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Motivation: “learn” to automatically classify images

Machine Learning:
given m images of cats xcat

1 , xcat
2 , . . . , xdog

m and dogs xdog
1 , xdog

2 , . . . , xdog
m of labels ycat and

ydog (ycat 6= ydog), respectively.

Images of cats

Images of dogs

Cat

Dog

Goal: for a new image x?
new with ? ∈ {cat, dog}, predict ?=cat or ?=dog.
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How to “learn” to classify?

Learning phase: find W that minimizes
∑

i,j
‖ycat −Wxcat

i ‖
2 + ‖ydog −Wxdog

j ‖2, where
xcat

i , xdog
j ∈ Rdx and ycat, ydog ∈ Rdy chosen by user.

Input: (X,Y ), images X = [xcat
1 , . . . , xdog

1 , . . .] ∈ Rdx×2m with associated labels
Y = [ycat, . . . , ydog , . . .] ∈ Rdy×2m.
Output: W ∈ Rdy×dx that minimizes the difference ‖Y −WX‖2

Prediction phase: for a new image x?
new (of unknown true label x?

new), predicts:

x?
new to be a cat if ‖ycat −Wy?

new‖ < ‖ydog −Wx?
new‖

y?
new to be a dog otherwise
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From Linear Regression to Deep Neural Networks

Objective: given (X,Y ), find W that minimizes the difference ‖Y −WX‖2.

⇒“Best” solution: linear regression W = Y XT(XXT)−1 if XXT invertible. However,

linear regression may easily overfit: “learned” W too adapted to the given pair (X,Y ) and
‖y?

new −Wx?
new‖ large if x?

new 6∈ X.
does not work well for difficult problems (e.g., cat & dogs classification, face recognition,
etc.)
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From Linear Regression to Deep Neural Networks

⇒(Brain-inspired) LINEAR neural network models (back to [Rosenblatt, 1958])

=⇒

X ∈ Rdx×mW1XWH+1 . . .W1X

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure: Illustration of H-hidden-layer linear neural network

W = WH+1WH · · ·W1

“deeper” structures brings better performance but are computationally more difficult
with rapid development of modern computation hardwares (Graphics Processing Units, etc)

[Lecun 1998] 5-layer of 60K parameters to [He, 2015] 152-layer of 60M parameters
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Y.Chitour (L2S, CentraleSupélec) Dynamical aspects of Deep Learning January 21, 2019 7 / 13



From Linear Regression to Deep Neural Networks

⇒(Brain-inspired) LINEAR neural network models (back to [Rosenblatt, 1958])

=⇒

X ∈ Rdx×mW1XWH+1 . . .W1X

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure: Illustration of H-hidden-layer linear neural network

W = WH+1WH · · ·W1

“deeper” structures brings better performance but are computationally more difficult
with rapid development of modern computation hardwares (Graphics Processing Units, etc)

[Lecun 1998] 5-layer of 60K parameters to [He, 2015] 152-layer of 60M parameters
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From Linear Regression to Deep Neural Networks

NONLINEAR neural networks:

X ∈ Rdx×m

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure: Illustration of H-hidden-layer nonlinear neural network

with (nonlinear) activation function σ(z): ReLU(z) = max(z, 0), Leaky ReLU max(z, az)
(a¿0) or sigmoid σ(z) = 1

1+e−z .

W ·X = WH+1σ(WHσ(WH−1σ(· · ·W1X))).

=⇒

Or more elaborate structures: convolution, recurrent, residual, etc.
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On LINEAR Deep Nonlinear Neural Networks

Set dH+1 := dy , d0 := dx and consider

X ∈ Rd0×m Y ∈ RdH+1 .

Goal: find W = (WH+1, · · · ,W1) that minimizes the function (depending on (X,Y ) !!)

F (W) := ‖Y −WX‖2, W = WH+1WH · · ·W1,

where
Wj ∈ Rdj ×dj−1 , 1 ≤ j ≤ H + 1.

Define state space W (recall dy = dH+1 and d0 = dx)

W = RdH+1×dH × · · ·Rd1×d0 .

and Gradient Descent associated with F

(GD)(X,Y )
dW
dt

= −∇F (W), W ∈ W.

Conjecture (⇐⇒ Overfitting Problem)
(OP ): For a.e. (X,Y ) and W0 ∈ W, traj. of (GD)(X,Y ) starting at W0 CV to a glob.
minimum of F .
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Gradient Descent for Linear Neural Networks - First reductions

(Usual) working assumptions

X,Y full rank ,m ≥ max(di) ≤ min(di) = dy .

Up to SVD and computations, can assume

X = Iddx ( i.e. m = dx), Y =
(
DY 0

)
, DY ∈ Rdy×dy diagonal > 0.

Notation.

(ΠW )j
i = Wj · · ·Wi, 1 ≤ i ≤ j ≤ H + 1, M = Y − (ΠW )H+1

1 .

Gradient dynamics, 1 ≤ j ≤ H + 1

(GD)DY

dWj

dt
= (ΠW )H+1

j+1 M(ΠW )j−1
1 .

Definition. Critical points ∇F (W) = 0

Crit(F ) = {W = (WH+1, · · · ,W1) ∈ W, (ΠW )H+1
j+1 M(ΠW )j−1

1 = 0}.

Candidates for limit points of trajectories.
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Gradient Descent for Linear Neural Networks - Convergence

Theorem (C., Liao, Couillet ’18)
Every traj. of (GD)DY

converges to a element of Crit(F ).

PROOF
Key (and obvious) remark: (GD)DY

analytic =⇒ Lojasiewicz’s theorem can be used

Proposition (Lojasiewicz 50s’)
Every BOUNDED traj. of analytic gradient system converges to critical point.

Proof reduces to show that trajectories are bounded.

Proposition (Invariants)
For 1 ≤ j ≤ H, following quantities are conserved along traj. of (GD)DY

WT
j+1Wj+1 −WjW

T
j = (WT

j+1Wj+1 −WjW
T
j )
∣∣
t=0

.

=⇒ ‖Wj(t)‖2
F = ‖WH+1‖2

F + Cj t ≥ 0, 1 ≤ j ≤ H.

Set g(t) = ‖WH+1‖2
F . Given a traj. of (GD)DY

, one proves that there exists C0, C1 > 0
dg

dt
≤ −C0g

H+1(t) + C1
(
1 + gH(t)

)
, ∀t ≥ 0.
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Gradient Descent for Linear Neural Networks - Study of Crit(F )

Definition
For W ∈ Crit(F ) define

R(W) = (ΠW )H+1
2 , r(W) = rankR(W) ∈ [0, dy ],

Z(W) = (ΠW )H
2 rZ(W) = rankZ(W) ≥ R(W).

Then
Crit(F ) = ∪dy

r=0 Critr(F ), Critr(F ) = {W ∈ Crit(F ), r(W) = r}.

CrV (F ) = Set of critical values of F = {F (W),W ∈ Crit(F )}.

Proposition (Landscape of Deep Linear Networks)
Assume Y =

(
DY 0

)
has two by two distinct eigenvalues.

i) CrV (F ) = (finite) set of half sums of squares of any subset of singular values of Y .
ii) Critdy (L) = set of local (and global) minima with F = 0 and M = 0.
iii) For 0 ≤ r ≤ dy − 1, Critr(F ) algebraic variety of dim. > 0 made of saddle points.

If rZ > r ≥ 0, Hessian(F )(W) has at least one negative eigenvalue.
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Gradient Descent for Linear Neural Networks - Case H = 1

Reformulation of Conjecture (OP )

Conjecture (New formulation of (OP ))
For a.e. (X,Y ), the union of the basins of attraction of saddles points is of measure zero.

Proposition (C., Liao, Couillet ’18)
Conjecture (OP ) true if H = 1.

Argument relies on concept of Normal Hyperbolicity (due to Fenichel 1972).
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Y.Chitour (L2S, CentraleSupélec) Dynamical aspects of Deep Learning January 21, 2019 13 / 13


