, T) \times \omega)$, define

$$u_a(t) := y(t,a)$$
 and $u_b(t) := y(t,b)$.

We have (see Lions-Magenes 1968), $u_a, u_b \in L^2(0, T)$. Furthermore, $y|_{(a,b)}$ is solution of

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t>0, \ x\in(a,b)), \\ y(t,a) &= u_a(t) & (t>0), \\ y(t,b) &= u_b(t) & (t>0), \end{split}$$

Consequently, if v_0 , v_1 and w are controls in time T > 0 such that

$$y(t,x) \ge 0$$
 and $y(T,x) = y^1$,

then we have

$$u_a(t) \geqslant 0$$
 and $u_b(t) \geqslant 0$ $(t \in [0, T]$ a.e.)

and hence T cannot be arbitrarily small.

(日)

Numerical example I Consequences for the 1-D heat equation with non-negative state constraints

Consider the 1-D heat equation with Neumann controls

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t>0, \ x\in(0,1)), \\ \partial_x y(t,0) &= v_0(t) & (t>0), \\ \partial_x y(t,1) &= v_1(t) & (t>0), \end{split}$$

with the state constraint,

$$y(t,x) \ge 0$$
 $(t \ge 0, x \in (0,1)$ a.e.).

• From $y^0 = 5$ to $y^1 = 1$, $\underline{T}(y^0, y^1) \simeq 0.1938$.

Remind that with Diriclet controls, we had,

<ロ> <同> <同> <同> < □> <

J. Lohéac (IRCCyN)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

The constrained Dirichlet control problem in a ball

Set $D = B(0,1) \subset \mathbb{R}^d$. We consider the control system

$$\begin{split} \dot{y}(t,x) &= \Delta y(t,x) & (t > 0, \ x \in D), \\ y(t,x) &= u(t,x) & (t > 0, \ x \in \partial D), \end{split}$$

with the initial condition given in $L^2(D)$,

$$y(0,x) = y^0(x)$$
 $(x \in D)$.

The aim is to steer y to a constant target $y^1 \in \mathbb{R}^*_+$ with non-negative controls $u \in L^2(0, T; L^2(\partial D))$, i.e.

$$u(t,x) \ge 0$$
 $(t > 0, x \in \partial D \text{ a.e.}).$

(日)

The constrained Dirichlet control problem in a ball

Set $D = B(0,1) \subset \mathbb{R}^d$. We consider the control system

$$\dot{y}(t,x) = \Delta y(t,x)$$
 $(t > 0, x \in D),$
 $y(t,x) = u(t,x)$ $(t > 0, x \in \partial D),$

with the initial condition given in $L^2(D)$,

$$y(0,x) = y^0(x)$$
 $(x \in D)$.

The aim is to steer y to a constant target $y^1 \in \mathbb{R}^*_+$ with non-negative controls $u \in L^2(0, T; L^2(\partial D))$, i.e.

$$u(t,x) \ge 0$$
 $(t > 0, x \in \partial D \text{ a.e.}).$

Proposition (Existence of a control in long time)

Set $y^0 \in L^2(D)$ and $y^1 \in \mathbb{R}^*_+$ with $y^0 \neq y^1$. Then there exists T > 0 and a strictly positive control $u \in L^2(0, T, L^2(\partial D))$, such that y satisfies $y(T, \cdot) = y^1$.

(日)

The constrained Dirichlet control problem in a ball

Set $D = B(0,1) \subset \mathbb{R}^d$. We consider the control system

$$\dot{y}(t,x) = \Delta y(t,x)$$
 $(t > 0, x \in D),$
 $y(t,x) = u(t,x)$ $(t > 0, x \in \partial D),$

with the initial condition given in $L^2(D)$,

$$y(0,x) = y^0(x)$$
 $(x \in D)$.

The aim is to steer y to a constant target $y^1 \in \mathbb{R}^*_+$ with non-negative controls $u \in L^2(0, T; L^2(\partial D))$, i.e.

$$u(t,x) \ge 0$$
 $(t > 0, x \in \partial D \text{ a.e.}).$

Proposition (Existence of a control in long time)

Set $y^0 \in L^2(D)$ and $y^1 \in \mathbb{R}^*_+$ with $y^0 \neq y^1$. Then there exists T > 0 and a strictly positive control $u \in L^2(0, T, L^2(\partial D))$, such that y satisfies $y(T, \cdot) = y^1$.

Thus we can define,

$$\underline{T}\left(\mathbf{y}^{0},\mathbf{y}^{1}\right) = \inf\left\{T > 0, \exists u \in L^{1}((0,T) \times \partial D) \text{ s.t. } u \geq 0 \text{ and } y(T,\cdot) = \mathbf{y}^{1}\right\} \geq \mathbf{0}.$$

J. Lohéac (IRCCyN)

Minimal control time I

The constrained Dirichlet control problem in a ball

Theorem

Given $y^0 \in L^2(D)$ and $y^1 \in \mathbb{R}^*_+$, with $y^0 \neq y^1$, there exists a time $\underline{T}(y^0, y^1) > 0$ such that if there exists a time T > 0 and a control $u \in L^1([0, T] \times \partial D)$ so that

 $u(t,x) \ge 0$ $((t,x) \in [0,T] \times \partial D \text{ a.e.})$

and so that y satisfies $y(T, \cdot) = y^1$, then we have:

 $T \ge \underline{T}\left(y^{0}, y^{1}\right) > 0$.

<ロト < 部 > < 注 > < 注 >

Minimal control time I

The constrained Dirichlet control problem in a ball

Theorem

Given $y^0 \in L^2(D)$ and $y^1 \in \mathbb{R}^*_+$, with $y^0 \neq y^1$, there exists a time $\underline{T}(y^0, y^1) > 0$ such that if there exists a time T > 0 and a control $u \in L^1([0, T] \times \partial D)$ so that

$$u(t,x) \ge 0$$
 $((t,x) \in [0,T] \times \partial D \text{ a.e.})$

and so that y satisfies $y(T, \cdot) = y^1$, then we have:

 $T \ge \underline{T}\left(y^{0}, y^{1}\right) > 0$.

Proof (for $y^0 \in \mathbb{R}$). Define $(\lambda_n)_{n \in \mathbb{N}^*}$ and $(p_n)_{n \in \mathbb{N}^*}$ solutions of the Sturm-Liouville problems:

$$p_n''(r) + rac{d-1}{r} p_n'(r) = -\lambda_n p_n(r)$$
 $(r \in (0,1)),$
 $p_n(1) = p_n'(0) = 0,$

in order to fix p_n , we enforce:

$$p_n(0) = 1$$
 and define $\alpha_n = p'_n(1)$.

Minimal control time II The constrained Dirichlet control problem in a ball

We have $\lambda_n > 0$ and λ_n two by two distinct (Pöschel-Trubowitz 1987). Let us then define:

$$\varphi_n(x) = p_n(|x|) \qquad (x \in D),$$

so that we have,

$$\begin{split} \Delta \varphi_n(x) &= -\lambda_n \varphi_n(x) & (x \in D), \\ \varphi_n(0) &= 1, \\ \varphi_n(x) &= 0 & (x \in \partial D), \\ \nabla \varphi_n(x) \cdot \mathbf{n}(x) &= \alpha_n & (x \in \partial D). \end{split}$$

(日) (日) (日) (日) (日)

Minimal control time III The constrained Dirichlet control problem in a ball

Let T > 0 and $u^T \in L^1((0, T) \times \partial D)$ be a non-negative control such that y (with initial condition $y^0 \in \mathbb{R}^*_+$) satisfies $y(T, \cdot) = y^1$. For every $n \in \mathbb{N}^*$, we define $y_n(t) = \int_D y(t, x)\varphi_n(x) dx$. Integrating by parts, we obtain,

$$\begin{split} \dot{y}_n(t) &= \int_D \Delta y(t, x) \varphi_n(x) \, \mathrm{d}x \\ &= -\int_{\partial D} y(t, x) \nabla \varphi_n(x) \cdot \mathbf{n}(x) \, \mathrm{d}\Gamma_x + \int_D y(t, x) \Delta \varphi_n(x) \, \mathrm{d}x \\ &= -\lambda_n y_n(t) - \alpha_n \int_{\partial D} u^T(t, x) \, \mathrm{d}\Gamma_x \end{split}$$

and hence,

$$y_n(T) = e^{-\lambda_n T} y_n(0) - \alpha_n \int_0^T e^{-\lambda_n (T-t)} \int_{\partial D} u^T(t, x) \, \mathrm{d}\Gamma_x \, \mathrm{d}t \, .$$

Setting $y_n^i = y^i \int_D \varphi_n(x) \, \mathrm{d}x = -\omega_{d-1} \frac{\alpha_n}{\lambda_n} y^i$ for $i \in \{0, 1\}$, we obtain
$$\frac{\omega_{d-1}}{\lambda_n} \left(y^1 - e^{-\lambda_n T} y^0 \right) = \int_0^T e^{-\lambda_n (T-t)} \int_{\partial D_4} u^T(t, x) \, \mathrm{d}\Gamma_x \, \mathrm{d}t \, .$$

Minimal control time III The constrained Dirichlet control problem in a ball

Since $u^T \ge 0$ and $\lambda_n > 0$, we obtain:

$$e^{-\lambda_n T} \int_0^T \int_{\partial D} u^T(t,x) \,\mathrm{d}\Gamma_x \,\mathrm{d}t \leqslant \frac{\omega_{d-1}}{\lambda_n} \left(\mathrm{y}^1 - e^{-\lambda_n T} \mathrm{y}^0 \right) \leqslant \int_0^T \int_{\partial D} u^T(t,x) \,\mathrm{d}\Gamma_x \,\mathrm{d}t \,,$$

that is to say,

$$\frac{\omega_{d-1}}{\lambda_n}\left(\mathbf{y}^1 - e^{-\lambda_n T}\mathbf{y}^0\right) \leqslant \int_0^T \int_{\partial D} u^T(t, x) \,\mathrm{d}\Gamma_x \,\mathrm{d}t \leqslant \frac{\omega_{d-1}}{\lambda_n} \left(e^{\lambda_n T}\mathbf{y}^1 - \mathbf{y}^0\right) \,.$$

Thus, if, for every T > 0, such a non-negative control u^T exists, we have

$$\lim_{T\to 0}\int_0^T\int_{\partial D} u^T(t,x)\,\mathrm{d}\Gamma_x\,\mathrm{d}t = \frac{\omega_{d-1}}{\lambda_n}\left(\mathrm{y}^1-\mathrm{y}^0\right) := \gamma\in\mathbb{R}\qquad (n\in\mathbb{N}^*)\,.$$

This is impossible since the λ_n are two by two distinct and $y^0 \neq y^1$.

< ロ > < 同 > < 回 > < 回

Consequences for the d-D heat equation with non-negative state constraints I

Consider the control problem:

$$\begin{split} \dot{y}(t,x) &= \operatorname{div}\left(A\nabla y(t,x)\right) + \mathbf{1}_{\omega}(x)w(t,x) \qquad (t>0, \ x\in\Omega),\\ \nabla y(t,x)\cdot \mathbf{n}(x) &= v(t,x) \qquad (t>0, \ x\in\partial\Omega), \end{split}$$

with the constant and non-negative initial condition,

$$y(0,x) = y^0 \in {\rm I\!R}^*_+$$
 $(x \in \Omega),$

where Ω is an open bounded and regular set of \mathbb{R}^d , $A \in \mathbb{R}^{d \times d}$ is a positive matrix, and $\omega \subset \Omega$.

Given $y^1 \in \mathbb{R}^*_+$, the aim is to find controls v and w such that

 $y(T, \cdot) = y^1$ and $y(t, x) \ge 0$.

Assume there exists $x_0 \in \Omega$ and $\varepsilon > 0$ such that $B(x_0, \varepsilon) \subset \Omega \setminus \omega$.

Consequences for the d-D heat equation with non-negative state constraints I

Consider the control problem:

$$\begin{split} \dot{y}(t,x) &= \operatorname{div}\left(A\nabla y(t,x)\right) + \mathbf{1}_{\omega}(x)w(t,x) \qquad (t>0, \ x\in\Omega),\\ \nabla y(t,x)\cdot \mathbf{n}(x) &= v(t,x) \qquad (t>0, \ x\in\partial\Omega), \end{split}$$

with the constant and non-negative initial condition,

$$y(0,x) = y^0 \in {\rm I\!R}^*_+$$
 $(x \in \Omega),$

where Ω is an open bounded and regular set of \mathbb{R}^d , $A \in \mathbb{R}^{d \times d}$ is a positive matrix, and $\omega \subset \Omega$.

Given $y^1 \in \mathbb{R}^*_+$, the aim is to find controls v and w such that

$$y(T, \cdot) = y^1$$
 and $y(t, x) \ge 0$.

Assume there exists $x_0 \in \Omega$ and $\varepsilon > 0$ such that $B(x_0, \varepsilon) \subset \Omega \setminus \omega$. Setting $A = P^\top P$, $\tilde{x} = Px$ and $\tilde{y}(P^\top x) = y(x)$, it is enough to control the system

$$\begin{split} \tilde{\tilde{y}}(t,\tilde{x}) &= \Delta \tilde{y}(t,\tilde{x}) + \mathbf{1}_{P\omega}(\tilde{x})\tilde{w}(t,\tilde{x}) \qquad (t > 0, \ \tilde{x} \in P\Omega), \\ \nabla \tilde{y}(t,\tilde{x}) \cdot \tilde{n}(\tilde{x}) &= \tilde{v}(t,\tilde{x}) \qquad (t > 0, \ \tilde{x} \in P\partial\Omega) \end{split}$$

$$\begin{split} \tilde{y}(0,\tilde{x}) &= \mathbf{y}^0 \in \mathbb{R}^*_+ \qquad (\tilde{x} \in P\Omega) \,, \\ \tilde{y}(\mathcal{T},\tilde{x}) &= \mathbf{y}^1 \quad \text{and} \quad \tilde{y}(t,\tilde{x}) \geqslant 0 \,. \ \text{and} \quad \tilde{y}(t,\tilde{x}) \ge 0 \,. \end{split}$$

with the constraints

Consequences for the d-D heat equation with non-negative state constraints II

Hence, we have to control,

$$\begin{split} \dot{y}(t,x) &= \Delta y(t,x) + \mathbf{1}_{\omega}(x)w(t,x) & (t > 0, \ x \in \Omega), \\ \nabla y(t,x) \cdot n(x) &= v(t,x) & (t > 0, \ x \in \partial\Omega), \\ y(0,x) &= \mathrm{y}^0 \in \mathrm{I\!R}^*_+ & (x \in \Omega), \end{split}$$

with the constraints,

$$y(T, \cdot) = y^1$$
 and $y(t, x) \ge 0$.

where there exists $x_0 \in \Omega$ and $\varepsilon > 0$ such that $B(x_0, \varepsilon) \subset \Omega \setminus \omega$.

(日)

Consequences for the d-D heat equation with non-negative state constraints II

Hence, we have to control,

$$\begin{split} \dot{y}(t,x) &= \Delta y(t,x) + \mathbf{1}_{\omega}(x)w(t,x) \qquad (t > 0, \ x \in \Omega), \\ \nabla y(t,x) \cdot n(x) &= v(t,x) \qquad (t > 0, \ x \in \partial\Omega), \\ y(0,x) &= v^0 \in \mathbb{R}^*, \qquad (x \in \Omega). \end{split}$$

with the constraints,

$$y(T, \cdot) = y^1$$
 and $y(t, x) \ge 0$.

where there exists $x_0 \in \Omega$ and $\varepsilon > 0$ such that $B(x_0, \varepsilon) \subset \Omega \setminus \omega$.

Set T > 0 and assume the exists such controls v and w with $v \in L^2((0, T) \times \partial \Omega)$ and $w \in L^2((0, T) \times \omega)$, due to regularity results (see Lions-Magenes 1968), we have $u_0 \in L^2((0, T) \times \partial B(x_0, \varepsilon))$, with

$$u_0(t,\cdot)=y(t,\cdot)|_{\partial B(x_0,\varepsilon)}.$$

Further more, $y \ge 0$ ensures that $u_0 \ge 0$ and consequently, T cannot be arbitrarily small.

< ロ > < 同 > < 回 > < 回 >

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Parabolic equation of the form y
 ['] = ∂_x (a(x)∂_xy) − p(x)∂_xy with internal and/or boundary control;
- Finite dimensional systems with the particular structure

$$\dot{y} = \begin{pmatrix} A_0 & A_1 \\ \tilde{A_0} & \tilde{A_1} \end{pmatrix} y + \begin{pmatrix} 0 \\ \tilde{B_1} \end{pmatrix} u$$
.

・ロッ ・ 一 ・ ・ ・ ・

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Parabolic equation of the form $\dot{y} = \partial_x (a(x)\partial_x y) p(x)\partial_x y$ with internal and/or boundary control;
- Finite dimensional systems with the particular structure

$$\dot{y} = \begin{pmatrix} A_0 & A_1 \\ \tilde{A}_0 & \tilde{A}_1 \end{pmatrix} y + \begin{pmatrix} 0 \\ \tilde{B}_1 \end{pmatrix} u.$$

But cannot be used for

- Non-linear heat equations;
- Linear heat equation with time and space dependent parameters.

・ロッ ・ 一 ・ ・ ・ ・

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Parabolic equation of the form y
 ['] = ∂_x (a(x)∂_xy) − p(x)∂_xy with internal and/or boundary control;
- Finite dimensional systems with the particular structure

$$\dot{y} = \begin{pmatrix} A_0 & A_1 \\ \tilde{A}_0 & \tilde{A}_1 \end{pmatrix} y + \begin{pmatrix} 0 \\ \tilde{B}_1 \end{pmatrix} u \,.$$

But cannot be used for

- Non-linear heat equations;
- Linear heat equation with time and space dependent parameters.

Some over open questions

- d-D heat equations with space dependent coefficients.
 For this problem, it is also possible to considered a spectral decomposition.
 However, it is not possible to reduce our self to a Sturm-Liouville problem.
- Structure and uniquenesse of the controls in the minimal time <u>T</u>?

< ロ > < 同 > < 回 > < 回 >

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Parabolic equation of the form y
 ['] = ∂_x (a(x)∂_xy) − p(x)∂_xy with internal and/or boundary control;
- Finite dimensional systems with the particular structure

$$\dot{y} = \begin{pmatrix} A_0 & A_1 \\ \tilde{A}_0 & \tilde{A}_1 \end{pmatrix} y + \begin{pmatrix} 0 \\ \tilde{B}_1 \end{pmatrix} u$$
.

But cannot be used for

- Non-linear heat equations;
- Linear heat equation with time and space dependent parameters.

Some over open questions

- *d*-*D* heat equations with space dependent coefficients.
 For this problem, it is also possible to considered a spectral decomposition.
 However, it is not possible to reduce our self to a Sturm-Liouville problem.
- Structure and uniquenesse of the controls in the minimal time <u>T</u>?

THANK YOU FOR YOUR ATTENTION!

< ロ > < 同 > < 回 > < 回 >