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Scalar nonlinear hyperbolic PDEs

Scalar nonlinear hyperbolic PDEs model numerous physical
phenomena (fluid mechanics, traffic flow, nonlinear acoustics)...

Scalar nonlinear hyperbolic PDE
∂

∂t
y(t , x) +

∂

∂x
f (y(t , x)) = 0, (t , x) ∈ R+ × R

y(0, x) = y0(x),

with y0 ∈ L1(R) ∩ L∞(R). The flux function f is assumed to be
polynomial.

In particular, one retrieves the Burgers equation setting

f (y) =
y2

2
.
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Scalar nonlinear hyperbolic PDEs

Scalar nonlinear hyperbolic PDEs model numerous physical
phenomena (fluid mechanics, traffic flow, nonlinear acoustics)...

Scalar nonlinear hyperbolic PDE
∂

∂t
y(t , x) +

∂

∂x
f (y(t , x)) = 0, (t , x) ∈ R+ × R

y(0, x) = y0(x),

with y0 ∈ L1(R) ∩ L∞(R). The flux function f is assumed to be
polynomial.

Objective
We aim at providing a new numerical scheme based on
polynomial optimization to solve the solution in a window
T× X× Y ⊂ R+ × R× R. Bounds on the variable y due to the
maximum principle.
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Scalar nonlinear hyperbolic PDEs

Scalar nonlinear hyperbolic PDEs model numerous physical
phenomena (fluid mechanics, traffic flow, nonlinear acoustics)...

Scalar nonlinear hyperbolic PDE
∂

∂t
y(t , x) +

∂

∂x
f (y(t , x)) = 0, (t , x) ∈ R+ × R

y(0, x) = y0(x),

with y0 ∈ L1(R) ∩ L∞(R). The flux function f is assumed to be
polynomial.

Challenge

(Localizing shocks) Smooth initial conditions might produce
discontinuities.
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Approximation scheme

𝜕

𝜕𝑡
< 𝜇, 𝑦 > +

𝜕

𝜕𝑡
< 𝜇, 𝑓(𝑦) >=0𝜕

𝜕𝑡
𝑦 +

𝜕

𝜕𝑥
𝑓 𝑦 = 0

Nonlinear PDE on functions Linear PDE on measuresRelaxation

No gap of 
relaxation

Moments extraction

Moments of the measure

𝑧𝛼 = ∫ ∫ ∫ 𝑡𝛼1𝑥𝛼2𝑦𝛼3𝑑𝑡𝑑𝑥 𝑑μ

= ∫ ∫ 𝑡𝛼1𝑥𝛼2𝑦𝛼3(𝑡, 𝑥)𝑑𝑡𝑑𝑥

Reconstruction

< 𝜇, 𝑦 > = ∫ 𝑦 𝑑𝜇
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Objective

Because of the absence of gap : µ := δy(t ,x). We want to
obtain :

zα :=

∫
T

∫
X

∫
Y

tα1xα2yα3dtdxdµ, α1 + α2 + α3 ≤ d ,

=

∫
T

∫
X

tα1xα2y(t , x)α3dtdx , α1 + α2 + α3 ≤ d

with d ∈ N fixed. These quantities, called moments, are of
interest, because of the Riesz-Haviland theorem.

Objective
To obtain these moments, we will transform the nonlinear
hyperbolic equation as moment constraints.
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Weak solutions

Even with regular initial conditions, solutions to nonlinear
hyperbolic PDE might produce discontinuities (shocks).

Weak solutions

∀ϕ ∈ C1
c (R+ × R),∫

R+×R

∂ϕ

∂t
y +

∂ϕ

∂x
f (y)dxdt +

∫
R
ϕ(0, x)y0(x)dx = 0.

Such a notion guarantees existence, but not uniqueness.
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Entropy solutions

Definition : Entropy pair

A pair of functions η,q ∈ C1(R) is called an entropy pair if η is
strictly convex and q′ = f ′η′.

Definition : Entropy solution
Entropy solutions are weak solutions satisfying

∀ (nonnegative) ϕ2 ∈ C1
c (R+ × R) and ∀ entropy pair (η,q),∫

R+×R

∂ϕ2

∂t
η(y) +

∂ϕ2

∂x
q(y)dxdt +

∫
R
ϕ2(0, x)η(y0(x))dx ≥ 0.

Entropy inequalities guarantee uniqueness of the solution
(y ∈ L∞(R+ × R)) and select a solution with a physical

meaning.
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Measure-valued (MV) solutions

Young measures
A Young measure on a Euclidean space X is a map

µ : X ⊂ R+ × R→ P(R)

(t , x) 7→ µ(t ,x)

such that, for all g ∈ C0(R), the function
(t , x) 7→

∫
R g(y)µ(t ,x)(dy) is measurable.

We use the following notation :

〈µ(t ,x),g(y)〉 :=

∫
R

g(y)µ(t ,x)(dy), ∀g ∈ C(R)
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Measure-valued (MV) solutions

Entropy measure-valued solutions (DiPerna, 1985)

∀ϕ1 ∈ C1
c (R+ × R),∫

R+×R

∂ϕ1

∂t
〈µ(t ,x), y〉+

∂ϕ1

∂x
〈µ(t ,x), f (y)〉dxdt

+

∫
R
ϕ1(0, x)〈µ0,x , y〉dx = 0.

∀ (nonnegative) ϕ2 ∈ C1
c (R+ × R) and ∀ convex pair (η,q),∫

R+×R

∂ϕ2

∂t
〈µ(t ,x), η(y)〉+

∂ϕ2

∂x
〈µ(t ,x),q(y)〉dxdt

+

∫
R
ϕ2(0, x)〈µ0,x , η(y))〉dx ≥ 0.

LINEAR formulation
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Measure-valued (MV) solutions

With the particular choice of

µt ,x = δy(t ,x), µ0,x = δy0(x), for a.e. t , x

one retrieves entropy solutions. Indeed,
〈δy(t ,x), y〉 = y(t , x), for a.e. t , x .

entropy solutions ⊆ entropy MV solutions

Question
Under which conditions, these two kinds of solutions coincide?

9/23



A concentration theorem

Theorem (DiPerna, 1985)
Let C be the Lipschitz constant of the function f . Let y be an
entropy solution and µ be an entropy MV solution. Then, for all
T ≥ 0 and all r ≥ 0∫

|x |≤r
〈µt ,x , |y− y(T , x)|〉dx ≤

∫
|x |≤r+CT

〈µ0,x , |y− y0(x)|dx .

In particular, one has

µ0,x = δy0(x) ⇒ µt ,x = δy(t ,x), for a.e. t ∈ [0,T ], x ∈ [−r , r ].

Entropy measure-valued solutions are NOT a relaxation when
µ0,x is concentrated on the graph of the initial condition.
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MV solutions on compact sets

Entropy MV solutions on the compact set T× X

∀ϕ1 ∈ C1(T× X),∫
T×X

∂ϕ1

∂t
〈µ(t ,x), y〉+

∂ϕ1

∂x
〈µ(t ,x), f (y)〉dxdt + B.C. = 0.

∀ (nonnegative) ϕ2 ∈ C1(T× X) and ∀ convex pair (η,q),∫
R+×R

∂ϕ2

∂t
〈µ(t ,x), η(y)〉+

∂ϕ2

∂x
〈µ(t ,x),q(y)〉dxdt + B.C. ≥ 0.

From the maximum principle, we know that

−‖y0‖L∞(R)︸ ︷︷ ︸
:=y

≤ y ≤ ‖y0‖L∞(R)︸ ︷︷ ︸
:=ȳ

⇒ y ∈ Y := [y, ȳ ].

All the variables lie in compact sets
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Dynamic and entropy constraints

Let us define :
dν(t , x , y) = µt ,x (dy)dtdx .

Constraints
1 Dynamic

∀ϕ1 ∈ C1(T× X),∫
T×X×Y

∂ϕ1

∂t
y +

∂ϕ1

∂x
f (y)dν + B.C. = 0.

2 Entropy inequalities

∀ (nonnegative) ϕ2 ∈ C1(T× X) and ∀ convex pair (η,q),∫
T×X×Y

∂ϕ2

∂t
η(y) +

∂ϕ2

∂x
q(y)dν + B.C. ≥ 0.
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Dynamic and entropy constraints

We express the data (ϕ1, ϕ2, η,q) as
polynomials.
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MV solutions as moments constraints

Moment constraints
1 Dynamic

∀α1, α2 ∈ N,∫
T×X×Y

(
α1tα1−1xα2y + tα1xα2−1f (y)

)
dν + B.C. = 0.

2 Entropy inequalities

∀α1, α2, α3, α4 ∈ N∫
T×X×Y

(
∂gα(t , x)

∂t
η(y) +

∂gα(t , x)

∂x
q(y)

)
dν + B.C. ≥ 0.

with gα := tα1(T − t)α2(L− x)α3(x − R)α4 .

The solution ν = dtdxδy(t ,x) (with y entropy solution) is the
UNIQUE solution to these moment constraints.
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MV solutions as moments constraints

Obtaining the right solution needs us to impose an infinite
number of constraints. Numerically, it is however impossible.

Numerical solution
We will truncate the number of contraints up to an order d .
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Truncated moment problem

Truncated moment constraints (order d)
1 Dynamic

∀α1, α2 ∈ N such that |α| ≤ d ,∫
T×X×Y

(
α1tα1−1xα2y + α2tα1xα2−1f (y)

)
dν + B.C. = 0.

2 Entropy inequalities

∀α1, α2, α3, α4 ∈ N such that |α| ≤ d∫
T×X×Y

(
∂gα(t , x)

∂t
η(y) +

∂gα(t , x)

∂x
q(y)

)
dν + B.C. ≥ 0.

with gα := tα1(T − t)α2(L− x)α3(x − R)α4 .
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Truncated moment problem

The moment formulation with all the moments leads to a unique
solution. But, when truncating, it is not the case.

Solution
We optimize an objective function. The sum of the right
hand-side of the entropy inequalities leads in practice to good
numerical results.
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Optimization problem

Truncated moment problem as an optimization problem

Setting |α| ≤ d , one then obtains the following optimization
problem.

ρd := sup
zα

∑
|α|≤d

∫
K

h2(t , x , y)dν (objective)

s.t.
∫

K
h1(t , x , y)dν + B.C = 0, (Dynamic) ∀|α| ≤ d

−
∫

K
h2(t , x , y)dν + B.C ≤ 0 (Entropies) ∀|α| ≤ d

h1(t , x , y) = α1tα1−1xα2y + α2tα1xα2−1f (y)

h2(t , x , y) =
∂gα

∂t
η(y) +

∂gα

∂x
q(y)

zα =

∫
T×X×Y

tα1xα2yα3dν.
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Optimization problem

Numerical implementation
Implementable with the toolbox Globtipoly.
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Some nice properties

Similarly, we may define the full moment optimization problem,
which is the same optimization problem, satisfied ∀α

Full moment problem

ρ? := sup
ν∈M(K)+

∑
α

∫
K

h2(t , x , y)dν (objective function)

s.t.
∫

K
h1(t , x , y)dν + B.C = 0, (Dynamic) ∀α

−
∫

K
h2(t , x , y)dν + B.C ≤ 0 (Entropies) ∀α

with ν? = dtdxδy(t ,x)

16/23



Some nice properties

Similarly, we may define the full moment optimization problem,
which is the same optimization problem, satisfied ∀α

Theorem (Lasserre, 2008)
One has lim→d→+∞ ρd = ρ?. We have moreover :

ρd ≤ ρd+1.

16/23



Concluding remarks

Originality

Compared to existing numerical schemes, our alternative
numerical scheme

1 does NOT rely on time/space discretization ;
2 allows to compute the solution GLOBALLY in a window

T× X ⊂ R+ × R
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Burgers equation and Riemann problem

T = [0,1], X =
[
−1

2 ,
1
2

]
, f = 1

4y2.

y0(x) :=

{
yl , x < 0
yr , x > 0

Two possible situations
1 yl > yr : propagating shock
2 yl < yr : rarefaction wave.
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Shock wave (d=6)

Analytic vs computed :
∫

ykdν
1.00000000 0.99999999
0.62500000 0.62500001
0.62500000 0.62500001
0.62500000 0.62500001
0.62500000 0.62500002
0.62500000 0.62500002
0.62500000 0.62500002
0.62500000 0.62500002
0.62500000 0.62500002
0.62500000 0.62500002
0.62500000 0.62500002
0.62500000 0.62500003
0.62500000 0.62500003
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Shock wave (d=6)

We use an algorithm inspired by [Pauwels, Lasserre, 2017] to
reconstruct the solution from moments data.

Idea

From this algorithm, we extract polynomials pi
d (t , x , y) satisfying

pi
d (t , x , y) = 0 and the approximated function we obtain is

ŷd (t , x) = argminy∈Y

∑
i

pi
d (t , x , y).
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Shock wave (d=6)

1
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0
0

0.5

0.4

0.6

0.8

1
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Rarefaction wave

Analytic vs computed :
∫

ykdν
1.00000000 1.00000000
0.37500000 0.37499990
0.33333333 0.33333312
0.31250000 0.31249968
0.30000000 0.29999957
0.29166667 0.29166612
0.28571429 0.28571362
0.28125000 0.28124922
0.27777778 0.27777688
0.27500000 0.27499899
0.27272727 0.27272614
0.27083333 0.27083209
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Rarefaction wave
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Further research lines

Inverse design problem

The Burgers equation is irreversible. A continuum of initial
conditions might lead to a given final state y(T , x) = φ(x).
How can one compute this set with a moment approach?
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Class of approximated function

Some ideas

Some polynomials pd
i solve the following equation∫
T

∫
X

∫
Y

pd
i (t , x , y)2dν = 0

⇒ pd
i (t , x , y) = 0, on supp(ν).

Therefore, since ν = dtdxδy(t ,x) :

(t , x , y(t , x)) ⊂ {(t , x , y) | pd
i (t , x , y) = 0, ∀i}.

Numerically, we take :

yd (t , x) = argminy∈Y

∑
pd

i

pd
i (t , x , y)2



5 Approximation of the solution

6 Approximation of the GMP

7 Expression of the data as polynomials



A simpler example

The following nonconvex and nonlinear optimization problem of
finite dimension

f ? = sup
w

f (w)

s.t. w ∈ K ⊂ Rn

is equivalent to the convex and linear optimization problem of
infinite-dimension

ρ = sup
ν∈M(K )+

∫
K

f (w)dν(dw)

s.t.
∫

K
dν = 1.

whereM(K )+ denotes the set of Borel measures, which is a
convex set. Solution of the latter optimization problem is
ν = δw? . But what is the advantage?



A simpler example

Answer : if the data (f and K) are expressed with polynomials,
you can propose a numerical scheme !



From measures to moments

Assume that f is a polynomial. Then :∫
K

f (w)dν =

∫
K

∑
α∈Nn

fαwαdν

=
∑
α∈Nn

fα
∫

K
wαdν︸ ︷︷ ︸

moments of the measure

.

Moments are quantities of interest for a measure.
For univariate measure (n = 1) :

0th order moment
(∫

K
dν
)

: Average,

First order moment
(∫

K
wdν

)
: Mean,

We will compute the moments of a measure (that are real
numbers) instead of the measure itself.



From measures to moments

Suppose that you have an infinite sequence (zα)α∈N. You want
to know whether this sequence represents a measure. Focus
on the following linear functional

f (w) =
∑
α∈Nn

fαwα 7→ Lz(f ) =
∑
α∈N

fαzα

Riesz-Haviland Theorem (1935/1936)

Let z = (zα)α∈Nn and K closed. There exists µ ∈M+(K) with

zα :=

∫
K

wαdν

if and only if

Lz(p) ≥ 0 for every nonnegative polynomials p



From measures to moments

An univariate example
Set n = 1. Then

Lz(1 + 3w1 + w2
1 ) = z0 + 3z1 + z2

A multivariate example
Set n = 2. Then

Lz(1 + 2w1w2 + 5w2
2 + 4w4

1 w2) = z00 + 2z11 + 5z02 + 4z41.



Moment and localization matrices

Moment and localization matrices
If K is expressed with polynomials

K := {w ∈ Rn | gj(w) ≥ 0, j = 1, . . . ,m},

Lz(·) ≥ 0 can be imposed by LMIs (Linear Matrix Inequalities)

Lz(vdv>d )︸ ︷︷ ︸
moment matrix

� 0, Lz(vdv>d gj)︸ ︷︷ ︸
localizing matrix

� 0, j = 1, . . . ,m, d = 1,2, . . .

where vd := (wα)|α|≤d ∈ R[w]s(d), with s(d) :=

(
n + d

d

)
Moment matrix ensures that you are considering a measure.
The localizing matrix ensures that the support of this measure
is K.



Example of moment matrices

First moment matrix

n = 2, d = 1. vd :=
[
1 w1 w2

]>,

Lz(v1v>1 ) =

 ∫K 1dν
∫

K w1dν
∫

K w2dν∫
K w1dν

∫
K w2

1 dν
∫

K w1w2dν∫
K w2dν

∫
K w1w2dν

∫
K w2

2 dν


=

z00 z10 z01
z10 z20 z11
z01 z11 z02

 .



Example of moment matrices

Second moment matrix

n = 1, d = 2. vd :=
[
1 w1 w2 w2

1 w1w2 w2
2

]>,

Lz(v2v>2 ) =



 z00 z10 z01
z10 z20 z11
z01 z11 z02

 z20 z11 z02
z30 z21 z12
z21 z12 z03

z20 z30 z21
z11 z21 z12
z02 z12 z03

z40 z31 z22
z31 z22 z13
z22 z13 z04





SDP

The polynomial optimization problem reduces to the following
SDP problem :

ρ = min
z

Lz(p)

s.t. z0 = 1

Lz(vdv>d )︸ ︷︷ ︸
moment matrix

� 0, Lz(vdv>d gj)︸ ︷︷ ︸
localizing matrix

� 0, j = 1, . . . ,m,

It can be solved numerically with SDP solver such as Sedumi.

Issue
You do not know in advance the size of the moment matrix and
the localization matrix.

Lasserre solution (2001)
Truncate the moments up to an order d , prescribed.



An example of hierarchy of SDP problems

An example
Here, we have n = 2.

ρ = min
w

p(w) := −w2

s.t 3− 2w2 − w2
1 − w2

2︸ ︷︷ ︸
:=g1(w)

≥ 0

−w1 − w2 − w1w2 ≥ 0︸ ︷︷ ︸
:=g2(w)

≥ 0

1 + w1w2︸ ︷︷ ︸
:=g3(w)

≥ 0.

The global optimal value of this problem is −1.680.



An example of hierarchy of SDP problems

First relaxation d = 1

ρ1 = min
z
−z01

s.t

 1 z10 z01
z10 z20 z11
z01 z11 z02

 � 0

3− 2z01 − z20 − z02 ≥ 0
− z10 − z01 − z11 ≥ 0
1 + z11 ≥ 0.

After resolution with the toolbox GlobtiPoly : solution of this first
relaxation : −2.



An example of hierarchy of SDP problems

Second order relaxation

ρ2 = min
z
−z01

s.t.

 z00 z10 z01 z20 z11 z02
z10 z20 z11 z30 z21 z12
z01 z11 z02 z21 z12 z03
z20 z30 z21 z40 z31 z22
z11 z21 z12 z31 z22 z13
z02 z12 z03 z22 z13 z04

 � 0

[
3−2z01−z20−z02 3z10−2z11−z30−z12 3z01−2z02−z21−z03

3z10−2z11−z30−z12 3z20−2z21−z40−z22 3z11−2z12−z31−z13
3z01−2z02−z21−z03 3z11−2z12−z31−z13 3z02−2z03−z22−z04

]
� 0[

−z10−z01−z11 −z20−z11−z21 −z11−z02−z12
−z20−z11−z21 −z30−z21−z31 −z21−z12−z22
−z11−z02−z12 −z21−z12−z22 −z12−z03−z13

]
� 0[

1+z11 z10+z21 z01+z12
z10+z21 z20+z31 z11+z22z01+z12 z11+z22 z02+z13

]
� 0.

We obtain the optimal global value −1.680.



Generalized Moment Problem (GMP) formulation

Generalization : if your problem can be rephrased as follows

GMP formulation

ρ? := sup
ν∈M(K)+

∫
K

f (w)dν (objective function)

s.t.
∫

K
hj(w)dν 5 γj , j ∈ Γ (constraints)

then you are able to apply the Lasserre hierarchy, with ρd the
value of the relaxed functional. Moreover,

Convergence (Lasserre (2008))

The solution of the moment-SOS hierarchy converges to the
solution of the GMP. Moreover, one has

ρd ≤ ρd+1.
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Projection on polynomials for the dynamic

Key : Use the Stone-Weierstrass theorem!∫
T×X×Y

∂ϕ1

∂t
y +

∂ϕ1

∂x
f (y)dν + B.C. = 0⇔∑

α1,α2∈N
cα
∫

T×X×Y

∂tα1xα2

∂t
y +

∂tα1xα2

∂x
f (y)dν + B.C. = 0.

Hence, the dynamic can be imposed with this moment
constraint∫

T×X×Y

∂tα1xα2

∂t
y +

∂tα1xα2

∂x
f (y)dν + B.C. = 0, ∀α1, α2 ∈ N



Test functions for the entropy inequalities

Stone-Weierstrass theorem does not work directly with
nonnegative test function. Indeed,∫

T×X×Y

∂ϕ2

∂t
η(y) +

∂ϕ2

∂x
q(y)dν + B.C.≥0⇔∑

α1,α2∈N
cα
∂tα1xα2

∂t
η(y) +

∂tα1xα2

∂x
q(y)dν + B.C. ≥ 0

We cannot get rid of the coefficient cα.
Key : use Handelman’s Positivstellensatz (1988).

An example for a nonnegative test function

T = [0,T ], X = [L,R]. Hence, every nonnegative function in
T× X can be written as follows

ϕ2(t , x) =
∑
α

cα̃︸︷︷︸
>0

gα(t , x) := cα̃(t − T )α1 tα2(L− x)α3(x − R)α4 .



Entropy pair

Lax entropies
Using this special family of entropy pair

ηv := |y − v |, qv := sign(y − v)(f (y)− f (v)), ∀v ∈ Y,

is equivalent to using any entropy pair.

Issues :
1 The functions are parametrized by any v ⇒ introduce v as

a new variable.
2 The absolute value and the sign functions are NOT

polynomials⇒ double the number of measures
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Doubling measure strategy

Doubling measure strategy

ν ∈M(T× X× Y)+ ⇒

{
ν+ ∈M(T× X× {Y2 | y ≥ v})
ν− ∈M(T× X× {Y2 | y ≤ v})

Hence,∫
T×X×Y2

∂gα,β

∂t
(y− v) +

∂gα,β

∂x
(f (y)− f (v))︸ ︷︷ ︸

assumed to be polynomial

dν++

∫
T×X×Y2

∂gα,β

∂t
(v − y) +

∂gα,β

∂x
(f (v)− f (y))dν− + B.C. ≥ 0
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