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Spatial discretisation

Consider a continuous mapping

f : X → X (1)

on a compact metric space (X , d).

The difference equation

xn+1 = f (xn) (2)

generates a discrete time dynamical system on X .



Consider a finite subset Xh of X with grid fineness

∆h := sup
x∈X

inf
xh∈Xh

d (x , xh)

Examples

• X = [0, 1], Xh = 2N-bit computer numbers in [0, 1]

• X = [0, 1], Xh =

{
j

2N
: j = 0, 1, . . . ,N

}
N-dyadic numbers



Consider a “projection” Ph : X → Xh, e.g. round-off operator

The mapping fh := Ph ◦ f : Xh → Xh generates a discrete time

dynamical system on Xh through the difference equation

x
(h)
n+1 = fh

(
x (h)n

)
(3)

What is the relationship between the dynamical behaviour of

the original dynamical system (2) and the spatially discretised

system (3) as

∆h → 0 ?



Plan

• the effect of spatial discretisation on attractors

• the effect of spatial discretisation on chaos

• the approximation of Lebesgue measure preserving maps on

a torus by permutations

• approximation by Markov chains of invariant measures of

spatial discretised

i) deterministic difference equations

ii) random difference equations



Spatial discretisation of attractors

• P. Diamond and P. E. Kloeden,

Spatial discretisation of mappings, J. Computers Math. Applns. 26 (1993), 85-94.

• P. E. Kloeden and J. Lorenz,

Stable attracting sets in dynamical systems and in their one-step discretisations,

SIAM J. Numer. Analysis 23 (1986), 986-995.

Assume that

• f : X → X is Lipschitz with constant K > 0

• the projection Ph : X → Xh satisfies for a constant M > 0

d (Ph(x), x) ≤ Mh



Theorem 1 [Diamond & Kloeden]

Suppose that a nonempty compact subset L of X is

uniformly asymptotically stable (UAS) for the dynami-

cal system f on X .

Then there exists a nonempty compact subset Lh of Xh

which is UAS for the dynamical system fh := Ph ◦ f on

Xh such that the Hausdorff distance

H(Lh, L)→ 0 as h→ 0+



Sketch of proof

The UAS of the set L for the system f implies that there

exists a Lyapunov function

V : X → R+,

which is Lipschitz continuous, and a constant 0 < q < 1 such

that

V (f (x)) ≤ q V (x), ∀x ∈ X .



Then the discretised system satisfies the key inequality

V (fh(xh)) ≤ q V (xh) + KMh ∀ xh ∈ Xh

Define

Lh :=

{
xh ∈ Xh : V (xh) ≤ 2KMh

1− q

}
,

which is a nonempty, compact subset of Xh for all h > 0.

The key inequality and other properties of the Lyapunov

function V imply that Lh is UAS for fh on Xh and satisfies the

convergence asserted in the theorem.



Fig. 1 consists of stable cycles of periods 4, 11 and 33

Fig. 3 consists of stable cycles of periods 30 and 78



Complications

• a fixed point f (x̄) = x̄ ∈ X need not belong to Xh

• if such a fixed point x̄ ∈ Xh, then it need not be a fixed

point of fh.

• fh may have spurious cycles in Xh, i.e. periodic solutions

which do not correspond to periodic solutions of f .

In fact, the dynamics of fh on Xh is always eventually periodic



Moreover, the convergence H(Lh, L) → 0 as h → 0 is

deceptive

• the attracting set Lh of fh may contains transients as well as

limit points and cycles

• it is better to consider the omega set of limiting values

L∗h :=
⋂
j≥1

⋃
n≥1

f jh (Lh),

i.e. the global attractor, which may be a proper subset of Lh.



Without additional assumptions about the dynamics of f on L

such as hyperbolicity, we only have the weaker convergence in

the Hausdorff semi-distance

H∗(L∗h, L) := max
xh∈L∗h

d(xh, L)→ 0 as h→ 0+

the effect can be extreme



Example

? Consider the extended tent mapping f : [0, 2] → [0, 2]

defined by

f (x) =


2x if 0 ≤ x ≤ 1

2

2(1− x) if 1
2
≤ x ≤ 1

0 if 1 ≤ x ≤ 2

which has the chaotic attractor L = [0, 1].



? Consider the N-dyadics

Xh :=

{
j

2N
, 1 +

j

2N
: j = 0, 1, . . . ,N

}
, h = 2−N .

Since f : Xh → Xh, here we take fh ≡ f .

f Nh (xh) = 0, ∀ xh ∈ Xh
=⇒ L∗h = {0}

the chaos has collapsed onto trivial behaviour



This collapsing effect is not exceptional

Theorem 2 [Diamond, Kloeden & Pokrovskii]

For any continuous f : X → X and any cycle

{c1, . . . , cp} of f there exists a finite subset Xh

of X which contains {c1, . . . , cp} and a map-

ping fh : Xh → Xh for h → 0 such that the

dynamics of fh collapses on {c1, . . . , cp}.

P. Diamond, P.E. Kloeden und A. Pokrovskii,

Cycles of spatial discretisations of shadowing dynamical systems,

Mathematische Nachrichten 171 (1995), 95–110.



Invariant measures

• allow us to circumvent some of the above difficulties with

attractors and cycles

• are robuster for approximation and comparison

A measure µ on X is called f -invariant if

µ(B) = µ
(
f −1(B)

)
, ∀B ∈ B(X ),

for the Borel subsets B(X ) of X , where

f −1(B) := {x ∈ X : f (x) ∈ B}



• Can we always approximate an invariant measure µ of f on

X by an invariant measure µh of fh on Xh?

how?



SPECIAL CASE: mappings on a torus

Consider

� a d-dimensional torus Td , where d ≥ 1,

� a measurable mapping f : Td → Td ;

� a uniform 1
N

partition Td
N of Td .

How should we construct a mapping fN on Td
N to approximate

f ?



Theorem 3 [Kloeden & Mustard]

Suppose that the Lebesgue measure on Td is f -

invariant.

Then there exists a permutation PN(f ) on Td
N with

H∗ (Gr(PN(f )),Gr(f )) ≤ 1

N

where H∗ is the Hausdorff semi-distance on Td × Td and

Gr(f ) is the graph of f defined by

Gr(f ) :=
{

(x , y) ∈ Td × Td : y = f (x)
}



P.E. Kloeden and J. Mustard,

Construction of permutations approximating Lebesgue measure

preserving dynamical systems under spatial discretisation.

J. Bifurcation & Chaos 7 (1997), 401–406.

Comments

• f can be non-injective here, i.e. not 1 to 1

• the inverse of the theorem holds if f is continuous

• Peter Lax has an theorem about permutations approximating

area-preserving diffeomorphisms



Outline of proof

• enumerate Td
N = {x1, . . . , xM}, where M = Nd

• define the 1
N

-band about the graph Gr(f ) of f , i.e.

SN(f ) :=

{
(x , y) ∈ Td

N × Td
N : dist ((x , y),Gr(f )) ≤ 1

N

}

The following problems are equivalent by the f -invariance of

the Lebesgue measure and a combinatorial theorem of

Frobenius and König,



(1) construct a permutation PN(f ) on Td
N with Gr (PN(f )) ⊆

SN(f ).

(2) choose a diagonal (possibly permuted) without zeros of

the M ×M matrix AN(f ) = [ai ,j ] defined by

ai ,j =

 1 if (xi , xj) ∈ SN(f )

0 otherwise

reformulate the problem as an optimal assignment LP

problem



GENERAL CASE: using Markov chains

Consider a finite subset XN = {x (N)
1 , . . . , x

(N)
N } of a compact

metric space (X , d) with fineness parameter

hN := ∆N := sup
x∈X

inf
x
(N)
j ∈XN

d
(
x , x

(N)
j

)
→ 0 as N →∞

How do we construct an approximation fN
on XN of a function f : X → X?

The choice is usually not unique: there may be several nearest

grid points to an f (x
(N)
j ) /∈ XN .



There are two ways to handle the problem:

1) setvalued: use a setvalued mapping

FN(x
(N)
j ) :=

{
nearest points in XN to f (x

(N)
j )

}
and then consider the setvalued dynamical system

xn+1 ∈ FN(xn) on XN .

2) stochastic: use a Markov chain PN on XN with transition

probabilities

p
(N)
i ,j =

 > 0 if x
(N)
i in a neighbourhod of f (x

(N)
j )

0 otherwise



Distances

• between a Markov chain PN on XN ⊂ X and a mapping f :

X → X

D(PN , f ) := max
1≤i≤N

N∑
j=1

p
(N)
i ,j dist

((
x
(N)
i , x

(N)
j

)
,Gr(f )

)

• between a probability vector pN on XN and a probability

measure µ on X

Prokhorov metric ρ(µN , µ)

where µN is the extension of pN to a measure on X .



Let f : X → X be Borel measurable and consider the

generalized inverse

f̃ −1(B) :=
{
x ∈ X : ∃ y ∈ B with (x , y) ∈ Gr(f )

}

A Borel measure µ on X is called f -semi-invariant if

µ(B) ≤ µ
(
f̃ −1(B)

)
, ∀B ∈ B(X )

f continuous =⇒ f -semi-invariant ≡ f -invariant



Theorem 4 [Diamond, Kloeden & Pokrovskii]

A probability measure µ on X is f -semi-invariant if and

only if it is stochastically approachable, i.e. for each N

there exist

1) a grid XN with fineness ∆N → 0 as N → ∞
2) a Markov chain PN on XN

3) probability measure µN on X corresponding to an

equilibrium probability vector p̄N of PN on XN , such that

D(PN , f ) → 0, ρ(µ̄N , µ) → 0 as N →∞

P. Diamond, P.E. Kloeden and A. Pokrovskii,

Interval stochastic matrices, a combinatorial lemma, and the computation

of invariant measures, J. Dynamics & Diff. Eqns. 7 (1995), 341–364.



Key idea in the proof : interval stochastic matrices

An N × N matrix C = [ci ,j ] with nonnegative components is

called

substochastic

stochastic

superstochastic

 if
N∑
j=1

ci ,j


≤ 1

= 1

≥ 1

for i = 1, . . . ,N .



Let A = [ai ,j ] be substochastic and B = [bi ,j ] be superstochastic.

Then

ÂB := {P stochastic : ai ,j ≤ pi ,j ≤ bi ,j , ∀ i , j = 1, . . . ,N}

is called an interval stochastic matrix with boundaries A and B.

• The (j , I )-flow of an interval stochastic matrix ÂB is

defined by

Hj

(
I , ÂB

)
:= min

{∑
i∈I

bi ,j , 1−
∑
i /∈I

ai ,j

}
,

where j ∈ {1, . . . ,N} and I ⊂ {1, . . . ,N}



• A probability vector pN on XN is called ÂB-semi-invariant if

the inequalities

N∑
j=1

pjHj

(
I , ÂB

)
≥

N∑
j=1

pj

for every subset I ⊂ {1, . . . ,N}.

Lemma

A probability vector pN on XN is ÂB-semi-invariant if and

only pN = pNPN for some PN ∈ ÂB



In the proof of Theorem 4 we use

ai ,j ≡ 0, bi ,j =

 1 if dist
((

x
(N)
i , x

(N)
j

)
,Gr(f )

)
≤ 1

N

0 otherwise

i.e. we consider only those
(
x
(N)
i , x

(N)
j

)
∈ SN(f ), a

1
N

-neighbourhood of Gr(f ).

=⇒ Hj

(
I , ÂB

)
=

 1 if bi ,j = 1 for some i ∈ I

0 otherwise



Moreover, a probability vector pN on XN is ÂB-semi-invariant

if and only

N∑
j∈J(I )

pj ≥
N∑
j∈I

pj

for all I ⊂ {1, . . . ,N}, where

J(I ) := {j : bi ,j = 1 for some i ∈ I}

Convergence follows from this choice of matrix

components

Other technical details include weak convergence of measures,

etc



Random difference equations

• probability space (Ω,F ,P), ergodic process θ : Ω → Ω

• compact metric space (X , d), measurable mapping f :

X × Ω → X

random difference equation xn+1 = f (xn, θ
n(ω))

=⇒ skew product (x , ω) 7→ F (x , ω) :=

(
f (x , ω)

θ(ω)

)

=⇒ invariant measure µ on X×Ω µ = F ∗µ



BUT we can only discretise the state space X , i.e. use a grid

XN = {x (N)
1 , . . . , x

(N)
N } with hN → 0 as N →∞

We can decompose the invariant measure µ = F ∗µ as

µ(B , ω) = µω(B)P(dω) ∀B ∈ B(X )

where the measures µω on X are θ-invariant w.r.t. f , i.e.

µθ(ω)(B) = µω
(
f −1(B , ω)

)
, ∀B ∈ B(X ), ω ∈ Ω



On the deterministic grid XN we now consider

• random Markov chains {PN(ω), ω ∈ Ω}

• random probability vectors {pN(ω), ω ∈ Ω}

pN,n+1(θn+1(ω)) = pN,n(θn(ω))PN(θn(ω))

equilibrium probability vector p̄N(θ(ω)) = p̄N(ω)PN(ω)

=⇒ random measure µN,ω on X



Theorem 5 [Imkeller & Kloeden]

A random probability measure {µω, ω ∈ Ω} is θ-

semi-invariant w.r.t. f on X if and only if it is

randomly stochastically approachable, i.e. for each N there exist

1) a grid XN with fineness ∆N → 0 as N → ∞
2) a random Markov chain {PN(ω), ω ∈ Ω} on XN

3) random probability measure {µN,ω, ω ∈ Ω} on X correspond-

ing to a random equilibrium probability vectors {p̄N(ω), ω ∈ Ω}
of the {PN(ω), ω ∈ Ω} on XN with the expected convergences.

ED (PN(ω), f (·, ω))→ 0 Eρ (µN,ω, µ)→ 0


