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Differential equations with noise

Langevin, Smoluchowsky etc used “noisy” differential equations to
model the particle dynamics of Brownian motion in the early 1900s:

dx

dt
= f (t, x) + g(t, x) ηt , noise: ηt

• Gaussian white noise: many mathematical problems finally
resolved by Itô in the 1940s with the introduction of stochastic
calculus

=⇒ Stochastic differential equations (SODEs)

dXt = f (t,Xt) + g(t,Xt) dWt , Wiener process: Wt



• More regular noise =⇒ Random ODEs

Let f : Rm ×R
d → R

d be smooth and let ζt be an m-dimensional
stochastic process with Hölder continuous sample paths.

A random ordinary differential equation (RODE) on R
d

dx

dt
= f (ζt , x)

is pathwise an ordinary differential equation (ODE) on R
d

dx

dt
= Fω(t, x) := f (ζt(ω), x), ω ∈ Ω.



Example of a RODE:
dx

dt
= −x + Wt

The solutions of RODEs have continuously differentiable sample
paths and can be handled pathwise using deterministic calculus.

Example of an SODE: dXt = −Xt dt + dWt

The sample paths of the solutions of SODEs are continuous, but
nowhere differentiable

=⇒ SODEs require Ito stochastic calculus

Remark SODEs are really stochastic integral equations : their
representation as differential equations is only symbolic.



• SODEs can be rewritten as RODEs

dXt = f (Xt) dt + dWt ⇔
dz

dt
= f (z + Ot) + Ot

with an Ornstein-Uhlenbeck process Ot satisfying the linear SODE

dOt = −Ot dt + dWt and z(t) = Xt − Ot

⇒ z(t) = Xt − Ot = X0 − O0 +

∫ t

0
[f (Xs) + Os ] ds

= z(0) +

∫ t

0
[f (z(s) + Os) + Os ] ds

is pathwise differentiable by continuity and the fundamental
theorem of calculus. (Doss, Sussmann (1970s), Imkeller. Leder, Schmalfuss (2000s)).



• RODEs driven by Itô processes rewritten as SODEs

Suppose that the stochastic process ζt in a RODE

dx

dt
= f (x , ζt)

is an Itô process, i.e., the solution of an SODE,

dζt = a(ζt) dt + b(ζt) dWt .

These combine to give an SODE

d

(
Xt

Yt

)

=

(
f (Xt ,Yt)
a(Yt)

)

dt +

(
0

b(Yt)

)

dWt



Numerical schemes for RODEs

Since the paths of the stochastic process ζ are often at most
Hölder continuous, the mapping t 7→ Fω(t, x) := f (ζt(ω), x) is
usually only continuous but not differentiable — no matter how
smooth the function f .

⋆ Classical numerical schemes for ODEs such as Runge-Kutta
schemes do not achieve their usual order when applied to RODEs.

⋆ The solution of a RODE t 7→ x(t, ω) is at most continuously
differentiable

⇒ no Taylor expansion!



Simple numerical schemes for RODES (Grüne & Kloeden (2001))

Traditional numerical methods for ODEs attain at best a low
convergence order when applied to RODEs.

For the RODE with ζt pathwise Hölder continuous with exponent 1
2

dx

dt
= −x + ζt ,

the Euler scheme with step size ∆n

Yn+1 = (1−∆n) Yn + ζtn ∆n

has pathwise order 1
2 .



However, the averaged Euler scheme

Yn+1 = (1−∆n) Yn +

∫ tn+1

tn

ζt dt,

has pathwise order 1 provided the integral is approximated with
Riemann sums

∫ tn+1

tn

ζt dt ≈

J∆n∑

j=1

ζtn+jδ δ

with the step size δ satisfying δ1/2 ≈ ∆n and δ · J∆n
= ∆n.



More generally, for RODEs with an affine structure

dx

dt
= g(x) + G (x)ζt ,

where g : Rd → R
d and G : Rd → R

d × R
m, the explicit

averaged Euler scheme

Yn+1 = Yn + [g (Yn) + G (Yn) In] ∆n,

where

In :=
1

∆n

∫ tn+1

tn

ζs ds ≈
1

∆n

J∆n∑

j=1

ζtn+jδ δ.

has order pathwise order 1 provided δ1/2 ≈ ∆n and δ · J∆n
= ∆n.



Taylor-like expansions for RODEs (Jentzen & Kloeden (2007))

Replace the process ζt by its sample paths t 7→ ω(t) with ω ∈ Ω
:= C (R,Rm).

Then the vector field (ω, x) 7→ f (ω, x) has the Taylor expansion

f (ω(s), x(s)) =
∑

|α|≤k

1

α!
∂αf (ω0, x0) (∆ωs)

α1(∆xs)
α2 + Rk+1(s)

where ω0 := ω(t0), x0 := x(t0) and

∆ωs := ω(s)− ω0, ∆xs := x(s)− x0,

with remainder term Rk+1(s) and multi-indices α = (α1, α2) ∈ N
2
0,

|α| := α1 + α2 , α! := α1!α2! .



Substituting this into the integral equation version of the RODE
gives

∆xt =
∑

|α|≤k

1

α!
∂αf (ω0, x0)

∫ t

t0

(∆ωs)
α1(∆xs)

α2 ds

︸ ︷︷ ︸

Taylor−like approximation

+

∫ t

t0

Rk+1(s) ds

︸ ︷︷ ︸

remainder

Apply this on subintervals [tn, tn+1] with step size hn = tn+1 − tn
and discard the reminder.

The simplest case for k = 0 and α = (0, 0) gives the Euler scheme

yn+1 = yn + hn f (ω(tn), yn).



BIG PROBLEM

Higher order Taylor-like approximations are implicit in ∆xt !!!

Resolution: replace ∆xt inside the integral by a lower order
approximation, e.g., for k = 1 and α = (0, 1)

x(tn+1) ≈ x(tn) + hn f (ω(tn), x(tn)) + ∂x f (ω(tn), x(tn))

∫ tn+1

tn

∆xs ds

≈ x(tn) + hn f (ω(tn), x(tn))

+∂x f (ω(tn), x(tn))

∫ tn+1

tn

[(s − tn)f (ω(tn), x(tn))]
︸ ︷︷ ︸

Euler approximation

ds

⇒ {(0, 0), (0, 1)}-Taylor numerical scheme

yn+1 = yn + hn f (ω(tn), yn) +
1

2
h2n f (ω(tn), yn) ∂x f (ω(tn), yn)



RODE–Taylor schemes

RODE–Taylor schemes are a family of explicit one–step schemes
for RODEs on subintervals [tn, tn+1] of [t0,T ] with step size, which
are derived from the corresponding Taylor–like expansions. Higher
order schemes are built up recursively for sets of multi–indices of
the form

AK :=
{
α = (α1, α2) ∈ N

2
0 : |α|θ = θα1 + α2 < K

}
,

where K ∈ R+ and θ ∈ (0, 1] is the Hölder exponent of the noise
process.

It is necessary to distinguish two cases, Case A in which the Hölder
estimate of the noise also holds for the supremum θ of the
admissible exponents itself and Case B when it does not.



Theorem The local discretisation error for a RODE–Taylor

scheme in Case A satisfies
∣
∣
∣L

(K)
h (t̂, x̂)

∣
∣
∣ ≤ CK hK+1

for each 0 ≤ h ≤ 1, where

CK :=
(

e‖ω‖θ+2RK

)K+1
.

In Case B it satisfies
∣
∣
∣L

(K)
h (t̂, x̂)

∣
∣
∣ ≤ C ε

K · hK+1−ε

for ε > 0 arbitrarily small, where

C ε
K :=

(

e‖ω‖γε+2RK

)K+1
, γε := θ −

ε

(k + 1)2
.

global error order = local error order −1



The 1.5-RODE–Taylor scheme for a Wiener process

yn+1 = yn + hf + f(1,0)

∫ tn+1

tn

∆ωs ds +
f(2,0)

2

∫ tn+1

tn

(∆ωs)
2 ds + f(0,1)f

h2

2

corresponds to the index set A1.5 = {(0, 0), (1, 0), (2, 0), (0, 1)}.

The 1.5-RODE–Taylor scheme for a fractional Brownian motion

with Hurst exponent H = 3
4

yn+1 = yn + hf + f(1,0)

∫ tn+1

tn

∆ωs + f(0,1)f
h2

2
,

corresponds to the index set AK = {(0, 0), (1, 0), (0, 1)}.
It omits one of the terms in the above RODE–Taylor scheme for a
Wiener process.



• A similar idea is used to construct Taylor expansions for SPDE,
see

A. Jentzen and P.E. Kloeden, Taylor Expansions of Stochastic Partial Differential

Equations, CBMS Lecture series, SIAM, Philadelphia, 2011.

• The schemes obtained above are not optimal, i.e., they may
contain more terms than are essential to ensure the given order is
attained. Optimal schemes can be obtained by a modified
approach, see

A. Jentzen and P.E. Kloeden, Pathwise Taylor schemes for random ordinary
differential equations, BIT 49 (1) (2009), 113–140.



Numerical schemes for RODEs via SODEs (Asai & Kloeden, 2013)

Suppose that the process ζt in the RODE is an Itô process, i.e.,
the solution of an SODE, so

dx

dt
= f (x , ζt), dζt = a(ζt) dt + b(ζt) dWt .

⇒ use numerical schemes for SODEs

d

(
Xt

Yt

)

=

(
f (Xt ,Yt)
a(Yt)

)

dt +

(
0

b(Yt)

)

dWt

⋆ stochastic Taylor schemes for SODEs that converge in a strong
or weak sense (Kloeden & Platen).

⋆ they also converge in a pathwise sense (Kloeden & Neuenkirch (2007)).



A numerical scheme is said to converge strongly with order γ if

E

(∣
∣
∣XT − X

(∆)
NT

∣
∣
∣

)

≤ KT ∆γ

Theorem Under classical assumptions an Itô-Taylor scheme

of strong order γ > 0 converges pathwise with order γ − ǫ
for all ǫ > 0, i.e.

sup
i=0,...,NT

∣
∣
∣Xtn(ω)− X

(∆)
n (ω)

∣
∣
∣ ≤ K

γ
ǫ,T (ω) ·∆

γ−ǫ

for almost all ω ∈ Ω.

P.E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential

equations, LMS J. Comp. Math. 10 (2007), 235-253.



⋆ The classical assumptions require the appropriate partial
derivatives of the coefficients to be globally bounded.

⋆ This ensures that all moments exist, so a Borel-Cantelli
argument can be used.

=⇒ excludes many interesting applications.

• It is not essential for a pathwise analysis of RODEs.

• A similar result applies by a localisation argument with
stopping times etc when the derivative are only locally bounded.

Y. Asai and P.E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations Commun.

Appl. Anal. 17 (2013), no. 3 & 4, 51–528.



A RODE driven by an Ornstein-Uhlenbeck process can be
formulated an SODE

d

(
Xt

Ot

)

=

(
f (Xt ,Ot)

−Ot

)

dt +

(
0
1

)

dWt

The Euler-Maruyama scheme

Xn+1 = Xn + f (Xn,On)∆n

is, in fact, the same as the Milstein scheme.

• it thus has pathwise order 1.0.



• Higher order step schemes can be derived using strong Itô-Taylor
expansions and require multiple stochastic integral terms to
achieve a higher order of strong convergence.

Xn+1 = Xn +
∑

α∈Λγ\{∅}

LαidX (tn,Xn) Iα,tn,tn+1

for hierarchical set Λγ of multi-indices, where γ = 1
2 , 1,

2
2 , 2, . . . .

• For the special case of the RODE-SODE pair with the diffusion
coefficient function G(X) as above, the differential operators
reduce to L1idk

X ≡ 0 for the components of the RODE.

Hence only the multi-indices in the subset

Λ0
γ = {α ∈ Λγ : the last component jl = 0} ∪ {∅}

of Λγ appear in these RODE components of the stochastic Taylor
expansion.



The corresponding remainder set is

B(Λ0
γ) = {α ∈ M\Λ0

γ : −α ∈ Λ0
γ}

Note that (j) ∈ B(Λ0
γ) for j = 1, . . ., m, since (j) /∈ Λ0

γ but −(j) =
∅ ∈ Λ0

γ .

Example When m = 1 and γ = 3
2 , the hierarchical set Λγ ,

B(Λγ), the reduced set Λ0
γ and B(Λ0

γ) are given by

Λ 3
2

= {∅, (1), (0), (1, 1), (1, 0), (0, 1), (0, 0), (1, 1, 1)}

Λ0
3
2

= {∅, (0), (1, 0), (0, 0)}

B(Λ0
3
2

) = {(1), (1, 1, 0), (0, 1, 0), (1, 0, 0), (0, 0, 0)}.



The RODE-Taylor scheme of order γ = 3
2 is

xn+1 = xn + f (xn, yn)∆n + b(yn)fy (xn, yn) I(1,0),n

+

(

f (xn, yn)fx (xn, yn) + a(yn)fy (xn, yn) +
1

2
b(yn)

2fyy (xn, yn)

)
1

2
∆2

n,

since
Λ0

3
2
= {∅, (0), (1, 0), (0, 0)}.

This scheme contains the mixed stochastic-deterministic integral

I(1,0),n =

∫ tn+1

tn

∫ t

tn

dWsdt.

which is a correlated with I(1),n =
∫ tn+1

tn
dWs = ∆Wn. (Both

Gaussian).



Multi-step schemes for Itô RODEs

An Euler-Maruyama type linear k-step method for coupled
RODE-SODE is given by

k∑

j=0

αjXn−j = h

k∑

j=0

βjFn−j +∆W

k∑

j=1

γjGn−j .

where

X =

(

x

y

)

, F(X) =

(
f (x , y)

a(y)

)

, G(X) =

(
0

b(y)

)

Since G1 ≡ 0 its X -component reduces to

k∑

j=0

αjxn−j = h

k∑

j=0

βj fn−j . (1)



Typical examples are the Adams-Bashforth and Adams-Moulton
methods. In the scalar case, the x-component gives the

• RODE-Adams-Bashforth 2 scheme

xn+1 = xn +

{
3

2
f (xn, yn)−

1

2
f (xn−1, yn−1)

}

∆n

• RODE-Adams-Moulton-2 scheme

xn+1 = xn +

{
5

12
f (xn+1, yn+1) +

8

12
f (xn, yn)−

1

12
f (xn−1, yn−1)

}

∆n.

These schemes both have order γ = 1.0 convergence and coincide
with their counterparts in the deterministic case.



A γ-order k-step SLMM has the general form

k∑

j=0

C∅,jXn−j = h

k∑

j=0

C(0),j f (Xn−j , Ȳn−j)

+

k∑

j=1

∑

α∈Λ0
γ\{∅,(0)}

Lαid1
X(Xn−j , Ȳn−j)

(

Cα,j Iα,tn−j
+ C ∗

α,j Iα−,tn−j
h
)

,

with the consistency conditions







∑k
j=0 C∅,j = 0,

∑k
j=0(k − j)C∅,j =

∑k
j=0 C(0),j

Cα,i =
∑i−1

j=0 C∅,j for i = 1, . . . , k ,

C ∗
α,i =

∑i−1
j=0

(

(k − 1− j)C∅,j − C(0),j

)

for i = 1, . . . , k .

for α ∈ Λ0
γ \ {∅, (0)}.



• Here Ȳn−j is an approximation of Yt at tn−j by a scheme of high
enough order or Ytn itself when Yt can be generated exactly.

• The Taylor expansions for the Itô diffusion components of the
SODE and other functions of the solutions still require all of the
multi-indices in the original hierarchical set Λγ .

It is decoupled from the RODE components of the Taylor scheme.

• The scheme reduces to an explicit scheme when C(0),0 = 0.

By the order conditions this happens when, e.g., the C ∗
α,1 = 0 for

all α ∈ Λ0
γ\{∅, (0)}.

• Y. Asai and P.E. Kloeden, Multi-step methods for random ODEs driven by Itô diffusions, J. Comput. Appl.

Math. 294 (2016), 210-224.



RODEs with affine noise
A scalar RODE with scalar affine noise has the form

dx

dt
= f 0(t, x) + f 1(t, x) η1t ,

written in compact integral equation form

x(t) = x(t0) +

1∑

j=0

∫ t

t0

f j(s, x(s)) ηjs ds

with a fictitious “noise” component η0t ≡ 1

It is an ODE is the noise has continuous sample paths and a
Carathéodory DE if they are just measurable.

Since the chain rule for such RODEs is analogous to that for
Stratonovich SODE, their Taylor expansions are analogous too.



The affine-RODE-Taylor scheme of order N for N = 1, 2, 3, . . . is
defined by

xn+1 = xn +
∑

α∈AN\{∅}

idα
X (tn, xn) Iα,tn,tn+1 (2)

for the hierarchical set of multi-indices

AN = {α ∈ M1 : l(α) ≤ N}

with the multiple integrals are defined by

Iα,tn,tn+1 =

∫ tn+1

tn

∫ sl

tn

· · ·

∫ s2

tn

ζ j1(s1) · · · ζ
jl (sl ) ds1 · · · dsl



and the coefficient function Fα is defined recursively by

Fα =

{
F : l(α) = 0

Lj1F−α : l(α) ≥ 1.
, (3)

for the function F ≡ idX , where the partial differential operators
L0, L1, . . ., Lm are defined by

L0 =
∂

∂t
+

d∑

k=1

f 0,k
∂

∂xk
, L1 =

d∑

k=1

f j ,k
∂

∂xk
,

Theorem Suppose that noise sample paths are continuous or
essentially bounded on bounded time intervals and that all of
the derivatives of f 0 and f 1 appearing here exist and are con-
tinuous.
Then, the affine-RODE-Taylor scheme (2) has pathwise order
of convergence N.



RODEs or SODEs? – fluctations in a cell fission model

⋄ SODE version:

d

(
u

v

)

=

(
f (u, v)

k11 − k2(u)v

)

dt +

(
Du

0

)

dWt ,

where

f (u, v) =
k11
G

− [k2(u) + kwee ]u + k25(u)
( v

G
− u
)

with
k2(u) = k ′2 + k ′′2 u

2

, k25(u) = k ′25 + k ′′25u
2.



⋄ RODE version with Ornstein-Uhlenbeck process:

d

dt

(
u

v

)

=

(
f (u, v)

k11 − k2(u)v

)

+

(
Du

0

)

Ot ,

R. Steuer, Effects of stochasticity in models of the cell
cycle: from quantized cycle times to noise-induced oscil-
lations, J. Theoret. Biology 228 (2004) 293–301.



Figure: SODE-Euler-Maruyama and RODE-Euler schemes



Bounded noise

In biological models bounded noise is often more realistic.

It can be introduced by allowing a mass-action parameter to vary
randomly within a bounded interval about an idealised value.

Alberto d’Onofrio (editor),

Random Bounded Noises in Physics, Biology, and Engineering,

Birkhäuser, 2013.



Two possibilities, which modify an input noise such as an
Ornstein-Uhlenbeck process Yt , are:

• a positive parameter ζ might be replaced by the bounded
stochastic process

ζ(Yt) := ζ0

(

1− 2ν
Yt

1 + Y 2
t

)

, (4)

where ζ0 and ν are positive constants with ν ∈ (0, 1].

Figure: Switching noise (4) driven by a Wiener process.

The noise here tends to peak around ζ0(1± ν), and is thus suitable
for a noisy switching scenario.



• a positive parameter δ might be replaced by the stochastic
process

δ(Yt) := δ0

(

1−
2ν

π
arctanYt

)

, (5)

where δ0 and ν are positive constants with ν ∈ (0, 1].

Figure: Centered noise (5) driven by an Ornstein-Uhlenbeck process.

The noise then takes values in the interval (δ0(1− ν), δ0(1 + ν))
with the probability density taking its maximum at δ0.
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