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Introduction

Consider the following non-local parabolic equation

Fractional heat equation
zt + (−d2

x )sz = g1ω, (x , t) ∈ (−1, 1)× (0,T )

z = 0, (x , t) ∈ (−1, 1)c × (0,T )

z(x , 0) = z0(x), x ∈ (−1, 1)

(H)

• ω ⊂ (−1, 1).

• (−d2
x )s: fractional Laplacian.

We are interested in analyzing controllability properties, both from a theoretical
and a numerical viewpoint.
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Fractional Laplacian

For any function u sufficiently regular and for any s ∈ (0, 1), the s-th
power of the Laplace operator is given by

(−d2
x )su(x) = csP.V .

∫
R

u(x)− u(y)

|x − y |1+2s dy .

cs =
s22sΓ( 1+2s

2 )√
πΓ(1−s)

normalization constant ensuring
that lims→1−(−d2

x )s = −d2
x .
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NULL CONTROLLABILITY at time T > 0:
given any initial datum z0 ∈ L2(−1, 1) there exists g ∈ L2(ω × (0,T )) such that
the corresponding solution z satisfies z(x ,T ) = 0.

APPROXIMATE CONTROLLABILITY at time T > 0:
given any z0, zT ∈ L2(−1, 1) and any ε > 0 there exists g ∈ L2(ω × (0,T ))
such that the corresponding solution z with initial datum z(x , 0) = z0 satisfies
‖z(x ,T )− zT‖L2(−1,1) ≤ ε.

Theorem (U.B. and V. Hernández-Santamaría, IMA J. Math. Control Inf., 2018)

The fractional heat equation (H) is

• null-controllable at time T > 0 if and only if s > 1/2.

• approximately controllable at time T > 0 for all s ∈ (0, 1).
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Existence uniqueness and regularity of solutions

Definition

We say that z ∈ L2(0,T ; Hs
0 (−1,1)) ∩ C([0,T ],L2(−1,1)) with zt ∈

L2(0,T ; H−s(−1, 1)) is a weak solution for the parabolic problem (H)
with g ∈ L2(0,T ; H−s(−1,1)) and z0 ∈ L2(−1,1) if it satisfies∫ T

0

∫ 1

−1
ztw dxdt +

∫ T

0
a(z,w) dt =

∫ T

0
〈f ,w〉−s,s dt ,

for any w ∈ L2(0,T ; Hs
0 (−1,1)).

The bilinear form a(·, ·) : Hs
0 (−1,1)× Hs

0 (−1,1)→ R is defined as

a(u, v) =
c1,s

2

∫
R

∫
R

(u(x)− u(y))(v(x)− v(y))

|x − y |1+2s dxdy .
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Theorem (T. Leonori, I. Peral, A. Primo, and F. Soria, Discrete Contin. Dyn. Syst., 2015.)

Assume f ∈ L2(0,T ; H−s(−1, 1)). Then for any z0 ∈ L2(−1, 1), problem (H)
has a unique weak solution.

Theorem (U.B., M. Warma, and E. Zuazua, SEMA SIMAI Springer Series, 2018.)

Assume f ∈ L2((−1, 1)× (0,T )), z0 = 0, and let z ∈ L2((0,T ); Hs
0 (−1, 1)) ∩

C([0,T ]; L2(−1, 1)) with zt ∈ L2((0,T ); H−s(−1, 1)) be the unique weak
solution of system (H). Then

z ∈ L2((0,T ); H2s
loc(−1, 1)) ∩ L∞((0,T ); Hs

0 (−1, 1))

and

zt ∈ L2((−1, 1)× (0,T )).
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Known controllability results

• S. Micu and E. Zuazua, 2006: in the 1-d setting the authors consider
spectral fractional Laplacian which is defined by

(−d 2
x )s

Su(x) =
∑
k≥1

〈u, ψk 〉λs
kψk (x),

They prove that for s > 1/2 null controllability holds. But

spectral 6= integral1

• L. Miller, 2006: the same result holds in multi-d setting using
Lebeau-Robbiano strategy.

1 R. Servadei and E. Valdinoci, Proc. R. Soc. Edinb. A, 2014
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Proof of the null controllability (sketch)

By employing the classical moment method 1, the equation is null-controllable
if and only if

•
∑

k≥1 λ
−1
k < +∞.

• λk+1 − λk ≥ γ > 0, ∀ k ∈ N.

Eigenvalues of the fractional Laplacian on (−1, 1) with Dirichlet B.C.2{
(−d2

x )s%k = λk%k , x ∈ (−1, 1), k ∈ N
%k = 0, x ∈ R \ (−1, 1),

λk =

(
kπ
2
− (1− s)π

4

)2s

+ O
(

1
k

)
.

Therefore, the two conditions above are both satisfied if and only if s > 1/2.
1 Fattorini and Russell, Quart. Appl. Math., 1974. 2 Kwaśnicki, J. Funct. Anal., 2012.
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Proof of the approximate controllability (sketch)

The result follows from the following property.

Parabolic unique continuation

Given s ∈ (0,1) and ϕT
0 ∈ L2(−1,1), let ϕ be the unique solution

to the adjoint equation. Let ω ⊂ (−1,1) be an arbitrary open set. If
ϕ = 0 on ω × (0,T ), then ϕ = 0 on (−1,1)× (0,T ).

This, in turn, is a consequence of the unique continuation property for
the Fractional Laplacian.1

1 M.M. Fall and V. Felli, Comm. Partial Differential Equations, 2014..
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Remarks

• The elliptic unique continuation property for the fractional
Laplacian holds in any space dimension. In view of that, the
approximate controllability for (H) may be obtained also to the
case N > 1. The same does not applies to the null-controllability,
since our proof uses arguments that are designed specifically for
one-dimensional problems.

• If one would like to analyze the multi-dimensional problem, other
tools (Carleman estimates) are needed. These techniques are not
available for problems involving the fractional Laplacian on a
domain.
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Penalized Hilbert Uniqueness Method

We have to solve the following minimization problem:

min
ϕT∈L2(−1,1)

Jε(ϕT ) :=
1
2

∫
ω×(0,T )

|ϕ|2dxdt +
ε

2
∥∥ϕT

∥∥2
L2(−1,1)

+

∫ 1

−1
z0ϕ(0)

where ϕ is the solution to the adjoint problem.
−ϕt + (−d2

x )sϕ = 0, (x , t) ∈ (−1,1)× (0,T )

ϕ = 0, (x , t) ∈ (−1,1)c × (0,T )

ϕ(·,T ) = ϕT (x), x ∈ (−1,1)

Jε is continuous, coercive and strictly convex , thus the existence and
uniqueness of a minimizer ϕT

ε is guaranteed.

In fact, the control is chosen as

v = ϕε|ω
where ϕε is the solution to the adjoint with initial datum ϕT

ε .
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Penalized Hilbert Uniqueness Method (cont.)

Analyzing the behavior of the penalized problem with respect to the parameter
ε, we can deduce controllability properties for our system.

Theorem (F. Boyer, ESAIM Proc., 2013)

Let ϕT
ε be the unique minimizer of Jε. System (H) is

• null controllable at time T ⇔ M2
z0 := 2 supε>0 (inf Jε) < +∞.

In this case:
‖g‖L2(ω×(0,T )) ≤ Mz0 and ‖ϕT

ε ‖ ≤ Mz0

√
ε

• approximately controllable at time T ⇔ ϕT
ε → 0 as ε→ 0.
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Numerical implementation

For M > 0 and ∆t = T/M, we write the fully-discrete systemz0 = z0(x)

Mh
zn+1 − zn

∆t
+As

hzn+1 = χωvn+1
h , ∀n ∈ {0, . . . ,M − 1} ,

where As
h andMh are suitable approximation matrices.

We consider also the discrete version of the penalized HUM functional

Jε,h,∆t (ϕ
T ) =

1
2

M∑
n=1

∆t
∫
ω

∣∣ϕn∣∣2 +
ε

2
|ϕT |2L2 +

(
y0, ϕ

1
)

L2

where ϕ = (ϕn)1≤n≤M+1 solution to the adjoint systemϕ
M+1 = ϕT

Mh
ϕn − ϕn+1

∆t
+As

hϕ
n = 0, ∀n ∈ {1, . . . ,M}.
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Finite element approximation of the elliptic problem

Partition of (−1,1)

−1 = x0 < x1 < . . . < xi < xi+1 < . . . < xN+1 = 1

xi+1 = xi + h, i = 0, . . .N.

• M := {xi : i = 1, . . . ,N}.
• ∂M := {x0, xN+1}.
• Ki := [xi , xi+1].

[ ]• • • • •
−1 = x0 1 = xN+1

x1 x2 xi xi+1 xN

↑ ↑
∂M ∂M

M

Ki
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Consider the discrete space

Vh :=
{

v ∈ Hs
0 (−1,1)

∣∣ v |Ki
∈ P1

}
,

where P1 is the space of the continuous and piece-wise linear
functions.

Given
{
φi
}N

i=1 any basis of Vh, through a classical FE approach we are
reduced to solve the linear system Ahu = F

• As
h ∈ RN×N : stiffness matrix with components

ai,j =
c1,s

2

∫
R

∫
R

(φi (x)− φi (y))(φj (x)− φj (y))

|x − y |1+2s dxdy ,

• F ∈ RN given by F = (F1, . . . ,FN) with

Fi = 〈f , φi〉 =

∫ 1

−1
fφi dx , i = 1, . . . ,N.
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Basis functions

We employ the classical basis
{
φi
}N

i=1 in which each φi is the tent
function with supp(φi ) = (xi−1, xi+1) and verifying φi (xj ) = δi,j .

φi (x) = 1− |x − xi |
h

.

(xi−1,0)

(xi ,1)

(xi+1,0)(xi ,0)

y

x

φi (x)
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Construction of the stiffness matrix

Some remarks:

• As
h is symmetric. Therefore, in our algorithm we will only need to

compute the values ai,j with j ≥ i .
• Due to the non-local nature of the problem, the matrix As

h is full.
• The basis functions satisfy the zero Dirichlet B.C. This is important

in the case s > 1/2.

x0

φ1

x2x1

φ2

x3

φ3

x4 xN−1

φN

xN+1xN

y

x

1

. . . . . . . . .

• •
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Construction of As
h (cont.)

• j ≥ i + 2: the easiest case, since Supp(φi ) ∩ Supp(φj ) = ∅. Hence, the
problem is reduced to compute

ai,j = −2
∫ xj+1

xj−1

∫ xi+1

xi−1

φi (x)φj (y)

|x − y |1+2s dxdy .

The contributions to the stiffness matrix in this case are

As
h =



a1,3 · · · · · · a1,N

a24 · · · a2,N

a31
. . .

...
... a42 aN−2,N
...

...
. . .

aN,1 aN,2 · · · aN,N−2
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Construction of As
h (cont.)

• j = i + 1: the most cumbersome case.

ai,i+1 =

∫
R

∫
R

(φi (x)− φi (y))(φi+1(x)− φi+1(y))

|x − y |1+2s dxdy :=
6∑

k=1

Qk

O

xi−1

xi

x i
−

1

x i
xi+1

x i
+

1

xi+2

x i
+

2

y

x

Q1Q2

Q2

Q3

Q3

Q4

Q5

Q5

Q6
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Construction of As
h (cont.)

• i = j : we fill the diagonal of the matrix As
h, which collects the values

corresponding to the case φi (x) = φj (x). We have

ai,i =

∫
R

∫
R

(φi (x)− φi (y))2

|x − y |1+2s dxdy :=
7∑

k=1

Rk .

O

xi−1

xi

xi+1
x i
−

1 x i
x i

+
1

y

R1R2

R2

R3

R1
4 R2

4

R3
4 R4

4R5

R5 R6R7 22 / 35
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Entries of the stiffness matrix As
h

s ∈ (0,1), s 6= 1/2

ai,j = −h1−2s



4(k + 1)3−2s + 4(k − 1)3−2s

2s(1− 2s)(1− s)(3− 2s)

−6k3−2s + (k + 2)3−2s + (k − 2)3−2s

2s(1− 2s)(1− s)(3− 2s)
, k = j − i, k ≥ 2

33−2s − 25−2s + 7
2s(1− 2s)(1− s)(3− 2s)

, j = i + 1

23−2s − 4
s(1− 2s)(1− s)(3− 2s)

, j = i.
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Entries of the stiffness matrix As
h

s = 1/2

ai,j =



−4(k + 1)2 log(k + 1)− 4(k − 1)2 log(k − 1)

+6k2 log(k) + (k + 2)2 log(k + 2)

+(k − 2)2 log(k − 2), k = j − i, k > 2

56 ln(2)− 36 ln(3), j = i + 2.

9 ln 3− 16 ln 2, j = i + 1

8 ln 2, j = i.
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Some final remarks on the approximation As
h

Some remarks

• Each entry ai,j of the matrix only depend on i , j , s and h.

• The matrix As
h has the structure of a N-diagonal matrix. This is analogous

to the tridiagonal matrix approximating the classical Laplace operator

Ah =
1
h


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2


• As

h → Ah as s → 1, which is in accordance to the behavior of the
continuous operator. 1

1 E. Di Nezza, G. Palatucci, and E. Valdinoci, Bull. Sci. Math. 2012
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In order to test numerically the accuracy of our method, we use the
following problem

{
(−d2

x )su = 1, x ∈ (−1,1)
u ≡ 0, x ∈ (−1,1)c .

In this particular case, the solution can be computed exactly and it
reads as follows,

Solution

u(x) =
2−2s√π

Γ
( 1+2s

2

)
Γ(1 + s)

(
12 − x2

)s
χ(−1,1).
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Comparison for different values of s

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

s = 0.1

Numerical solution
Real solution

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

s = 0.4

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

s = 0.5

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

s = 0.8
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Convergence of the error

Theorem (G. Acosta and J. P. Borthagaray, SIAM J. Numer. Anal., 2017)

For h sufficiently small and f regular enough, the following estimate holds

‖u − uh‖Hs
0 (−1,1) . Ch1/2 for s ∈ (0, 1)

29 / 35



Introduction and main theoretical results
Numerical implementation

Development of the numerical scheme
Numerical results

Final remark

Control experiments: practical considerations

Jε,h,∆t (ϕ
T ) =

1
2

M∑
n=1

∆t
∫
ω

∣∣ϕn∣∣2 +
ε

2
|ϕT |2L2 +

(
y0, ϕ

1
)

L2

• We use conjugate gradient (CG).

• Choose the penalization parameter ε = φ(h)

• Practical rule: choose ε ∼ h2p where p is the order of accuracy in space
of the discretization method.
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Controlled solution

• T = 0.3s, • s = 0.8, • ω = (−0.4,0.8).
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Behavior of the penalized HUM

s = 0.8 s = 0.4

• Cost of control and opt. energy
are bounded as h→ 0.

• |y(T )|L2 ∼
√
ε

null controllable.

• Cost of control and opt. energy
are not bounded as h→ 0 .

• |y(T )|L2 ∼ Ch0.15

approximately controllable.
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Convergence of us to u

• (−∆)s →
s→1
−∆, (Di Nezza et al., ’12) • As

h →
s→1
Ah.

Theorem (U. B. and V. Hernández-Santamaría., Elec. J. Diff. Eq., 2018)

Given a u.b. sequence of fs ∈ H−s(Ω), us → u in H1−δ
0 (Ω) strongly for all

0 < δ ≤ 1. Moreover, u ∈ H1
0 (Ω) and satisfies∫ 1

−1
∇u · ∇v dx =

∫ 1

−1
fv dx , ∀v ∈ D(Ω)

-1 0 1

x

(−∆)sus = sin(πx2)

s = 0.5
s = 0.6
s = 0.75
s = 0.9
s = 0.95
s = 1

0.5 1
10−4

10−3

10−2

10−1

s

‖us − u‖Hs
0 (−1,1)

error√
1− s
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