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Applications of thermal FSI
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Figure: Left: Vulcain engine for Ariane 5. Right: Sketch of the cooling system;
Pline, Wikimedia Commons

Thermal interaction between fluid and structure needs to be modelled
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Dirichlet—=Neumann coupling

@ Partitioned approach for the solution of the coupled problem.

@ Fluid Model: Compressible Navier—Stokes - FVM, DLR-TAU-Code

@ Structure Model: Nonlinear heat equation - FEM, NATIVE inhouse
code
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Limitations of the Dirichlet—Neumann me

Convergence rates FSI application
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More at: A. Monge, P. Birken, Computational Mechanics, 2017
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Limitations of the Dirichlet—Neumann me

@ Two independent time integration schemes.
@ High order resolution (at least 2nd order).
@ To be able to insert time adaptivity in the framework.

Option 1 Option 2

Use a different domain

Exchange fixed point iteration with
decomposition method

time recursion
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Limitations of the Dirichlet—Neumann method

Option 1 Option 2
Dirichlet-Neumann Waveform Neumann-Neumann Waveform
Relaxation (DNWR) algorithm Relaxation (NNWR) algorithm

+ Computationally cheap + Parallel method
— Sequential method — Computationally expensive

o DNWR and NNWR introduced by Gander and Kwok 2016: Constant
coefficients and one single time integration scheme.
@ More about Option 2:

@ A. Monge, P. Birken, arXiv:1805.04336, submitted to SISC 18.
@ A. Monge, P. Birken, Proceedings of 25th Domain Decomposition
Conference, submitted 18.
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© A multirate approach
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Model Problem: Coupled heat equations

Oum(x, t
cm a(t !
t € [t tr], x€EQmCRY, m=1,2
um(x,t) =0, x€dQm\l

ui(x,t) = w(x,t), xeTl

26ué(nx2, t) ~ 8u5(nx1, t)’ wer
Um(x,0) = gm(x) x € Qp

— V- (AmVum(x,t)) =0,

A

where am = Am/Dp.
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Dirichlet-Neumann waveform relaxation (DNWR)

k+1
oy 20D gL (g Vit (x, 1)) =0, x € Qy,

ukt(x, t) =0, x € I\,
uk i (x, t) = gk(x,t), xeT,
ukt(x,0) = Wd(x), x€ Q.
k+1
agw — V- (MVukt(x, 1)) =0, xecQy,

) usTH(x,t) = 0, x € I\,
\ (‘)ué“(x.t) — ) i)ufﬁl(x“t)
any - 17 n; >

L Ui (x,0) = ¥(x), x€ Q.

xel,

(U) g x,t) = Ou™(x, 1) + (1 - ©)g“(x. 1), xeT.

How to choose the relaxation parameter © properly? J
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oices

@ Space discretization: 1D and 2D finite elements
o Time discretization: Implicit Euler and SDIRK2
@ Matching space grid at the interface, unknowns on interface
o Nonmatching time grids at the interface, linear interpolation

Aty

Ty

Ty

At

Oy Q
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Relaxation parameter

Q: How to choose the relaxation parameter ©7

A: Find © s.t. minimizes the spectral radius of ¥ w.r.t ur(T¥),

2
k+1,T¢f k,Tr k+1,7; k,Ti
ur =Yu +Z<¢ i 4 T),
i=2

Procedure to find the iteration matrix

@ Isolate usm)’kJ’l’Tf from the Dirichlet solver.

@ Isolate usz)’k+1’Tf from the Neumann solver.
© Use the update step to get X w.r.t ur(T¥).
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[teration Matrix

After lengthly derivations one gets,

T=1-0 (l + 5(2)‘15(1)) ,
with
s(m = (M 1 AtAl™) — (M) - AtA) (M, + AtAL) LM 4 ArAlD)

form=1,2.
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[teration Matrix

A closer look at the iteration matrix X:

N

a1
(wr)

st| = M| - Al AP — (M) — AtAl)] | M, - AcA,

ViV —

a1
(w)

e Problem: Matrices M, + AtA,, are sparse but (M, + AtA,)"! are
dense.

@ Solution: Use their eigendecompositions to compute the desired
entries of the Toeplitz matrices: (M, + AtA,;)~! = VAV,

Azahar Monge (DeustoTech) A time adaptive DNWR method February 19th, 2019 16 / 23



Optimal Relaxation Parameter

@ Space discretization: 1D equidistant FE/FE. }

o Time integration: nonmultirate Implicit Euler.
-1
s
Oopt = <1 + @ ;

S(M — (6AX(amAX? + 3AnAt) — (amAX? — 6ApAt)%sy).

with

Oopt gives the optimal parameter for any coupled materials!
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Convergence Rates: Air-Water coupling

Conv. Rates
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Oopt hits the optimal parameter.
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e A time adaptive approach

Azahar Monge (DeustoTech) A time adaptive DNWR method February 19th, 2019 19 / 23



Choices for Time Adaptivity

@ Add step size controllers on the Dirichlet and Neumann problems
@ Problem: ©yp; depends on o, A, m= 1,2, Ax and At

e Solution: Initial relaxation parameter © = (O, 0} + Ofc00})/2
o Use Aty and Aty to update © = Op(Aty, Atp).

—o—IE
—*— SDIRK2

O{C - o}

B 79{6 - 0}
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Time adaptive numerical results

error
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Time adaptive approach performs better than multirate approach.
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Summary and Further Work

@ Time adaptive multirate method for coupled parabolic problems
(DNWR).

@ We have performed a 1D analysis to find ©p;.
@ Ogpt is dependent on At, Ax, A\, and am, m=1,2.

@ O,pr works for 2D, multirate and time adaptivity.

@ Apply to FSI test cases.

@ Load balancing.

More at: P. Birken, S22 Scientific Computing, February 20th, 5:10-5:30.
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