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Spatial discretisation

Consider a continuous mapping

FrX =X (1)

on a compact metric space (X, d).

The difference equation

Xpp1 = F(X,) (2)

generates a discrete time dynamical system on X.




Consider a finite subset X, of X with grid fineness

Ay = sup inf d(x,x)

xeX XhEXh

Examples

e X =10,1], Xy = 2N-bit computer numbers in [0, 1]

Jj .
e X =10,1], Xh:{z—N:Jzo,l,...,N}
N-dyadic numbers




Consider a “projection” Py : X — X, e.g. round-off operator

The mapping f, :== P,of : X, — X, generates a discrete time

dynamical system on X}, through the difference equation

h
Xr(1+)1 =

fh (X,g

h))

(3)

What is the relationship between the dynamical behaviour of

the original dynamical system (2) and the spatially discretised

system (3) as

Ah—>07



Plan

e the effect of spatial discretisation on attractors
e the effect of spatial discretisation on chaos

e the approximation of Lebesgue measure preserving maps on
a torus by permutations

e approximation by Markov chains of invariant measures of
spatial discretised

i) deterministic difference equations

ii) random difference equations



Spatial discretisation of attractors

o P. Diamond and P. E. Kloeden,

Spatial discretisation of mappings, J. Computers Math. Applns. 26 (1993), 85-94.

o P. E. Kloeden and J. Lorenz,
Stable attracting sets in dynamical systems and in their one-step discretisations,

SIAM J. Numer. Analysis 23 (1986), 986-995.

Assume that

e f : X — X is Lipschitz with constant K > 0
e the projection P, : X — X, satisfies for a constant M > 0

d (Py(x),x) < Mh




Theorem 1 [Diamond & Kloeden]

Suppose that a nonempty compact subset L of X is
uniformly asymptotically stable (UAS) for the dynami-
cal system f on X.

Then there exists a nonempty compact subset Ly, of X,
which is UAS for the dynamical system f, := P, o f on
Xy, such that the HausdorfF distance

H(Lp,L) -0 as h— 0+




Sketch of proof

The UAS of the set L for the system f implies that there
exists a Lyapunov function

V:X =R,

which is Lipschitz continuous, and a constant 0 < g < 1 such
that

V(f(x)) < qV(x), VxeX.



Then the discretised system satisfies the key inequality

V (fu(xn)) < qV(xy) + KMh Vx, € X

Define
2KI\/Ih}

Ly:= eX,:V < —
h {Xh h (Xh) =1_g4
which is a nonempty, compact subset of X, for all h > 0.

The key inequality and other properties of the Lyapunov
function V imply that L, is UAS for f, on X} and satisfies the
convergence asserted in the theorem.
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Figure 4. Ap : h = double precision.

Figure 2. Ap : h = 0.005.

Fig. 1 consists of stable cycles of periods 4, 11 and 33

Fig. 3 consists of stable cycles of periods 30 and 78



Complications
e a fixed point f(X) = X € X need not belong to Xj,

e if such a fixed point X € X, then it need not be a fixed
point of f,.

e f, may have spurious cycles in Xp, i.e. periodic solutions
which do not correspond to periodic solutions of f.

In fact, the dynamics of f, on X}, is always eventually periodic




Moreover, the convergence H(Ly, L) — 0 as h — O is
deceptive

e the attracting set Lj of f, may contains transients as well as
limit points and cycles

e it is better to consider the omega set of limiting values

7; = ﬂ U fi{(Lh)7

j>1n>1

i.e. the global attractor, which may be a proper subset of L.




Without additional assumptions about the dynamics of f on L

such as hyperbolicity, we only have the weaker convergence in
the Hausdorff semi-distance

H*(Ly, L) :== max d(xp,L) -0 as h— 0+

XhEL;

’ the effect can be extreme




Example

* Consider the extended tent mapping f : [0,2] — [0, 2]
defined by

N
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o
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X
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N

which has the chaotic attractor L = [0, 1].




* Consider the N-dyadics

_J J . AN
Xh_{2_N’1+2_NJ_O’1”N}’ h—2 .

Since f : X, — X, here we take f, = f.

th(Xh) =0, Vxye Xy = L, ={0}

the chaos has collapsed onto trivial behaviour



This collapsing effect is not exceptional

Theorem 2 [Diamond, Kloeden & Pokrovskii|

For any continuous f : X — X and any cycle
{c1,...,¢,} of f there exists a finite subset Xj,
of X which contains {cy,...,c,} and a map-
ping fn : Xy — X, for h — 0 such that the
dynamics of f, collapses on {c1,...,¢cp}.

P. Diamond, P.E. Kloeden und A. Pokrovskii,
Cycles of spatial discretisations of shadowing dynamical systems,

Mathematische Nachrichten 171 (1995), 95-110.




Invariant measures

e allow us to circumvent some of the above difficulties with
attractors and cycles

e are robuster for approximation and comparison

A measure ;1 on X is called f-invariant if

u(B) =y (FX(B)). VB eBX).

for the Borel subsets B(X) of X, where

fH(B):={x€ X : f(x) € B}



e Can we always approximate an invariant measure . of f on
X by an invariant measure i, of f, on X7



SPECIAL CASE: mappings on a torus
Consider

¢ a d-dimensional torus T9, where d > 1,

o a measurable mapping f : T¢ — TY;

o a uniform 7 partition T§ of T¢.

How should we construct a mapping fy on T, to approximate
f?



Theorem 3 [Kloeden & Mustard|

Suppose that the Lebesgue measure on T is f-
invariant.

Then there exists a permutation Py(f) on T¢, with

1

H* (Gr(Pn(f)), Gr(f)) < N

where H* is the Hausdorff semi-distance on T9 x T< and
Gr(f) is the graph of f defined by

Gr(f) :={(x,y) €T xT? : y = f(x)}



P.E. Kloeden and J. Mustard,

Construction of permutations approximating Lebesgue measure
preserving dynamical systems under spatial discretisation.

J. Bifurcation & Chaos 7 (1997), 401-406.

Comments
e f can be non-injective here, i.e. not 1 to 1
e the inverse of the theorem holds if f is continuous

e Peter Lax has an theorem about permutations approximating
area-preserving diffeomorphisms



Outline of proof

e enumerate TY, = {xy,...,xy}, where M = N¢
syt dLy N ) )

e define the §-band about the graph Gr(f) of 7, i.e.
Sn(f) = {(X,y) € T4 x T¢ : dist ((x,y), Gr(f)) < %}

The following problems are equivalent by the f-invariance of
the Lebesgue measure and a combinatorial theorem of
Frobenius and Konig,




(1) construct a permutation Py(f) on T¢, with Gr(Pp(f)) C
Sn(f).

(2) choose a diagonal (possibly permuted) without zeros of
the M x M matrix Ay(f) = [a;;] defined by

1 if (x;,x) € Sn(f)
a,-,j =
0 otherwise

reformulate the problem as an optimal assignment LP
problem



GENERAL CASE: using Markov chains

Consider a finite subset Xy = {x{N), . ,x,(\,N)} of a compact
metric space (X, d) with fineness parameter

hy = Ay = sup inf d <x,xj(N)> — 0 asN— o0

xeX XJ("’)EXN

How do we construct an approximation fy
on Xy of a function f : X — X7

The choice is usually not unique: there may be several nearest

grid points to an f(xj(N)) ¢ Xn.



There are two ways to handle the problem:
1) setvalued: use a setvalued mapping
FN(XJ-(N)) = {nearest points in Xy to f(xj(N))}

and then consider the setvalued dynamical system
Xn+1 € Fn(xn) on Xy.

2) stochastic: use a Markov chain Py on Xy with transition
probabilities
) >0 if x,-(N) in a neighbourhod of f(xj(N))
bijm =
0 otherwise



Distances

e between a Markov chain Py on Xy C X and a mapping f :
X=X

D(Py, f) := max Zp( )d|st<( (), (N)> 7Gr(f))

1<i<N

e between a probability vector py on Xy and a probability
measure ;. on X

Prokhorov metric  p(un, )

where gy is the extension of py to a measure on X.



Let f : X — X be Borel measurable and consider the

generalized inverse

—

FiB) = {x e X : 3y € Buith (x.y) < &7}

A Borel measure ;1 on X is called f-semi-invariant if

u(B) < (?—vl(B)), VB € B(X)

f continuous = f-semi-invariant = f-invariant



Theorem 4 [Diamond, Kloeden & Pokrovskii]
A probability measure ;. on X is f-semi-invariant if and
only if it is stochastically approachable, i.e. for each N
there exist

1) a grid Xy with fineness Ay — 0 as N — oo

2) a Markov chain Py on Xy

3) probability measure py on X corresponding to an
equilibrium probability vector py of Py on Xy, such that

D(Pn,f) — 0, p(iin,p) — 0 as N — oo

P. Diamond, P.E. Kloeden and A. Pokrovskii,
Interval stochastic matrices, a combinatorial lemma, and the computation

of invariant measures, J. Dynamics & Diff. Eqns. 7 (1995), 341-364.



Key idea in the proof: interval stochastic matrices

An N x N matrix C = [¢;;] with nonnegative components is

called
substochastic " <1
stochastic if Z Cij =1 fori=1,...,N.
=1

superstochastic

v
—



Let A = [a;j] be substochastic and B = [b; ;] be superstochastic.
Then

/K\B::{PStOChBStI.C :a,-d-gp,-u-gb,-,j, VI,_]:].,,N}

is called an interval stochastic matrix with boundaries A and B.

e The (j,/)-flow of an interval stochastic matrix AB is
defined by

H; </,ZE) = min {Z bij,1— Zau} ;
iel i¢l

where j € {1,...,N}and I C {1,...,N}



e A probability vector py on Xy is called AB-semi-invariant if

the inequalities

N N
> piH; (/,Z\B) > pj
=1 =1

for every subset | C {1,..., N}.

Lemma
A probability vector py on Xy is AB-semi-invariant if and
only py = pnPy for some Py € AB




In the proof of Theorem 4 we use

[ it dist (. x") 6r(F)) < &

aij =0, i =
0 otherwise

i.e. we consider only those (x,-(N),xj(N)> € Sy(f), a
L-neighbourhood of Gr(f).

- 1 if bjj =1 for somec/
—  H (/,AB) _
0 otherwise



Moreover, a probability vector py on Xy is AB-semi-invariant
if and only

ij >ZPJ

jed(l) Jjel

forall I C {1,..., N}, where
J(I):={j : bijj=1for someiecl}

Convergence follows from this choice of matrix
components

Other technical details include weak convergence of measures,
etc



Random difference equations
e probability space (2, F,P), ergodic process 6 :Q — Q

e compact metric space (X, d), measurable mapping f :
XxQ—X

random difference equation Xpi1 = F(X,, 0"(w))
— skew product (x,w) = F(x,w) := ( fgg:;) )

= invariant measure g on Xx§ w=Fu



BUT we can only discretise the state space X, i.e. use a grid

XN:{XI(N),...,X/(VN)} with hy - 0 as N — oo

We can decompose the invariant measure ;1 = F*p as

w(B,w) = p(B)P(dw) V B € B(X)

where the measures p,, on X are f-invariant w.r.t. f, i.e.

Lo@)(B) = po (FH(B,w)), VBeBX),we




On the deterministic grid Xy we now consider

e random Markov chains  {Py(w),w € Q}

e random probability vectors

{pN(w)7 ORS Q}

PN.a1(07H (W) = pa(07(w)) P (60" (w))

equilibrium probability vector

pn(0(w)) = Pn(w)Pu(w)

= random measure [y, on X




Theorem 5 [Imkeller & Kloeden]

A random probability measure {p,,w € Q} is 0-
semi-invariant w.r.t. f on X if and only if it is
randomly stochastically approachable, i.e. for each N there exist

1) a grid Xy with fineness Ay — 0 as N — oo

2) a random Markov chain {Pn(w),w € Q} on Xy

3) random probability measure { ., w € Q} on X correspond-
ing to a random equilibrium probability vectors {py(w),w € Q}
of the { Py(w),w € Q} on Xy with the expected convergences.

ED (Py(w), f(-,w)) =0 Ep(unw,p) =0




