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Introduction

We analyze propagation properties of numerical waves obtained through a
finite difference discretization on uniform or non-uniform meshes.

Our approach is based on the study of the propagation of high-frequency
Gaussian beam solutions.

Basic idea

The energy of Gaussian beam solutions propagates along bi-characteristic
rays, which are obtained from the Hamiltonian system associated to the
symbol of the operator under consideration.

• CONTINUOUS SETTING: these techniques date back to Hörmander, and
they have been extended by several authors (Gérard, Tartar, Wigner).

• DISCRETE SETTING: extension of micro-local techniques to the study of
the propagation properties for discrete waves (Maciá, Marica, Zuazua).
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Gaussian beams

{
ρ(x)∂2

t u(x , t)− div
(
σ(x)∇u(x , t)

)
= 0, (x , t) ∈ RN × (0,T )

u(x , 0) = u0(x), ∂tu(x , 0) = u1(x), x ∈ RN (1)

PRINCIPAL SYMBOL: H(x , t , ξ, τ) = −ρ(x)τ 2 + σ(x)|ξ|2

BI-CHARACTERISTIC RAYS: solutions to the first order ODE system
ẋ(s) = ∇ξH(x(s), t(s), ξ(s), τ(s)), x(0) = x0

ṫ(s) = ∂τH(x(s), t(s), ξ(s), τ(s)), t(0) = 0
ξ̇(s) = −∇xH(x(s), t(s), ξ(s), τ(s)), ξ(0) = ξ0

τ̇(s) = −∂tH(x(s), t(s), ξ(s), τ(s)), τ(0) = τ0 s.t . H(x0, 0, ξ0, τ0) = 0.

Rays of geometric optics

(t , x(t)): projection of a bi-characteristic to the physical time-space domain.
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u ε(x , t) = ε1− N
4 a(x , t)e

i
ε
φ(x,t)

φ(x , t) = ξ(t)(x − x(t)) +
1
2

(x − x(t))T M(t)(x − x(t)), =(M(t)) > 0

• u ε is an approximate solution of the wave equation (1):

sup
t∈(0,T )

‖2u ε(·, t)‖L2(RN
x ) ≤ Cε

1
2

• the energy of u ε is bounded with respect to ε.
• the energy of u ε is exponentially small off the ray (x(t), t):

sup
t∈(0,T )

∫
RN\B(t)

|ρu εt |2 + |σ∇u ε|2 dx ≤ Ce−β/
√
ε

β > 0, B(t) := B(x(t), ε
1
4 )

J. Ralston, Studies in Partial Differential Equations, 1982

F. Maciá and E. Zuazua, Asymptot. Anal., 2002

J. Rauch, X. Zhang and E. Zuazua, J. Math. Pures Appl., 2005
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We study the problem on three levels:

• The one-dimensional wave equation with constant coefficients:

∂2
t u − ∂2

x u = 0, (x , t) ∈ (−1, 1)× (0,T );

• The one-dimensional wave equation with variable coefficients:

ρ(x)∂2
t u − ∂x (σ(x)∂x u) = 0, (x , t) ∈ (−1, 1)× (0,T );

• The two-dimensional wave equation:

ρ(x , y)∂2
t u − div(σ(x , y)∇u) = 0, (x , y , t) ∈ (−1, 1)2 × (0,T ).

In all cases we will consider zero Dirichlet boundary condition.

Our principal aim is to illustrate that numerical high-frequency solutions can
behave in unexpected manners, as a result of the accumulation of the local
effects introduced by the heterogeneity of the numerical grid.
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Constant coefficients
Variable coefficients

Semi-discrete approximation

Uniform mesh

Gh :=
{

xj := −1 + jh, j = 0, . . . ,N + 1 h = 2/(N + 1), N ∈ N∗
}

Non-uniform mesh

• g ∈ C2(R)

• 0 < g−d ≤ |g
′(x)| ≤ g+

d < +∞
• |g′′(x)| ≤ gdd < +∞

=⇒ Gh
g :=

{
gj := g(xj ), xj ∈ Gh

}

• •• • • • • • • • •• •• • •• •xj gj

g

uniform mesh non-uniform mesh
−1 −11 1
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Constant coefficients
Variable coefficients

• hj+1/2 := gj+1 − gj , j = 0, . . . ,N

• hj−1/2 := gj − gj−1, j = 1, . . . ,N + 1

• hj :=
hj+1/2+hj−1/2

2 , j = 1, . . . ,N

Semi-discrete wave equation
hju′′j (t)−

(
uj+1(t)− uj (t)

hj+1/2
− uj (t)− uj−1(t)

hj−1/2

)
= 0

u0(t) = uN+1(t) = 0
uj (0) = u0

j , u′j (0) = u1
j

j = 1, . . . ,N, t ∈ (0,T ).
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Constant coefficients
Variable coefficients

Hamiltonian system

Hamiltonian

Hc(x , t , ξ, τ) = −τ 2 + ξ2

Bi-characteristic rays


ẋ(s) = 2ξ(s), x(0) = x0

ṫ(s) = −2τ(s), t(0) = 0
ξ̇(s) = 0, ξ(0) = ξ0

τ̇(s) = 0, τ(0) = τ0 s.t . Hc(x0, 0, ξ0, τ0) = 0.

• For any ξ0 there are two characteristics starting from x0: x±(t) = x0 ∓ t .
• Each one of these characteristics reaches the boundary of (−1, 1) in a

uniform time and reflects according to the geometric optics laws.
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Constant coefficients
Variable coefficients

Discrete Hamiltonian

H(y , t , ξ, τ) := −τ 2 + cg(y)2ω(ξ)2

y = g−1(x), cg(y) :=
1

g′(y)
, ω(ξ) := 2 sin

(
ξ

2

)

Discrete bi-characteristic rays


ẏ(s) = 2cg(y(s))2ω(ξ(s))∂ξω(ξ(s)), y(0) = y0

ṫ(s) = −2τ(s), t(0) = 0
ξ̇(s) = −2cg(y(s))∂y cg(y(s))ω(ξ(s))2, ξ(0) = ξ0

τ̇(s) = 0, τ(0) = τ0

• ∂ξω(ξ): group velocity, i.e. the speed at which the energy associated
with wave number ξ moves.

10 / 42



Introduction
One-dimensional wave equation
Two-dimensional wave equation

Final remarks

Constant coefficients
Variable coefficients

• ∀ s, τ(s) = τ0

• H(y(s), t(s), ξ(s), τ(s)) = 0
⇒ τ±0 = ±cg(y(s))|ω(ξ(s))|

Since ṫ(s) 6= 0, the Inverse Function Theorem allows to parametrize the curve
s 7→ (y(s), t(s), ξ(s), τ±0 ) by t 7→ (y(t), t , ξ(t), τ±0 ).


ẏ±(t) = ∓cg(y±(t))∂ξω(ξ±(t))

ξ̇±(t) = ±∂y cg(y±(t))ω(ξ±(t))

y±(0) = y0, ξ±(0) = ξ0

• cg(·) > 0 ⇒ |ẏ±(t)| = cg(y±(t))
∣∣∂ξω(ξ±(t))

∣∣
• The velocity of the rays vanishes if, and only if, ∂ξ(ω) = cos(ξ/2) = 0, i.e.
ξ = (2k + 1)π, k ∈ Z.

• When ω(ξ) = ξ, corresponding to the continuous case, this cannot
happen.
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Constant coefficients
Variable coefficients

Numerical results

• xh: uniform mesh of size h = 2/(N + 1).
• g h,1 := tan

(
π
4 xh) and g h,2 := 2 sin

(
π
6 xh): non-uniform grids

g h,1 g h,2

Time discretization: leap-frog scheme with CFL condition δt = 0.1 · h

Initial data built from a Gaussian profile:

Gγ(x) = e−
γ
2

(
g−1(x)−g−1(x0)

)2

e i
ξ0
h g−1(x), u0(x) = Gγ(x), u1(x) = (u0)′(x).
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Constant coefficients
Variable coefficients

Hamiltonian system in the x variable


ẋ±(t) = ∓ag(x±(t)) cos

(
ξ±(t)

2

)
, x±(0) = x0

ξ̇±(t) = ±2bg(x±(t)) sin
(
ξ±(t)

2

)
, ξ±(0) = ξ0.

ag(·) := (g′cg)(g−1(·)), bg(·) := c′g(g−1(·)), x0 = g(y0).

• Independently of the choice of the function g, we always have ag ≡ 1.

• For each mesh refinement, bg can be computed explicitly:

. g(y) = tan
(π

4
y
)

⇒ bg(x) = − 2x
x2 + 1

. g(y) = 2 sin
(π

6
y
)

⇒ bg(x) =
x

4− x2
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Constant coefficients
Variable coefficients

Phase portrait

EQUILIBRIUM: Pe := (xe, ξe) = (0, π)

• tangential mesh (left): CENTER (stable equilibrium)
• sinusoidal mesh (right): SADDLE (unstable equilibrium)

14 / 42



Introduction
One-dimensional wave equation
Two-dimensional wave equation

Final remarks

Constant coefficients
Variable coefficients

Remark

The solutions of the semi-discrete wave equation may be written as linear
combinations of monochromatic waves given by the complex exponentials

e
±ij

(√
λj

jπ t−x

)
, λj (h) =

4
h2 sin2

(
jπh
2

)
, j ∈ 1 . . .N.

In view of that, the relevant range of frequencies for the semi-discrete waves
is ξ ∈ [0, π], and the most suitable choice for the domain of the phase
variable in the finite difference setting would be ξ ∈ [−π, π], for taking into
account the two branches of the associated bi-characteristic rays.

Consequently, the phase diagrams have to be interpreted as showing in the
upper part ξ ∈ [π, 2π] what would actually correspond to ξ ∈ [−π, 0].
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Constant coefficients
Variable coefficients

Plots

At low frequencies, the numerical solutions behave like the continuous ones:
they propagate along straight characteristic lines and reflect following the
Descartes-Snell’s law when they touch one of the two endpoints.

Propagation of a Gaussian wave packet with initial frequency ξ0 = π/4 (left)
and ξ0 = 7π/4 (right), employing the mesh g h,1.
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Constant coefficients
Variable coefficients

High-frequency pathologies

NON-PROPAGATING WAVES (x0 = 0, ξ0 = π)

JUSTIFICATION

• The non propagating waves
correspond to the equilibrium
point Pe on the phase
diagram.

• For ξ = π we have
∂ξω(ξ) = 0 and, therefore, the
velocity of the rays vanishes.
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Constant coefficients
Variable coefficients

INTERNAL REFLECTION

x0 = 0, ξ0 = 7π
15 , mesh g h,1 x0 = 0, ξ0 = 13π

15 , mesh g h,1

x0 = 1
2 , ξ0 = π, mesh g h,2 x0 = − 1

2 , ξ0 = π, mesh g h,2
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Constant coefficients
Variable coefficients

JUSTIFICATION

• On the mesh g h,1, approaching the endpoints of the domain the step size
increases and the group velocity 1/h of the high-frequency waves
decreases. If this group velocity vanishes before the wave has reached
the boundary, then this results in a process of internal reflection.

• For the mesh g h,2, Pe is a saddle point, and the red curves always remain
trapped either in the region x ∈ [0, 1] or x ∈ [−1, 0].

• The amplitude of the wave is the one of the Gaussian profile of the initial
datum, which is of the order of h−0.9. On the mesh g h,1, while
approaching the boundary h increases. Therefore, the support of the ray
shrinks and, due to energy conservation, the high of the corresponding
wave has to increase.
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Constant coefficients
Variable coefficients

Variable coefficients wave equation


ρ(x)∂2

t u − ∂x
(
σ(x)∂x u

)
= 0, (x , t) ∈ (−1, 1)× (0,T )

u(−1, t) = u(1, t) = 0, t ∈ (0,T )

u(x , 0) = u0(x), ∂tu(x , 0) = u1(x), x ∈ (−1, 1),

ρ, σ ∈ L∞(R) with ρ(x) ≥ ρ∗ > 0 and σ(x) ≥ σ∗ > 0.

PRINCIPAL SYMBOL: Hc(x , t , ξ, τ) = −ρ(x)τ 2 + σ(x)ξ2

BI-CHARACTERISTIC RAYS: solutions to the first order ODE system
ẋ(s) = 2σ(x(s))ξ(s), x(0) = x0

ṫ(s) = −2ρ(x(s))τ(s), t(0) = 0
ξ̇(s) = ρ′(x(s))τ 2(s)− σ′(x(s))ξ2(s), ξ(0) = ξ0

τ̇(s) = 0, τ(0) = τ0 s.t . Hc(x0, 0, ξ0, τ0) = 0.

Notice that the bi-characteristics are not straight lines, since ξ̇(s) 6= 0.
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Constant coefficients
Variable coefficients

Discrete Hamiltonian

H(y , t , ξ, τ) := −τ 2 + cg(y)2ω(ξ)2

y = g−1(x), cg(y) :=
1

g′(y)

√
σ(g(y))

ρ(g(y))
, ω(ξ) := 2 sin

(
ξ

2

)

Discrete bi-characteristic rays{
ẏ±(t) = ∓cg(y±(t))∂ξω(ξ±(t)), y±(0) = y0

ξ̇±(t) = ±∂y cg(y±(t))ω(ξ±(t)), ξ±(0) = ξ0.
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Constant coefficients
Variable coefficients

Numerical results

COEFFICIENTS: ρ(x) ≡ 1 and σ(x) = 1 + A cos2(κπx), A > 0, κ ∈ N∗.

Hamiltonian system
ẋ(t) = −

√
1 + A cos2(κπx(t)) cos

(
ξ(t)
2

)
, x(0) = x0

ξ̇(t) = F A,κ
j (x(t)) sin

(
ξ(t)
2

)
, ξ(0) = ξ0, j = 0, 1, 2.

• j = 0: uniform mesh

• j = 1: tangential mesh

• j = 2: sinusoidal mesh
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Constant coefficients
Variable coefficients

Plots

LOW-FREQUENCY SOLUTIONS (ξ0 = π/7) :

A = 2, κ = 1.

• The wave travels along characteristics and reaches the boundary, where
it is reflected according to the Descartes-Snell’s law.

• The parameters A and κ in the coefficient σ affect the shape of the rays.
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Constant coefficients
Variable coefficients

A = 7, κ = 1.

• A1 ≥ A2 ⇒ |ẋA1,κ(t)| ≥ |ẋA2,κ(t)|, |ẍA1,κ(t)| ≥ |ẍA2,κ(t)|

A = 2, κ = 5.

• σ is a periodic function of period T = 2κ.
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Constant coefficients
Variable coefficients

High-frequency pathologies

In what follows, we will always assume A = 1 and κ = 1 in the
coefficient σ.

Mesh g h,1

Mesh g h,2
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Constant coefficients
Variable coefficients

NON PROPAGATING WAVES:

x0 = 0, ξ0 = π, mesh g h,1 x0 = 0, ξ0 = π, mesh g h,2

INTERNAL REFLECTION:

x0 = 0, ξ0 = 4π
5 , mesh g h,1 x0 = 0, ξ0 = 4π

5 , mesh g h,2
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Constant coefficients
Variable coefficients

• We have several different initial positions which, at frequency ξ0 = π,
generate non propagating waves.

x0 =unstable equilibrium
ξ0 = π, mesh g h,1

• Initial data corresponding to one of the unstable fixed point produce
solutions that, apart from showing absence of propagation, present also a
huge dispersion.

• These solutions, as soon as they move away from the unstable
equilibrium point, are quite immediately affected by the orbits around the
stable ones, thus generating the comeback effects that can be
appreciated in the figure.
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Two-dimensional wave equation


ρ(z)∂2

t u − divz
(
σ(z)∇zu

)
= 0, (z, t) ∈ Ω× (0,T )

u|∂Ω = 0, t ∈ (0,T )

u(z,0) = u0(z), ∂tu(z,0) = u1(z), z ∈ Ω,

• z := (x , y)

• Ω := (−1,1)2

• ρ, σ ∈ L∞(Ω) with ρ(z) ≥ ρ∗ > 0 and σ(z) ≥ σ∗ > 0.
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Semi-discrete approximation

Uniform mesh

Gh :=
{

zj,k := (xj , yk ) = (−1 + jhx ,−1 + khy ),

j = 0, . . . ,M + 1, k = 0, . . . ,N + 1
}

Non-uniform mesh

g1, g2: diffeomorphisms of Ω ⇒ Gh
g :=

{
ωj,k := (υj , ζk ) = (g1(xj ), g2(yk ))

}
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Hamiltonian system

Discrete Hamiltonian

P(x , y , t , ξ, η, τ) := τ 2 − Λ(x , y , ξ, η)

Λ(x , y , ξ, η) :=
σ(x , y)

ρ(x , y)

(
4 sin2

(
ξ

2

)
1

g′1(x)2 + 4 sin2
(η

2

) 1
g′2(y)2

)
.

Discrete bi-characteristic rays


że(s) = ∇θeP(ze(s),θe(s)), ze(0) = z0

e := (x0, y0, t0)

ṫ(s) = 2τ(s), t(0) = 0
θ̇e(s) = −∇zeP(ze(s),θe(s)), θe(0) = θ0

e := (ξ0, η0, τ0)

τ̇(s) = 0, τ(0) = τ0.

ze := (x , y , t), θe := (ξ, η, τ)
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Assume ρ = σ ≡ 1.

HAMILTONIAN SYSTEM IN THE x COMPONENT:
ẋ±(t) = ∓ r1

r0
g′1(g−1

1 (x±(t)))∂ξλ1(g−1
1 (x±(t)), ξ±(t))

ξ̇±(t) = ∓ r1

r0
∂xλ1(g−1

1 (x±(t)), ξ±(t))

HAMILTONIAN SYSTEM IN THE y COMPONENT:
ẏ±(t) = ∓ r2

r0
g′2(g−1

2 (y±(t)))∂ηλ2(g−1
2 (y±(t)), η±(t))

η̇±(t) = ∓ r2

r0
∂yλ2(g−1

2 (y±(t)), η±(t)).

• r0 :=
√

Λ(z±(t),θ±(t)), r1 := λ1(x±(t), ξ±(t)), r2 := λ2(y±(t), η±(t)),

• λ1(x , ξ) := 2 sin
(
ξ

2

)
1

g′1(x)
, λ2(y , η) := 2 sin

(η
2

) 1
g′2(y)

.
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MESH FUNCTIONS: g1(x) = g2(x) = tan
(
π
4 x
)

=: g(x)

Uniform grid Non-uniform grid
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Solution in Fourier series

uh =
M∑

j=1

N∑
k=1

βj,kΦj,k (ω) e it
√
λj,k .

• ω := (υ, ζ)

• {Φj,k , λj,k} are the eigenvector and the eigenvalues of the discrete
Laplacian −∆ω on the refined mesh Gh

g

−∆ωΦj,k = λj,kΦj,k , j = 1, . . . ,M, k = 1, . . . ,N.

• βj,k : corresponding Fourier coefficients of the initial datum u0,h.

INITIAL DATUM:

u0(x , y) = exp
[
− γ

(
(x − x0)2 + (y − y0)2

)]
exp

[
i
(

xξ0

h
+

yη0

h

)]
γ := h−0.9.
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Plots

At low frequencies, the solution remains concentrated and propagates along
straight characteristics which reach the boundary, where there is reflection
according to the Descartes-Snell’s law. This independently on whether we use
a uniform or a non-uniform mesh.

Numerical solutions with parameters (x0, y0, ξ0, η0) = (0, 1/2, π/4, π/4). The
discretization is done on a uniform mesh (left) and on a non-uniform one
obtained through the mesh function g (right).
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High frequency pathologies

NON PROPAGATING WAVES:

• (x0, y0, ξ0, η0) = (1, 0, π/2, π), uniform (left) and non-uniform (right) mesh

• (x0, y0, ξ0, η0) = (0, 0, π, π), uniform (left) and non-uniform (right) mesh
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JUSTIFICATION:

Hamiltonian system in the x/y direction


ẋ(t) = −

4
r0π

sin(ξ(t))
1

x(t)2 + 1

ξ̇(t) = −
32
r0π

sin2
(
ξ(t)

2

)
x(t)

(x(t)2 + 1)2


ẏ(t) = −

4
r0π

sin(η(t))
1

y(t)2 + 1

η̇(t) = −
32
r0π

sin2
(
η(t)

2

)
y(t)

(y(t)2 + 1)2
.

Pe := (0, π): unique equilibrium for both systems.

• (x0, y0, ξ0, η0) = (0, y0, π, η0): the corresponding solution does not
propagates in the vertical direction.

• (x0, y0, ξ0, η0) = (x0, 0, ξ0, π): the corresponding solution does not
propagates in the horizontal direction.

• (x0, y0, ξ0, η0) = (0, 0, π, π): the corresponding solution does not
propagates neither in the vertical nor in the horizontal direction.
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INTERNAL REFLECTION:

(a) (b)

(c) (d)

x0 y0 ξ0 η0 T
Figure (a) 0 tan(arccos( 4

√
1/2)) π/2 π 8s

Figure (b) 0 0 π/2 5π/6 21s
Figure (c) 0 0 π/2 7π/18 37s
Figure (d) 0 0 π/2 7π/12 118s
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Motivations for the study presented

This study is motivated by control theory1 and inverse problems.2, 3

• Boundary controllability and identifiability properties of solutions of wave
equations hold because of the fact that the energy is driven by
characteristics that reach a subregion of the domain or of its boundary
where the controllers or observers are placed.

In the framework of wave-like processes, observability is guaranteed by the
geometric control condition (GCC), requiring all rays of geometric optics to
enter the control region during the control time.

1 C. Bardos, G. Lebeau and J. Rauch, SIAM J. Control Optim., 1992
2 L. Baudouin and S. Ervedoza, SIAM J. Control Optim., 2013
3 L. Baudouin, S. Ervedoza and A. Osses, J. Math. Pures Appl., 2015
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When the wave equation is approximated by finite difference methods,
observability/controllability may be lost under numerical discretization as the
mesh size tends to zero, due to the existence of high-frequency spurious
solutions for which the group velocity vanishes.

These high-frequency solutions are such that the energy concentrated in the
control region is asymptotically smaller than the total energy, and we have
exponential blow-up of the observability constant as h→ 0.

Several authors worked on the topic: Castro, Ervedoza, Glowinski, Ignat,
Infante, Lions, Maciá, Marica, Micu, Zuazua,...

POSSIBLE REMEDIES: Tikhonov regularization (Glowinski), filtering
mechanisms (Infante and Zuazua), FE (Castro and Micu), two-grid
algorithms (Ignat, Negreanu and Zuazua).
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