A Finite Element approximation of the one-dimensional fractional Poisson equation with applications to numerical control

Umberto Biccari
DeustoTech, Universidad de Deusto, Bilbao, Spain
Joint work with Víctor Hernández-Santamaría
DeustoTech, Universidad de Deusto, Bilbao, Spain

Benasque, August 29 ${ }^{\text {th }}, 2017$

DeustoTech

Outline of the talk

1 Introduction

2 Preliminary theoretical results
3 Development of the numerical scheme

4 Numerical results

1 Introduction

2 Preliminary theoretical results

- Elliptic problem
- Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

Introduction

We present a Finite Element (FE) scheme for the numerical approximation of the solution to the following non-local equation:

Fractional Poisson equation

$$
\left(-d_{x}^{2}\right)^{s} u=f, \quad x \in(-L, L), \quad u \equiv 0, \quad x \in \mathbb{R} \backslash(-L, L) .
$$

As a natural application, we analyze the numerical control problem for the following parabolic equation:

Introduction

We present a Finite Element (FE) scheme for the numerical approximation of the solution to the following non-local equation:

Fractional Poisson equation

$$
\left(-d_{x}^{2}\right)^{s} u=f, \quad x \in(-L, L), \quad u \equiv 0, \quad x \in \mathbb{R} \backslash(-L, L) .
$$

As a natural application, we analyze the numerical control problem for the following parabolic equation:

Fractional heat equation

$$
\begin{cases}z_{t}+\left(-d_{x}^{2}\right)^{s} z=g 1_{\omega}, & (x, t) \in(-1,1) \times(0, T) \\ z=0, & (x, t) \in[\mathbb{R} \backslash(-1,1)] \times(0, T) \\ z(x, 0)=z_{0}(x), & x \in(-1,1)\end{cases}
$$

Fractional Laplacian

For any function u sufficiently regular and for any $s \in(0,1)$, the s-th power of the Laplace operator is given by

$$
\left(-d_{x}^{2}\right)^{s} u(x)=C_{s} P . V . \int_{\mathbb{R}} \frac{u(x)-u(y)}{|x-y|^{1+2 s}} d y
$$

Functional setting: fractional Sobolev spaces

$$
\begin{aligned}
& \text { - } H^{s}(-L, L):=\left\{u \in L^{2}(-L, L): \frac{|u(x)-u(y)|}{|x-y|^{\frac{1}{2}+s}} \in L^{2}\left((-L, L)^{2}\right)\right\} . \\
& \text { - }\|u\|_{H^{s}(-L, L)}:=\left(\int_{-L}^{L}|u|^{2} d x+\int_{-L}^{L} \int_{-L}^{L} \frac{|u(x)-u(y)|^{2}}{|x-y|^{1+2 s}} d x d y\right)^{\frac{1}{2}} . \\
& \text { - } H_{0}^{s}(-L, L):=\left\{u \in H^{s}(\mathbb{R}): u=0 \text { in } \mathbb{R} \backslash(-L, L)\right\} .
\end{aligned}
$$

Existing literature

- R.H. Nochetto, E. Otárola and A.J. Salgado, A. Bonito et al. :

FE schemes for the discretization of elliptic and parabolic problems involving the spectral Fractional Laplacian (DIFFERENT OPERATOR).

- G. Acosta et al. :

FE schemes for the discretization 2-D elliptic problems involving the Fractional Laplacian.

1 Introduction

2 Preliminary theoretical results

- Elliptic problem
- Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

1 Introduction

2 Preliminary theoretical results

- Elliptic problem
- Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

Variational formulation for the elliptic problem

Find $u \in H_{0}^{s}(-L, L)$ such that

$$
\underbrace{\frac{c_{1, s}}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{1+2 s}} d x d y}_{a(u, v)}=\int_{-L}^{L} f v d x,
$$

for all $v \in H_{0}^{s}(-L, L)$.

Well posedness

$a(\cdot, \cdot): H_{0}^{s}(-L, L) \times H_{0}^{s}(-L, L) \rightarrow \mathbb{R}$ continuous and coercive

If $f \in H^{-s}(-L, L)$, then there \Rightarrow exists a unique weak solution $u \in H_{0}^{s}(-L, L)$.

1 Introduction

2 Preliminary theoretical results

- Elliptic problem

■ Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

Control results

Fractional heat equation

$$
\begin{cases}z_{t}+\left(-d_{x}^{2}\right)^{s} z=g \mathbf{1}_{\omega}, & (x, t) \in(-1,1) \times(0, T) \\ z=0, & (x, t) \in[\mathbb{R} \backslash(-1,1)] \times(0, T) \\ z(x, 0)=z_{0}(x), & x \in(-1,1)\end{cases}
$$

Proposition

For all $z_{0} \in L^{2}(-1,1)$ and $T>0$, the equation is null-controllable with a control function $g \in L^{2}(\omega \times(0, T))$ if and only if $s>1 / 2$.

Proposition

Let $s \in(0,1)$ and $T>0$. For all $z_{0} \in L^{2}(-1,1)$, there exists a control function $g \in L^{2}(\omega \times(0, T))$ such that the unique solution z to the fractional Heat equation is approximately controllable.

Proof of the null controllability (sketch)

The result is equivalent to the existence of a constant $C>0$ such that the following observability inequality holds

$$
\|\varphi(x, 0)\|_{L^{2}(-1,1)}^{2} \leq C \int_{0}^{T}\left|\int_{\omega} \varphi(x, t) g(x, t) d x\right|^{2} d t
$$

where $\varphi(x, t)$ is the unique solution to the adjoint system

$$
\begin{cases}-\varphi_{t}+\left(-d_{x}^{2}\right)^{s} \varphi=0, & (x, t) \in(-1,1) \times(0, T) \\ \varphi=0, & (x, t) \in[\mathbb{R} \backslash(-1,1)] \times(0, T) \\ \varphi(x, T)=\varphi^{T}(x), & x \in(-1,1)\end{cases}
$$

Spectral expansion

$$
\varphi(x, t)=\sum_{k \geq 1} \varphi_{k} e^{-\lambda_{k}(T-t)} \varrho_{k}(x), \quad \varphi_{k}=\left\langle\varphi^{T}, \varrho_{k}\right\rangle .
$$

The observability inequality becomes

$$
\sum_{k \geq 1}\left|\varphi_{k}\right|^{2} e^{-2 \lambda_{k} T} \leq C \int_{0}^{T}\left|\sum_{k \geq 1} \varphi_{k} g_{k}(t) e^{-\lambda_{k} t}\right|^{2} d t, \quad g_{k}=\left\langle g \mathbf{1}_{\omega}, \varrho_{k}\right\rangle
$$

Müntz Theorem: the last inequality is true if and only if

$$
\sum_{k \geq 1} \frac{1}{\lambda_{k}}<+\infty
$$

Eigenvalues of $\left(-d_{x}^{2}\right)^{s}$ on $(-1,1)$ with DBC^{1}

$$
\lambda_{k}=\left(\frac{k \pi}{2}-\frac{(1-s) \pi}{4}\right)^{2 s}+O\left(\frac{1}{k}\right) .
$$

The series is convergent if and only if $s>1 / 2$. Therefore, the observability inequality holds when $s>1 / 2$, but it is false when $s \leq 1 / 2$.
${ }^{1}$ M. Kwaśnichi, J. Funct. Anal., 2012

Figure: *
First ten eigenvalues of $\left(-d_{x}^{2}\right)^{s}$ on $(-1,1)$ with DBC for $s \leq 1 / 2$ (left) and $s>1 / 2$ (right).

- $s \leq 1 / 2$: the equation is not null-controllable.
- $s>1 / 2$: the equation is null-controllable.

Proof of the approximate controllability (sketch)

The result follows from the following property.

Parabolic unique continuation

Given $s \in(0,1)$ and $\varphi_{0}^{T} \in L^{2}(-1,1)$, let φ be the unique solution to the adjoint equation. Let $\omega \subset(-1,1)$ be an arbitrary open set. If $\varphi=0$ on $\omega \times(0, T)$, then $\varphi=0$ on $(-1,1) \times(0, T)$.

This, in turn, is a consequence of the Unique Continuation property for the Fractional Laplacian, obtained by Fall and Felli ${ }^{2}$.
${ }^{2}$ M.M. Fall and V. Felli, Comm. Partial Differential Equations, 2014..

1 Introduction

2 Preliminary theoretical results

- Elliptic problem
- Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

1 Introduction

2 Preliminary theoretical results

- Elliptic problem
- Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

Finite element approximation of the elliptic problem

Partition of $(-L, L)$

$$
\begin{array}{r}
-L=x_{0}<x_{1}<\ldots<x_{i}<x_{i+1}<\ldots<x_{N+1}=L \\
x_{i+1}=x_{i}+h, i=0, \ldots N .
\end{array}
$$

- $\mathfrak{M}:=\left\{x_{i}: i=1, \ldots, N\right\}$.
- $\partial \mathfrak{M}:=\left\{x_{0}, x_{N+1}\right\}$.
- $K_{i}:=\left[x_{i}, x_{i+1}\right]$.

Consider the discrete space

$$
V_{h}:=\left\{v \in H_{0}^{s}(-L, L)|v|_{K_{i}} \in \mathcal{P}^{1}\right\},
$$

where \mathcal{P}^{1} is the space of the continuous and piece-wise linear functions.

Discrete variational formulation

Find $u_{h} \in V_{h}$ such that

$$
\frac{c_{1, s}}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\left(u_{h}(x)-u_{h}(y)\right)\left(v_{h}(x)-v_{h}(y)\right)}{|x-y|^{1+2 s}} d x d y=\int_{-L}^{L} f v_{h} d x,
$$

for all $v_{h} \in V_{h}$.

Given $\left\{\phi_{i}\right\}_{i=1}^{N}$ any basis of V_{h}, it is sufficient that the discrete variational formulation is satisfied for

$$
u_{h}(x)=\sum_{j=1}^{N} u_{j} \phi_{j}(x), \quad v_{h}(x)=\phi_{j}(x)
$$

In this way, we are reduced to solve the linear system $\mathcal{A}_{h} u=F$

- $\mathcal{A}_{h} \in \mathbb{R}^{N \times N}$: stiffness matrix with components

$$
a_{i, j}=\frac{c_{1, s}}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\left(\phi_{i}(x)-\phi_{i}(y)\right)\left(\phi_{j}(x)-\phi_{j}(y)\right)}{|x-y|^{1+2 s}} d x d y
$$

- $F \in \mathbb{R}^{N}$ given by $F=\left(F_{1}, \ldots, F_{N}\right)$ with

$$
F_{i}=\left\langle f, \phi_{i}\right\rangle=\int_{-L}^{L} f \phi_{i} d x, \quad i=1, \ldots, N
$$

Basis functions

We employ the classical basis $\left\{\phi_{i}\right\}_{i=1}^{N}$ in which each ϕ_{i} is the tent function with $\operatorname{supp}\left(\phi_{i}\right)=\left(x_{i-1}, x_{i+1}\right)$ and verifying $\phi_{i}\left(x_{j}\right)=\delta_{i, j}$.

$$
\phi_{i}(x)=1-\frac{\left|x-x_{i}\right|}{h} .
$$

Construction of the stiffness matrix

Remark

$\square \mathcal{A}_{h}$ is symmetric. Therefore, in our algorithm we will only need to compute the values $a_{i, j}$ with $j \geq i$.

- Due to the non-local nature of the problem, the matrix \mathcal{A}_{h} is full.
- While computing the values $a_{i, j}$, we will only work on the mesh \mathfrak{M}, not considering the points of the set $\partial \mathfrak{M}$. In this way, we will ensure that the basis functions ϕ_{i} satisfy the zero Dirichlet boundary conditions.

The building of the stiffness matrix \mathcal{A}_{h} is done it in three steps
1 We fill the upper triangle, corresponding to $j \geq i+2$.
2 We fill the upper diagonal corresponding to $j=i+1$.
3 We fill the diagonal.

Values of $a_{i, j}$ for $j \geq i+2$

Values of $a_{i, i+1}$

Values of $a_{i, i}$

Entries of the stiffness matrix \mathcal{A}_{h}

$s \neq 1 / 2$

$$
a_{i, j}=-h^{1-2 s} \begin{cases}\frac{4(k+1)^{3-2 s}+4(k-1)^{3-2 s}}{2 s(1-2 s)(1-s)(3-2 s)} & \\ -\frac{6 k^{3-2 s}+(k+2)^{3-2 s}+(k-2)^{3-2 s}}{2 s(1-2 s)(1-s)(3-2 s)}, & k=j-i, k \geq 2 \\ \frac{3^{3-2 s}-2^{5-2 s}+7}{2 s(1-2 s)(1-s)(3-2 s)}, & j=i+1 \\ \frac{2^{3-2 s}-4}{s(1-2 s)(1-s)(3-2 s)}, & j=i .\end{cases}
$$

Entries of the stiffness matrix \mathcal{A}_{h}

$$
s=1 / 2
$$

$$
a_{i, j}= \begin{cases}-4(k+1)^{2} \log (k+1)-4(k-1)^{2} \log (k-1) & \\ \quad+6 k^{2} \log (k)+(k+2)^{2} \log (k+2) \\ +(k-2)^{2} \log (k-2), & k=j-i, k>2 \\ 56 \ln (2)-36 \ln (3), & j=i+2 . \\ 9 \ln 3-16 \ln 2, & j=i+1 \\ 8 \ln 2, & j=i .\end{cases}
$$

1 Introduction

2 Preliminary theoretical results

- Elliptic problem
- Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

Penalized Hilbert Uniqueness Method

We have to solve the following minimization problem: find

$$
\varphi_{\varepsilon}^{T}=\min _{\varphi \in L^{2}(-1,1)} J_{\varepsilon}\left(\varphi^{T}\right)
$$

where

$$
J_{\varepsilon}\left(\varphi^{T}\right):=\frac{1}{2} \int_{0}^{T} \int_{\omega}|\varphi|^{2} d x d t+\frac{\varepsilon}{2}\left\|\varphi^{T}\right\|_{L^{2}(-1,1)}^{2}+\int_{\Omega} z_{0} \varphi(0) d x
$$

and where φ is the solution to the adjoint problem

$$
\begin{cases}-\varphi_{t}+\left(-d_{x}^{2}\right)^{s} \varphi=0, & (x, t) \in(-1,1) \times(0, T) \\ \varphi=0, & (x, t) \in[\mathbb{R} \backslash(-1,1)] \times(0, T) \\ \varphi(x, T)=\varphi^{T}(x), & x \in(-1,1)\end{cases}
$$

The approximate and null controllability properties of the system, for a given initial datum z_{0}, can be expressed in terms of the behavior of the penalized HUM approach. In particular, we have:

Theorem (F. Boyer, ESAIM: PROCEEDINGS, 2013)

- The equation is approximately controllable at time T from the initial datum z_{0} if and only if

$$
\varphi_{\varepsilon}^{T} \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0
$$

- The equation is null-controllable at time T from the initial datum z_{0} if and only if

$$
M_{z_{0}}^{2}:=2 \sup _{\varepsilon>0}\left(\inf _{L^{2}\left(0, T ; L^{2}(\omega)\right)} J_{\varepsilon}\right)<+\infty .
$$

In this case, we have

$$
\|g\|_{L^{2}\left(0, T ; L^{2}(\omega)\right)} \leq M_{z_{0}}, \quad\left\|\varphi_{\varepsilon}^{T}\right\|_{L^{2}(-L, L)} \leq M_{z_{0}} \sqrt{\varepsilon}
$$

1 Introduction

2 Preliminary theoretical results

- Elliptic problem
- Parabolic problem

3 Development of the numerical scheme

- Elliptic problem
- Parabolic problem

4 Numerical results

- Control experiments

In order to test numerically the accuracy of our method, we use the following problem

$$
\begin{cases}\left(-d_{x}^{2}\right)^{s} u=1, & x \in(-L, L) \\ u \equiv 0, & x \in \mathbb{R} \backslash(-L, L) .\end{cases}
$$

In this particular case, the solution can be computed exactly and it reads as follows,

Solution

$$
u(x)=\frac{2^{-2 s} \sqrt{\pi}}{\Gamma\left(\frac{1+2 s}{2}\right) \Gamma(1+s)}\left(L^{2}-x^{2}\right)^{s} .
$$

Figure: *

Figure: *

Error analysis

The computation of the error in the space $H_{0}^{s}(-L, L)$ can be readily done by using the definition of the bilinear form, namely

$$
\begin{gathered}
\left\|u-u_{h}\right\|_{H_{0}^{s}(-L, L)}^{2}=a\left(u-u_{h}, u-u_{h}\right)=\int_{-L}^{L} f(x)\left(u(x)-u_{h}(x)\right) d x . \\
f \equiv 1 \Rightarrow\left\|u-u_{h}\right\|_{H_{0}^{s}(-L, L)}=\left(\int_{-L}^{L}\left(u(x)-u_{h}(x)\right) d x\right)^{1 / 2} .
\end{gathered}
$$

The right-hand side can be easily computed, since we have the closed formula

$$
\int_{-L}^{L} u d x=\frac{\pi L^{2 s+1}}{2^{2 s} \Gamma\left(s+\frac{1}{2}\right) \Gamma\left(s+\frac{3}{2}\right)}
$$

and the term corresponding to $\int_{-L}^{L} u_{h}$ can be carried out numerically.

Theorem (G. Acosta and J.P. Borthagaray, SIAM J. Numer. Anal., 2017)

For the solution u of the elliptic problem and its FE approximation u_{h}, if h is sufficiently small, the following estimates hold

$$
\begin{array}{ll}
\left\|u-u_{h}\right\|_{H_{0}^{s}(-L, L)} \leq C h^{1 / 2}|\ln h|\|f\|_{C^{\frac{1}{2}-s}(-L, L)}, & \text { if } s<1 / 2, \\
\left\|u-u_{h}\right\|_{H_{0}^{s}(-L, L)} \leq C h^{1 / 2}|\ln h|\|f\|_{L^{\infty}(-L, L)}, & \text { if } s=1 / 2, \\
\left\|u-u_{h}\right\|_{H_{0}^{s}(-L, L)} \leq \frac{C}{2 s-1} h^{1 / 2} \sqrt{|\ln h|}\|f\|_{C^{\beta}(-L, L)}, & \text { if } s>1 / 2,
\end{array}
$$

where C is a positive constant not depending on h.

The convergence rate is maintained also for small values of s. This confirms that the behavior obtained for $s=0.1$ is not in contrast with the known theoretical results. Indeed, since it is well-known that the notion of trace is not defined for the spaces $H^{s}(-L, L)$ with $s \leq 1 / 2$, it is somehow natural that we cannot expect a point-wise convergence in this case.

As a further validation of this fact, we plot the behavior of the L^{∞}-norm of the difference between the real and the numerical solution to the fractional Poisson equation.

Increasing the number of point of discretization, the L^{∞}-norm is decreasing with a rate (in h) of 0.1.

Controllability of the fractional heat equation

\square We use the finite-element approximation of $\left(-d_{x}^{2}\right)^{s}$ for the space discretization and the implicit Euler scheme in the time variable.

$$
\left\{\begin{array}{l}
\mathcal{M}_{h} \frac{z^{n+1}-z^{n}}{\delta t}+\mathcal{A}_{h} z^{n+1}=\mathbf{1}_{\omega} v_{h}^{n+1}, \quad \forall n \in\{1, \ldots, M-1\} \\
z^{0}=z_{0}
\end{array}\right.
$$

- We choose the penalization term ε as a function of h.
\square PRACTICAL RULE: choose $\varepsilon \sim h^{2 p}$ where p is the order of accuracy in space of the numerical method used for the discretization of the spatial operator involved. (in this case, we take $p=1 / 2$).

Control experiments

Uncontrolled solution $-s=0.8, T=0.2 s$

Controlled solution $-s=0.8, T=0.2 s, \omega=(-0.3,0.8)$

For $s=0.8$ we observe that:

- The control cost and the optimal energy remain bounded as $h \rightarrow 0$.
$\square\left|y^{M}\right|_{L^{2}\left(\mathbb{R}^{\mathfrak{M}}\right)} \sim C \sqrt{\phi(h)}=C h^{1 / 2}$.
This confirms that the system is null controllable.

For $s=0.5$ we observe that:

- The control cost and the optimal energy do not remain bounded as $h \rightarrow 0$.
$\square\left|y^{M}\right|_{L^{2}(\mathbb{R} M)} \sim C h^{0.4}$.
This confirms that the system is only approximately controllable.

THANK YOU FOR YOUR ATTENTION!

European Research Council

DeustoTech

