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General notation and conventions

• Throughout this work, n ≥ 1 is a fixed dimension.
• All of the functions are assumed to be real-valued.
• For a point x0 ∈ Rn and a radius r > 0, we denote by Br(x0) the open ball
Br(x0) := {x ∈ Rn : |x− x0| < r}.
• We will henceforth denote by Ω ⊂ Rn a bounded domain (open connected set)
with boundary ∂Ω of class C∞.

We make precise the notion of smoothness for the boundary. Let n ≥ 2. We
say that ∂Ω is of class Ck for k ∈ N∪ {0} if for each point x0 ∈ ∂Ω there exist
r > 0 and ϕ ∈ Ck(Rn−1) such that we have

Ω ∩Br(x0) = {x ∈ Br(x0) : xn > ϕ(x1, . . . , xn−1)}
upon reorienting the coordinates1. The boundary is of class C∞ (and said to
be smooth) if it is of class Ck for every k ∈ N.
• For a multiindex α ∈ Nn and a function u : Ω → R, we define Dαu :=
∂α1
x1
. . . ∂αnxn u. If k ∈ N, then Dku := {Dαu : α ∈ Nn, |α| = k}, and also

|Dku| =
( ∑
|α|=k

|Dαu|2
) 1

2
.

We distinguish the special cases k = 1 where Du = ∇u = (ux1 , . . . , uxn) is
the gradient, and k = 2 where D2u = (uxixj)

n
i,j=1 is the Hessian matrix, and

∆u := trace(D2u).
If m ≥ 2, for a vector field u : Ω → Rm, u = (u1, . . . , um), we set Dαu :=

(Dαu1, . . . Dαum) for any multiindex α ∈ Nn. The remaining definitions are
identical to the scalar case. We distinguish the special case k = 1 where Du
is the Jacobian matrix. If moreover m = n, then div u := trace(Du). Given
another vector field v : Ω→ Rm, v = (v1, . . . , vm), we define

Du : Dv :=
m∑
i=1

m∑
j=1

uixjv
i
xj
.

• For any k ∈ N and 1 ≤ p ≤ ∞, the Sobolev space W k,p(Ω) consists of all
functions u ∈ Lp(Ω) for which the weak derivatives Dαu, α ∈ Nn, |α| ≤ k exist

1 Intuitively, one takes a ball around any point on the boundary and transforms the part of the
domain in the ball to the upper half plane with a Ck function.
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and are in Lp(Ω). We endow W k,p(Ω) with the norm

‖u‖Wk,p(Ω) :=
∑
|α|≤k

‖Dαu‖Lp(Ω).

• For any α ∈ (0, 1] and k ∈ N ∪ {0}, the Hölder space Ck,α(Ω) consists of all
functions u ∈ Ck(Ω) for which the norm

‖u‖Ck,α(Ω) :=
∑
|β|≤k

sup
x∈Ω

|Dβu(x)|+
∑
|β|=k

[
Dβu

]
C0,α(Ω)

is finite. Here [u]C0,α(Ω) denotes the αth-Hölder seminorm of u:

[u]C0,α(Ω) := sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|α .

• For two normed vector spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) such that X ⊆ Y , we
write X ↪→ Y if X is continuously embedded in Y , meaning if the inclusion
map ι : X → Y mapping x to itself is continuous.
• We write K b Ω ⊂ Rn if K ⊂ K ⊂ Ω and K is compact, and say that K is
compactly contained in Ω.
• Let T > 0 and let X denote a real Banach space. For p ∈ [1,∞), the space
Lp(0, T ;X) consists of all measurable functions u : [0, T ]→ X with

‖u‖Lp(0,T ;X) :=
(∫ T

0

‖u(t, ·)‖pXdt
) 1
p
<∞.

Similarly, the space L∞(0, T ;X) consists of all measurable functions u : [0, T ]→
X with

‖u‖L∞(0,T ;X) := ess sup
t∈[0,T ]

‖u(t, ·)‖X <∞,

and C0([0, T ];X) consists of all continuous functions u : [0, T ]→ X with
‖u‖C0([0,T ];X) := max

t∈[0,T ]
‖u(t, ·)‖X <∞.

• For a function u : [0, T ] → X, the first variable will play the role of time and
the latter the role of space. The time derivative will be denoted by ut and acts
on the first variable. The gradient ∇ and Laplacian ∆ act only on the second
variable.
• We will use the following identification of duals:

[L2(0, T ;H1
0 (Ω))]′ ∼= L2(0, T ;H−1(Ω)).

• We denote by 1E the indicator function of the set E.
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INTRODUCTION

Many phenomena in physics, biology and finance can be described by partial
differential equations that display a priori unknown interfaces or boundaries. Such
problems are called free boundary problems. One of the simplest and most important
free boundary problems is the obstacle problem, in which, at least formally, a function
u solves the Poisson or heat equation on the set where it is strictly above a certain
function ψ, and equals this function elsewhere.

From a mathematical perspective, in studying obstacle problems one may ask
similar questions as for classical partial differential equations. One begins by in-
vestigating the existence and uniqueness of an appropriately defined solution, and
additionally, to further study the regularity of this solution. Then one seeks to con-
ceive numerical schemes, study their convergence and conduct computer simulations
of the respective problems. Understanding the regularity of the solution and of the
free boundary in particular is a quite difficult question in general. For example,
one may ask whether there is a regularization mechanism (as for the heat equation)
that smoothness out the solution and the free boundary independently of the initial
data. A key difficulty is that for solutions of elliptic or parabolic PDEs, one has an
equation for a function u, and such equation forces u to be regular with respect to
supplied data. In free boundary problems, such a task is more difficult as one does
not have a "regularizing" equation along the free boundary, but only an equation
for the solution which indirectly determines this interface.

As seen in what follows, we may rewrite obstacle problems as variational inequali-
ties, from which approximation may be seen as an intuitive approach. In particular,
for studying the existence, uniqueness and regularity of solutions (up to some level),
we will use the penalization method, which may be summarized by the following
scheme:

1. Approximate the problem by semilinear PDEs;
2. Show existence and uniqueness of a solution for the

approximate problems;
3. Obtain estimates for the approximate solutions;
4. Use the estimates for a compactness argument to pass

to the limit.
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We shall in fact use a generalization of this technique for showing existence of
solutions for most of the problems we will encounter, such as constrained minimiza-
tion. We put an emphasis on the idea of approximation: we will approximate the
"difficult" problem by a family of "simpler" problems, and then proceed as indicated.

The plan of this master’s thesis is as follows.
In Part I, we revisit the well-known results on existence, uniqueness and regularity

of solutions for both the elliptic (which we refer to as classical) and parabolic obstacle
problem. We follow the books [21, 30, 41] for the classical problem, and present
different methods for obtaining the aforementioned results. The parabolic problem
has different variants in the literature (depending on whether the obstacle varies with
time or not); we present in detail results that are briefly discussed in [2]. In fact,
slightly stronger results hold. Numerical experiments are also conducted, and are
based on the same technique we used for the theoretical study. The free boundary
is not considered as a part of the solution, as studying its regularity is a separate
topic.

In Part II, we present the paper [27] of Hintermüller, Kovtunenko and Kunisch, in
which the authors investigate a steady-state obstacle problem taking into considera-
tion molecular cohesion forces. From a mathematical perspective, this problem may
be seen as a constrained minimization problem in a function space setting, and the
minimizer of the objective functional in question will be shown to satisfy a particular
obstacle problem.

In Part III, we present the paper [2] of Adams and Lenhart, where the authors look
at the parabolic obstacle problem from the viewpoint of optimal control. Namely,
the obstacle is considered as the control and one looks to drive the state (solution
of the parabolic obstacle problem) to some given target profile. This is done by
minimizing over all admissible obstacles the error between the state associated to
the obstacle and the target, in such a way that the state is constrained to satisfy the
parabolic obstacle problem. We only give an outline of the results for the elliptic
case.

Acknowledgements. — I would like to thank my advisor Professor Enrique
Zuazua for his guidance, advice, patience and for inviting me to stay in Bilbao
for three months within his research team at DeustoTech and study this topic for
my master’s thesis. This research was supported by the Advanced Grant DyCon
(Dynamical Control) of the European Research Council Executive Agency (ERC).
I also would like to thank all of the remaining members of the DyCon team for
helping me during my stay, for both mathematical and administrative issues. I
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also thank the authors of [27] for their suggestions and references. I finally thank
Professor Marius Tucsnak for his help and advice during my studies.

free boundary

u

ϕψ

Figure 1. The obstacle ψ, the solution u, and the free boundary ∂{u > ψ}.
This figure was adapted from [44].

Motivating physical examples

We briefly describe some appearances of obstacle problems in natural phenomena.
Most of these examples are discussed in the recent survey of Ros-Oton [44], as
well as in the books of Rodrigues [43], Duvaut and Lions [19], Kinderlehrer and
Stampacchia [30], Chipot [17] and Friedman [23].

Elasticity. — The (classical) obstacle problem may be derived from its original
consideration as a problem that arises in linear elasticity theory − the mathematical
study of how solids deform and become internally stressed due to prescribed loading
conditions. In classical elasticity theory, a membrane is a thin plate which offers
no resistance to bending, and acts only upon tension (stretching). We are given a
homogeneous membrane occupying a domain Ω in the plane R2; the membrane is
equally stretched in every direction by a uniform tension τ and loaded, i.e. acted
upon, by a normal uniformly distributed force f .

It is natural to suppose that each point (x, y) of the membrane is displaced by an
amount u(x, y) perpendicularly to the plane R2. The boundary ∂Ω of the membrane
is deformed conformly by prescribing its displacement g. In other words, we prescribe
a Dirichlet boundary condition

u = g on ∂Ω.
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For the mathematical study we will exclusively consider homogeneous Dirichlet
boundary conditions: g ≡ 0. Now assume that the potential energy of the de-
formed membrane is proportional to the increase in the area of its surface. For small
deformations, we may neglect higher order derivatives and use Taylor’s theorem to
approximate the surface area by∫

Ω

√
1 + u2

x + u2
ydxdy ≈

∫
Ω

(
1 +

1

2
(u2

x + u2
y)
)

dxdy,

and the change in the area of the membrane is equal to
1

2

∫
Ω

(u2
x + u2

y)dxdy =
1

2

∫
Ω

|∇u|2dxdy.

The potential energy of deformation has the functional expression

U =
λ

2

∫
Ω

|∇u|2dxdy,

where λ > 0 is a constant depending on the elastic properties of the membrane. For
simplicity, we assume λ = 1. The work done by the external forces during the actual
displacement is given by

V = −
∫

Ω

fudxdy,

so that the total potential energy E := U + V by definition reads

E[u] =
1

2

∫
Ω

|∇u|2dxdy −
∫

Ω

fudxdy.

To find the equilibrium position of the membrane, the minimum total potential
energy principle2 is applied. The problem reduces to finding, among all functions u
of finite energy of deformation U and satisfying the Dirichlet boundary condition,
the one that minimizes the potential energy E. Using results from the calculus of
variations, the necessary condition for the minimizer of E (called the Euler-Lagrange
equation) is given by the Poisson equation

−∆u = f in Ω.

This is known as Dirichlet’s principle.

2 Roughly stated, for conservative structural systems, of all the kinematically admissible defor-
mations those corresponding to the equilibrium state minimize or maximize the total potential
energy. Moreover, if the extremum is a minimum, the equilibrium state is stable.



OBSTACLE PROBLEMS: THEORY AND APPLICATIONS 9

For the obstacle problem, one seeks the equilibrium position with an additional
constraint on the membrane. Namely, one looks for the equilibrium position of the
membrane such that it lies above a body represented by

{(x, y, z) ∈ R3 : z ≤ ψ(x, y)},
with a fixed height g on the boundary. The function ψ is the obstacle, defined on Ω
and satisfying ψ ≤ g on the boundary ∂Ω. By the minimum total potential energy
principle, this problem reduces to finding, among all functions u of finite energy of
deformation U, satisfying u ≥ ψ in Ω and the Dirichlet boundary condition, the
one that minimizes the potential energy E. Deducing the necessary condition for
the minimizer u will require subtle arguments. We will see that it manifests as the
following Euler-Lagrange equation:

u ≥ ψ in Ω

−∆u = f in {u > ψ}
−∆u ≥ f in Ω.

The Stefan problem. — The Stefan problem describes the temperature distri-
bution in a homogeneous medium undergoing a phase change. An elementary ex-
ample is the melting of ice submerged in a body of liquid water. In the simplest
case, the temperature distribution function θ solves the homogeneous heat equation
θt −∆θ = 0 in the set {θ > 0}, and equals zero elsewhere. It was shown by Duvaut
[18] that by considering the function

u(t, x) =

∫ t

0

θ(s, x)ds,

the Stefan problem transforms into
u ≥ 0 in Ω

ut −∆u = −1 in {u > 0}
ut −∆u ≥ −1 in Ω,

which are the Euler-Lagrange equations for the parabolic obstacle problem.

Optimal stopping and financial mathematics. — An interesting occurrence
of obstacle problems is in probability and finance.

The mathematical setting for many problems in optimal control theory is the
following. We are given some system whose state evolves in time according to a
differential equation (deterministic or stochastic), and also certain controls which
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affect the behavior of the system in some way. These controls typically either modify
some parameters in the dynamics or else stop the process, or both. We are finally
given a cost criterion, depending upon our choice of control and the corresponding
state of the system. The goal is to discover an optimal choice of controls so that the
cost criterion is minimal. We present, without much rigor, the following stochastic
control model which may be found in [41, 22].

Let Ω ⊂ Rn be a a bounded domain with smooth boundary, and let X = (X(t))t≥0

be a stochastic (diffusion) process starting at X(0) = x ∈ Ω. Let τ be a hitting
time of ∂Ω, which loosely means that τ is the first time at which X(τ) "hits" (i.e.
touches) the boundary ∂Ω. Also, let θ be a stopping time, which loosely means that
the process X will exhibit some "behavior of interest" at this time. In particular,
the hitting time τ is also a stopping time (see [22, p.103]).

For each θ, the expected cost of stopping X at time θ ∧ τ := min{θ, τ} is defined
by

J[θ] := E
[ ∫ θ∧τ

0

1

2
f(X(s))ds+ ψ(X(θ ∧ τ))

]
,

where f and ψ are given smooth functions on Ω and E denotes the expected value.
The main question is to see whether there exists a stopping time θ∗ for which

J[θ∗] = min
θ stopping time

J[θ],

and if so, how can we compute it. To this end, we turn our attention to the value
function

u(x) := inf
θ
J[θ],

and try to figure out what u is as a function of x ∈ Ω. Once we know u, we look to
"construct" an optimal stopping time θ∗. This is known as dynamic programming.

In [22, p.112] it is shown that the optimality conditions for the value function u
are of the form {

max{−Lu− f, u− ψ} = 0 in Ω

u = ψ on ∂Ω,

where L denotes the infinitesimal generator of the process X (an operator which
describes the movement of the process in an infinitesimal time interval). If X is
the Brownian motion, then L = 1

2
∆ and we see that the value function solves an

obstacle problem. It can be shown that the optimal stopping time θ∗ is the first
hitting time of the contact region

{x ∈ Ω: u(x) = ψ(x)}.
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{u = ϕ}
Lu = 0

{u > ϕ}

free boundary
EXERCISE

OPTION

WAIT

ψ
ψ

0

Figure 2. A free boundary separates the two regions: the one in which we
should exercise the option, and the one in which it is better to wait. This
figure was adapted from [44].

In financial mathematics, similar problems (in which we maximize rather than min-
imize, and often include evolution, so there is an added time derivative) appear as
models for pricing American options3 (see [32]). Set f ≡ 0 for convenience. The
function ψ represents the option’s payoff, and the set {u = ψ} is the exercise region.
Notice that in this context the most important unknown to understand is the exer-
cise region. More particularly, one looks to find and/or understand the two regions
{u = ψ} (in which one should exercise the option) and {u > ψ} (in which one should
wait and not exercise the option yet).

In finance and the theory of option evaluation however, one usually needs to con-
sider jump processes (see [42]) instead of diffusion processes, so that discontinuous
paths in the dynamics of the stock’s prices are introduced. Such models would al-
low taking into account large price changes and in turn are a reasonable model for
market fluctuations. Such models were introduced in finance in the 1970s by Nobel
Prize winner R.C. Merton [38].

The operator L in these models will be singular integral operator of the form

Lu(x) = lim
ε→0+

∫
{|x−y|>ε}

[
u(y)− u(x)

]
κ(x− y)dy.

3 In finance, an option is a contract giving a buyer the right to sell an asset at a specified price
on a specified date. There are two option styles depending on this expiration date: European
(the option may only be exercised at the expiration date) and American (the option may be
exercised at any time before the expiration date).
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A classical example for a kernel is κ(x − y) = |x − y|n+2s for some s ∈ (0, 1). Such
a choice gives L = (−∆)s modulo a normalization constant, where (−∆)s is the
so-called fractional Laplacian4.

Potential theory, interactions in biology and materials science. — Many
phenomena in biology and materials science give rise to models with interacting
particles or individuals. We present without going into detail the following model
formulated mathematically in [8, 15].

Let W ∈ L1
loc(Rn) be a non-negative, lower semicontinuous function and consider

the interaction energy

EW [µ] :=
1

2

∫
Rn

∫
Rn
W (x− y)dµ(y)dµ(x),

where µ is some regular Borel probability measure on Rn. The interaction energy
EW may be used to model interplay between particles via pairwise interactions. For
example, m particles located at X1, . . . , Xm ∈ Rn have their discrete interaction
energy given by

EmW [X1, . . . , Xm] :=
1

2m2

m∑
i=1

m∑
j=1,i 6=j

W (Xi −Xj).

Formally, when m is large, the discrete energy EmW may be approximated by the
continuum energy EW where dµ(x) describes is a general distribution of particles at
the location x ∈ Rn. In fact, for the distribution µ = 1

n

∑m
i=1 δXi where δa denotes

the Dirac mass at a point a, the energy EW [µ] reduces to the discrete energy EmW .
In models arising in biology and materials science, particles, molecules or individ-

uals in a social aggregate, like a flock of birds or a school, self-organize in order to
minimize energies similar to EmW . In these applications, the kernel W is repulsive in
the short range, i.e. when the particles (or individuals) are very close so that they
don’t collide, and attractive in the long range, i.e. when they are far from each other
so that they so that they gather to form a group or a structure. Naturally, this leads
one to consider kernels of the form W (x) = w(|x|), where w : [0,+∞)→ (−∞,+∞]
is decreasing on [0, r0) and increasing on (r0,+∞) for some r0 > 0. An example is

4 It is natural to define (−∆)s as a Fourier multiplier, namely

F((−∆)sf)(ξ) = |ξ|2sF(f)(ξ)

for ξ ∈ Rn and Schwartz functions f ∈ S(Rn). It can be shown (using Fubini’s theorem) that
this definition coincides with the singular integral definition above. For more detail on this
point, we refer to [44].
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the Newtonian repulsion: W (x) ∼ 1
|x|n−2 as x → 0 for n ≥ 2 and W (x) ∼ log 1

|x| if
n = 2.

It is rigorously shown in [15] that whenW is a Newtonian repulsion, the potentials
W ∗µ associated to local minimizers µ of the interaction energy EW locally solve an
obstacle problem. More particularly, let5

V (x) =


1

n(n− 2)ωn

1

|x|n−2
if n ≥ 3

1

2π
log

1

|x| if n = 2,

be the fundamental solution of the Laplace equation, thus satisfying
−∆V = δ0,

and consider the function Wa = W − V . Thence W = Wa + V , and in some
sense V describes the repulsive interactions whereas Wa describes the attractive
interactions. For a minimizer µ of EW in some ε-ball (see [15] for definitions),
consider the potential

u(x) := W ∗ µ(x) =

∫
Rn
W (x− y)dµ(y).

Under some regularity assumptions on Wa, it is shown that for any x0 ∈ supp(µ),
the potential u is the unique solution to the obstacle problem

u ≥ u(x0) in Bε(x0)

−∆u ≥ −∆Wa ∗ µ in Bε(x0)

−∆u = −∆Wa ∗ µ in Bε(x0) ∩ {u > u(x0)}.
Here supp(µ) denotes the support of the Borel measure µ, defined as

supp(µ) := {x ∈ Rn : µ(Bε(x)) > 0 for all ε > 0}.

5 Here ωn = πn/2

Γ( n
2 +1) is the volume of the unit ball in Rn.
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PART I
OBSTACLE PROBLEMS

1. The classical problem

The classical obstacle problem, as discussed in what precedes, is one of the most
well known and motivating examples in the study of both variational inequalities
and free boundary problems. Its simplest mathematical formulation is analogous
to its interpretation from elasticity theory: we seek for minimizers of the Dirichlet
energy functional

(1.1) E[w] :=
1

2

∫
Ω

|∇w|2dx−
∫

Ω

fwdx,

among all functions w belonging to the set

K(ψ) := {w ∈ H1
0 (Ω) : w ≥ ψ a.e. in Ω},

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, and the obstacle
function ψ ∈ H2(Ω) ∩ C0(Ω), ψ ≤ 0 on ∂Ω is given. The set K(ψ) is closed, convex
and non-empty (see Proposition A.1 in the Appendix) and comprises those functions
those functions w ∈ H1

0 (Ω) satisfying the unilateral (one-sided) constraint u ≥ ψ.
We also suppose that the source term f ∈ L2(Ω) is given.

1.1. Existence and uniqueness of a solution. — We begin our study of the
classical obstacle problem by showing existence and uniqueness of a solution. This
can be done in lots of ways, the classical approach being to use tools from the
calculus of variations.

Theorem 1.1. — There exists a unique function u ∈ K(ψ) satisfying

E[u] = inf
w∈K(ψ)

E[w].

Proof. — The existence of a minimizer follows from the direct method in the calculus
of variations. This method consists in exhibiting a so-called minimizing sequence,
i.e. a sequence {uk}∞k=1 ⊂ K(ψ) satisfying

lim
k→∞

E[uk] = inf
w∈K(ψ)

E[w].
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Such a sequence always exists by the definition of the infimum6. One then uses
growth properties of the functional E at infinity and a compactness argument to
deduce a limit for the sequence, which is then shown to be the wanted minimizer by
virtue of certain continuity properties of E in the weak topology.

Let {uk}∞k=1 ⊂ K(ψ) be a minimizing sequence for E. Since E is coercive (see
Proposition A.3 in the Appendix), meaning E[w] → +∞ as ‖w‖H1

0 (Ω) → ∞, by
contraposition we deduce that {uk}∞k=1 is bounded in H1

0 (Ω). By virtue of the
Banach-Alaoglu theorem, there exist u ∈ H1

0 (Ω) and a subsequence {ukj}∞j=1 of
{uk}∞k=1 such that

ukj ⇀ u weakly in H1
0 (Ω)

as j →∞. Since K(ψ) is closed and convex it is weakly closed (see Theorem A.4 in
the Appendix), whence u ∈ K(ψ). The weak lower semicontinuity (see Proposition
A.6 in the Appendix) of E reads

lim inf
j→∞

E[ukj ] ≥ E[u],

and using the definitions of the minimizing sequence and the infimum, we deduce
that

E[u] ≥ inf
w∈K(ψ)

E[w] ≥ lim inf
j→∞

E[ukj ] ≥ E[u].

Hence u is a minimizer of E.
To demonstrate uniqueness, we argue by contradiction. Let u1, u2 with u1 6≡ u2

be two minimizers. Since K(ψ) is convex, w := u1+u2
2
∈ K(ψ), and by the strict

convexity of E (see Proposition A.2 in the Appendix), it follows that

E[w] <
1

2
E[u1] +

1

2
E[u2].

This is a contradiction, since u1 and u2 are minimizers.

In fact, we may also extract the existence and uniqueness of a minimizer by using
the properties of the functional E (see the Appendix) coupled with an abstract
result from the theory of convex minimization. To state this result, we will need the
following definition.

Definition 1.2. — Let X be a Banach space and let F : X → R ∪ {+∞} be some
map. The set on which F is finite is called the effective domain of F

dom(F ) := {x ∈ X : F (x) < +∞}.

6 For the infimum to exist, in turn, we need E to be bounded from below. This is indeed the
case, as seen in the proof of Proposition A.3.
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If dom(F ) 6= ∅, then F is called proper.

Theorem 1.3. — Let X be a reflexive Banach space, K ⊂ X a nonempty, closed
and convex subset and F : K → R ∪ {+∞} a proper, convex and lower semicon-
tinuous map. If either K is bounded or F is coercive, then there exists at least one
x? ∈ K ∩ dom(F ) such that

F (x?) = inf
x∈K

F (x).

If F is strictly convex, then x? is unique.

For a proof and more detail on the topic of convex minimization, we refer to [9,
Thm.2.11, p.72].

Next, we look to derive necessary conditions for the solution of the obstacle prob-
lem, namely the Euler-Lagrange equations mentioned in the introduction. We start
with the following variational characterization of the solution.

Proposition 1.1. — Let u ∈ K(ψ) be the unique minimizer of E. Then

(1.2)
∫

Ω

∇u · ∇(v − u)dx ≥
∫

Ω

f(v − u)dx

for all v ∈ K(ψ). We call (1.2) an elliptic variational inequality.

Proof. — Fix v ∈ K(ψ). Then for each τ ∈ [0, 1],

u+ τ(v − u) = (1− τ)u+ τv ∈ K(ψ),

since K(ψ) is convex. Thus if we set e(τ) := E[u+ τ(v−u)], we see that e(0) = E[u],
so e(0) ≤ e(τ) for all τ ∈ [0, 1]. Hence7

(1.3) 0 ≤ e′(0).

Now if τ ∈ (0, 1], then

e(τ)− e(0)

τ
=

1

τ

∫
Ω

|∇u+ τ∇(v − u)|2 − |∇u|2
2

dx−
∫

Ω

f(u+ τ(v − u)− u)dx

=

∫
Ω

(
∇u · ∇(v − u) +

τ |∇(v − u)|2
2

)
dx−

∫
Ω

f(v − u)dx.

7 It must be said that e′ denotes the one-sided derivative at 0, namely the limit when τ → 0
with positive values. This approach does not hold for τ < 0, since we cannot exploit the
convexity of K(ψ), as u + τ(v − u) /∈ K(ψ) for every v ∈ K(ψ). In other words, we can only
take "one-sided" variations away from the constraint. It is why this first order optimality
condition manifests itself as a variational inequality, rather than a PDE in weak form.
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As the integral on the right hand side is an affine function in τ , by letting τ → 0
and using (1.3) we deduce that

0 ≤ e′(0) =

∫
Ω

∇u · ∇(v − u)dx−
∫

Ω

f(v − u)dx.

Remark 1.4. — The previous proof also allows us to conclude that E : H1
0 (Ω)→ R

is Gâteaux differentiable, meaning that for any u ∈ H1
0 (Ω) there exists a bounded

linear operator δE[u; ·] : H1
0 (Ω)→ R such that

δE[u; v] = lim
τ→0

E[u+ τv]− E[u]

τ

for all v ∈ H1
0 (Ω). The Gâteaux derivative (sometimes called the first variation) of

E at u ∈ H1
0 (Ω) is given by

δE[u; ·] : v 7→
∫

Ω

∇u · ∇vdx−
∫

Ω

fvdx.

The variational inequality (1.2), which represents the first order optimality condi-
tion, is in fact often used in the literature to state the classical obstacle problem (see
[30]). This is due to the fact that by Stampacchia’s theorem the converse holds8, so
solving the variational inequality (1.2) is equivalent to minimizing E. Consequently,
this theorem would represent another way for showing the existence and uniqueness
of a minimizer to E.

Theorem 1.5 (Stampacchia). — Let H be a real Hilbert space, K ⊂ H a
nonempty closed and convex subset and a : H ×H → R a bilinear, continuous and
H-elliptic 9 form. Then, given ϕ ∈ H ′, there exists a unique element u ∈ K such
that

a(u, v − u) ≥ ϕ(v − u)

for all v ∈ K. Moreover, if a is symmetric, then u is characterized by the property
1

2
a(u, u)− ϕ(u) = min

w∈K

{1

2
a(w,w)− ϕ(w)

}
.

8 In fact, there is no need of this theorem as one may show that the converse holds by hand.
Notice that for a minimizer u and for any v ∈ K(ψ), e(0) = E[u] and e(1) = E[v] in what
precedes. The idea is to show that e is nondecreasing by similar computations. Since the
minimizer is unique, this would imply that e(1) > e(0), as desired.

9 By H-elliptic we mean that there exists γ > 0 such that a(u, u) ≥ γ‖u‖2H for every u ∈ H.
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We refer to [11, Thm.5.6, p.138] for a proof. Now in order to deduce the Euler-
Lagrange equations for the obstacle problem, one may choose appropriate variations
v and then integrate the variational inequality by parts. This would however only
hold in the sense of distributions, as we need at least H2(Ω) regularity of the solution
to define the Laplacian almost everywhere in Ω. Moreover, if u is not continuous,
then the set {u > ψ} would not be open. To finish this argument, we will need
estimates guaranteeing further regularity for the solution.

1.2. Further regularity. — To show that the solution of the obstacle problem
is more regular, we use a penalization method. The main idea is to approximate the
variational inequality (1.2) by a family of semilinear elliptic equations − the semi-
linearity originates from a penalty function, in which we incorporate the constraint
u ≥ ψ. This function consists of a penalty parameter multiplied by a measure of
violation of the constraint, which is nonzero when the constraint is violated and is
zero in the region where constraint is not violated. One then shows existence and
uniqueness of a solution for each problem, and obtains adequate uniform bounds
for these solutions which will assert the desired regularity. Finally, these bounds
are used to "transfer" the regularity to the solution of the variational inequality by
virtue of a compactness argument. The proof presented here may be found in [30,
Chapter IV].

One notable advantage of this method is that we may use known results from
regularity theory for elliptic equations to obtain the mentioned bounds for the ap-
proximate solutions, as the semilinear term is in general uniformly bounded. This
method may also be used to show the existence of a solution for a variational in-
equality, and we will notably use it for the parabolic obstacle problem.

We assume henceforth that f and ∆ψ additionally satisfy

f ∈ Lp(Ω), max{−∆ψ − f, 0} ∈ Lp(Ω) for a fixed p ∈ [2,∞).

These assumptions will allow us to prove the hinted regularity result, namely that
the solution u is in W 2,p(Ω). Note that the weakest assumption p = 2 would imply
the mentioned H2(Ω) regularity; as a matter of fact, both of the above assumptions
are superfluous in this instance.

We will use the following deep result from Lp regularity theory for elliptic equa-
tions. For the complete result and proof, we refer to [26, Thm.2.5.1.1, p.128] and
[24, Chap.7, Thms.7.1,7.4]. The case p = 2 is done in [21, Thm.4, p.334].
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Lemma 1.6. — Let w ∈ H1
0 (Ω) be a weak solution10 of the Poisson equation{
−∆w = f in Ω

w = 0 on ∂Ω,

where f ∈ Lp(Ω) for some p ∈ [2,∞). Then

‖w‖W 2,p(Ω) ≤ C‖f‖Lp(Ω)

for some constant C = C(p,Ω) > 0.

We are now in a position to state the penalized problem. For fixed ε > 0, we seek
for a weak solution uε ∈ H1

0 (Ω) of

(1.4)

{
−∆uε = max{−∆ψ − f, 0}βε(uε − ψ) + f in Ω

uε = 0 on ∂Ω,

where the penalty function βε : R → R is assumed uniformly Lipschitz, non-
increasing and satisfies 0 ≤ βε(·) ≤ 1 on R. An example is given afterwards.

Proposition 1.2. — Let ε > 0 be fixed and consider βε as above. Then there
exists a unique weak solution uε ∈ H1

0 (Ω) to the penalized problem (1.4). Moreover,
uε ∈ W 2,p(Ω) with the estimate

‖uε‖W 2,p(Ω) ≤ C
(
‖f‖Lp(Ω) + ‖max{−∆ψ − f, 0}‖Lp(Ω)

)
,

for some C = C(p,Ω) > 0.

Proof. — Fix ε > 0. We will use tools from monotone operator theory (see Appendix
B for the main results and definitions) applied to the operator A : H1

0 (Ω)→ H−1(Ω)
defined by

A : u 7→ Au : ϕ 7→
∫

Ω

(
∇u · ∇ϕ−max{−∆ψ − f, 0}βε(u− ψ)ϕ− fϕ

)
dx.

Observe that for u ∈ H1
0 (Ω), the distribution Au is in H−1(Ω), due to βε(u−ψ) being

in L∞(Ω), the Hölder inequality and the assumptions on f and max{−∆ψ − f, 0}.

10 Recall that this means that w ∈ H1
0 (Ω) satisfies the weak formulation∫

Ω

∇w · ∇ϕdx =

∫
Ω

fϕdx

for all ϕ ∈ H1
0 (Ω).
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We claim that A is in fact a strictly monotone and coercive operator. Indeed, for
all u, v ∈ H1

0 (Ω), and assume without loss of generality that u ≥ v, we have

(1.5) −
[
βε(u− ψ)− βε(v − ψ)

]
(u− v) ≥ 0,

since βε is nonincreasing. It follows that

〈Au− Av, u− v〉

=

∫
Ω

|∇(u− v)|2dx−
∫

Ω

max{−∆ψ − f, 0}[βε(u− ψ)− βε(v − ψ)](u− v)dx

≥
∫

Ω

|∇(u− v)|2dx,

for all u, v ∈ H1
0 (Ω) since max{−∆ψ − f, 0} ≥ 0. Here 〈·, ·〉 denotes the duality

pairing between H−1(Ω) and H1
0 (Ω). This shows that A is strictly monotone and

coercive. Furthermore, uk → u in H1
0 (Ω) implies Auk ⇀ Au weakly in H−1(Ω)

as k goes to +∞, which in turn implies that A is continuous on finite dimensional
subspaces of H1

0 (Ω) (as the weak and strong convergences coincide). We may apply
Corollary B.5 to obtain the existence and uniqueness of uε ∈ H1

0 (Ω) satisfying

(1.6) 〈Auε, v − uε〉 ≥ 0

for all v ∈ H1
0 (Ω). Let w ∈ H1

0 (Ω) and consider v := uε + τw for |τ | small enough.
We deduce that

τ〈Auε, w〉 ≥ 0

holds for both τ positive and negative and for all w ∈ H1
0 (Ω). Whence

〈Auε, w〉 = 0

for all w ∈ H1
0 (Ω), and since a solution to this weak formulation is also a solution to

(1.6), we deduce that uε is the desired unique solution. The estimate follows from
Lemma 1.6.

We now consider, for fixed ε > 0, the penalty function

βε : x 7→


1 if x ≤ 0

1− x
ε

if 0 ≤ x ≤ ε

0 if x ≥ ε,

and turn to the main result of this subsection.



OBSTACLE PROBLEMS: THEORY AND APPLICATIONS 21

Theorem 1.7 (W 2,p regularity). — Let u ∈ K(ψ) be the solution to the classical
obstacle problem (1.2). Then u ∈ W 2,p(Ω). Moreover, if n

2
< p < ∞, then u ∈

C0,α(Ω)11 for 0 < α ≤ 2− n
p
, and if n < p <∞ then u ∈ C1,α(Ω) for 0 < α ≤ 1− n

p
.

Proof. — We proceed in applying the penalty method as explained in the beginning
of the subsection.

Fix ε > 0, and denote by uε the solution to the penalized problem (1.4). First,
we claim that uε ∈ K(ψ). To this end, consider

ϕ := uε −max{uε, ψ} ≤ 0.

Then ϕ ∈ H1
0 (Ω) since u ∈ H1

0 (Ω) and ψ ≤ 0 on ∂Ω, and observe that showing
uε ∈ K(ψ) is equivalent to showing ϕ ≡ 0.

The weak formulation of the penalty equation (1.4) reads∫
Ω

(
∇uε · ∇ϕ−max{−∆ψ − f, 0}βε(uε − ψ)ϕ− fϕ

)
dx = 0,

while by Green’s first identity, one also has∫
Ω

(
∇ψ · ∇ϕ+ ∆ψϕ

)
dx = 0.

Subtracting these two identities yields∫
Ω

∇(uε − ψ) · ∇ϕdx =

∫
Ω

(
max{−∆ψ − f, 0}βε(uε − ψ) + ∆ψ + f

)
ϕdx.

Now using results from distribution theory [25, Lem.7.6, p.152], one has

∇ϕ =

{
∇(uε − ψ) if ϕ < 0

0 if ϕ = 0.

Whence,∫
Ω

|∇ϕ|2dx =

∫
{ϕ<0}

(
max{−∆ψ − f, 0}βε(uε − ψ) + ∆ψ + f

)
ϕdx.

Observe that in the right-hand side integral, since ϕ < 0 we have uε−ψ < 0, which
in turn implies that βε(uε − ψ) = 1. Plugging this in the identity above gives∫

Ω

|∇ϕ|2dx =

∫
{ϕ<0}

(
max{−∆ψ − f, 0}+ ∆ψ + f

)
ϕdx ≤ 0.

Hence ϕ ≡ 0 by the Poincaré inequality, and as a consequence uε ∈ K(ψ).

11 This is to be understood modulo the choice of a continuous representative.
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By the estimate in Lemma 1.2, the family {uε}ε>0 is bounded in W 2,p(Ω). So by
the Banach-Alaoglu theorem, it12 converges weakly in W 2,p(Ω) to some ũ ∈ W 2,p(Ω)
as ε → 0. Moreover, since uε ∈ K(ψ) and K(ψ) being weakly closed (see Theorem
A.4 in the Appendix), we have ũ ∈ K(ψ). Now recall the general Morrey-Sobolev
embedding (see [4, Thm.5.4, p.98] for a proof): if k,m ∈ N ∪ {0} are integers such
that (m− 1)p < n < mp <∞, then

W k+m,p(Ω) ↪→ Ck,α(Ω) for 0 < α ≤ m− n

p
.

Consequently, for k = 0 and m = 2, we deduce that if p > n
2
then ũ ∈ C0,α(Ω) for

α ≤ 2− n
p
. Similarly, for k = 1 and m = 1, if p > n then ũ ∈ C1,α(Ω) for α ≤ 1− n

p
.

To show that ũ is a solution to the obstacle problem (1.2), we use Minty’s lemma
(see Lemma B.2 in Appendix B) applied to the monotone operator−∆−max{−∆ψ−
f, 0}βε(· − ψ)− f . The monotonicity of this operator follows from the positivity of
the Dirichlet Laplacian −∆ and the computation done in (1.5). Let v ∈ K(ψ) and
suppose v ≥ ψ + δ for some δ > 0. Then by Minty’s lemma, the weak form for the
penalized problem (1.4) is equivalent to∫

Ω

∇v · ∇(v − uε)dx−
∫

Ω

(
max{−∆ψ − f, 0}βε(v − ψ) + f

)
(v − uε)dx ≥ 0.

Choosing δ > ε yields βε(v − ψ) = 0. Now letting ε → 0, by the previously
established weak convergence we obtain∫

Ω

∇v · ∇(v − ũ)dx ≥
∫

Ω

f(v − ũ)dx

for every v ∈ K(ψ), v ≥ ψ + δ. We now let δ → 0 whence it follows that∫
Ω

∇v · ∇(v − ũ)dx ≥
∫

Ω

f(v − ũ)dx

for every v ∈ K(ψ). Employing Minty’s lemma once more we conclude that ũ ≡
u.

12 Notice that {uε}ε>0 is not really a sequence, so it is not rigorous to extract subsequences and
discuss convergences in the sequential sense. To avoid topological complications, by what is
written we mean that we consider a sequence {uεk}∞k=1 ⊂ {uε}ε>0 with εk → 0 as k → ∞;
one may then extract a subsequence {uεkj }∞j=1 of the sequence {uεk}∞k=1 which converges to
ũ in the indicated sense. As doing this repetitively is rather tedious, we will use this abuse of
notation while insinuating that it is meant in this sense.
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Corollary 1.3. — Let u ∈ W 2,p(Ω)∩K(ψ) be the solution to the classical obstacle
problem. Then

‖u‖W 2,p(Ω) ≤ C
(
‖f‖Lp(Ω) + ‖max{−∆ψ − f, 0}‖Lp(Ω)

)
,

for some C = C(p,Ω) > 0.

Proof. — Since uε ⇀ u weakly in W 2,p(Ω) as ε → 0, the estimate follows from
Lemma 1.2 and the weak lower semicontinuity of the norm (see Proposition A.5 in
the Appendix):

‖u‖W 2,p(Ω) ≤ lim inf
ε→0

‖uε‖W 2,p(Ω).

1.3. Euler-Lagrange equations. — In view of the previous results, in a standard
physical configuration n ∈ {1, 2, 3}, p = 2, the solution u of the classical obstacle
problem is continuous and in H2(Ω). Consider the set

O := {x ∈ Ω: u(x) > ψ(x)}.
Notice that since u and ψ are continuous, O is open. We begin by demonstrating
that u is a strong solution13 of the Poisson equation in O:

(1.7) −∆u = f a.e. in O.

To this end, let w ∈ C∞c (O). Then for |τ | sufficiently small, v := u + τw ≥ ψ, and
so v ∈ K(ψ). Thus, the variational inequality (1.2) implies

τ

∫
O

(∇u · ∇w − fw)dx ≥ 0.

This inequality holds for all sufficiently small τ , both positive and negative, and so
we deduce ∫

O

(∇u · ∇w − fw)dx = 0

for all w ∈ C∞c (O). Since u ∈ H2(Ω), (1.7) holds by virtue of Green’s first identity.
Now if w ∈ C∞c (Ω) satisfies w ≥ 0, then the variation v := u+ w ∈ K(ψ) and by

plugging in (1.2) we obtain ∫
Ω

(∇u · ∇w − fw)dx ≥ 0.

13 By a strong solution we mean that the u is twice weakly differentiable and satisfies the equation
a.e. in Ω. For more detail, we refer to [25, Chapter 9].
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{u = ϕ}
Δu = 0

{u > ϕ}

free boundary

ψ

ψ
f−

Figure 3. The contact set and the free boundary in the classical obstacle
problem. This figure was adapted from [44].

Since u ∈ H2(Ω), Green’s first identity yields∫
Ω

(−∆u− f)wdx ≥ 0

for all nonnegative functions w ∈ C∞c (Ω). Thence

(1.8) −∆u ≥ f a.e. in Ω.

To summarize, from (1.7) and (1.8) we deduce the Euler-Lagrange equations for the
classical obstacle problem: 

u ≥ ψ a.e. in Ω

−∆u ≥ f a.e. in Ω

−∆u = f a.e. in O

u = 0 on ∂Ω.

Consequently, we observe that the domain Ω is split into two regions: one in which u
solves the Poisson equation, and another in which the solution equals the obstacle.
The latter region is called the contact set or the coincidence set. The interface
∂{u > ψ} which separates these two regions is called the free boundary.

Remark 1.8 (Complementarity problem). — Combining the properties re-
sulting from the Euler-Lagrange equations, we obtain that the solution of the
obstacle problem is a function u ∈ W 2,p(Ω) ∩ H1

0 (Ω) for any p ∈ [2,+∞), which
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satisfies 
−∆u− f ≥ 0 a.e. in Ω

u ≥ ψ a.e. in Ω

(−∆u− f)(u− ψ) = 0 a.e. in Ω

u = 0 on ∂Ω.

This is known as the complementarity problem and uniquely characterizes the min-
imizers of E over K(ψ). The complementarity problem is often written in the form{

min{−∆u− f, u− ψ} = 0 a.e. in Ω

u = 0 on ∂Ω,

a non-variational formulation which is used in regularity theory for obstacle problems
with more general governing operators.

Remark 1.9 (Counterexample for C2 regularity). — An important observa-
tion is the following. One may naturally ask if the obstacle problem always has
a classical solution u ∈ C2(Ω). But observe that the Euler-Lagrange formulation
implies that ∆u skips from −f to ∆ψ across the free boundary. Hence, ∆u is in
general a discontinuous function. In fact, this can also be seen from the simple
counter-example:

Ω = B2(0), ψ(x) = 1− |x|2, f ≡ 0.

1.4. Optimal regularity. — To summarize, we have shown that the solution u
to the classical obstacle problem is W 2,p(Ω) regular when f,∆ψ ∈ Lp(Ω) for some
p ∈ [2,∞), and if p ∈ (n,∞), the solution is also C1,α(Ω) regular with α ≤ 1− n

p
< 1.

Under stronger assumptions on the data (f, ψ), we may show that the case α = 1 also
holds away from the boundary ∂Ω. As previously mentioned, one cannot expect a
classical solution to the obstacle problem as ∆u is in general a discontinuous function.
The proof presented here may be found in [41, Chapter 2] and [12].

A crucial point employed for the proof is the fact that a function w : Ω → R is
in C0,1(Ω) (i.e. is Lipschitz continuous) if and only if w ∈ W 1,∞(Ω), whenever ∂Ω
is of class C1 (see [21, Thm.4, p.279]). By induction, it can be shown that for any
k ∈ N, w ∈ W k+1,∞(Ω) if and only if w ∈ Ck,1(Ω), whenever ∂Ω is of class Ck.
It would thus suffice to show that u has bounded second derivatives to obtain the
desired optimal regularity.

For great simplicity, we assume that f ≡ 0. To illustrate our approach, observe
that if the solution u to the obstacle problem is continuous, from the Euler-Lagrange
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equations it follows that 
∆u = 0 in {u > ψ}
∆u = ∆ψ in {u = ψ}
u ≥ ψ in Ω.

Now due to the linearity of −∆, we reduce the obstacle problem to the case of a
zero obstacle by the change of variable

u := u− ψ.
We assume that ψ ∈ C1,1(Ω) and in light of previous results we immediately deduce
that u ∈ C1,α(Ω) ∩H2(Ω) with α < 1. Now by considering the open set

O := {x ∈ Ω: u(x) > 0},
it follows that the shifted solution u ∈ H2(Ω) ∩ C0(Ω), u ≥ 0 in Ω satisfies

(1.9) ∆u = −∆ψ1O in Ω

In some sense, this configuration allows us only work inside the set O, as one has
D2u = 0 a.e. on Oc (see [25, Lem.7.7, p.152]), so the second derivative estimates
follow immediately. Elsewhere, we will use the following result (see [21, Thm.7,
p.29] for a proof).

Lemma 1.10. — Let x0 ∈ Ω and r > 0 be such that B2r(x0) ⊂ Ω. If w satisfies

∆w = −∆ψ in B2r(x0),

then

(1.10) ‖D2w‖L∞(Br(x0)) ≤ C
( 1

r2
‖w‖L∞(B2r(x0)) + ‖D2ψ‖L∞(B2r(x0))

)
,

for some C = C(n) > 0.

An important result we will use to remove the dependence on the radius is that
inside a ball around a point on the free boundary, the shifted solution u grows no
faster than the square of the radius of this ball. To show this, we will need the
following Harnack inequality for harmonic functions (see [25, Cor.9.25, p.250] for a
proof).

Lemma 1.11 (Harnack inequality). — Let w ∈ H2(Ω) satisfy ∆w = 0 in Ω,
w ≥ 0 in Ω. Then for any x0 ∈ Ω and r > 0 such that B2r(x0) ⊂ Ω, we have

sup
x∈Br(x0)

w(x) ≤ C inf
Br(x0)

w(x)
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for some C = C(n) > 0.

It is important to note that in this harmonic case the constant only depends on
the dimension n and not on the chosen radius r (this is not necessarily true for a
more general elliptic operator).

Theorem 1.12 (Quadratic growth). — Let x0 ∈ ∂O∩Ω and r > 0 be such that
B2r(x0) ⊂ Ω. Then

sup
x∈Br(x0)

u(x) ≤ Cr2‖∆ψ‖L∞(Ω)

for some C = C(n) > 0.

Proof. — Fix x0 ∈ ∂O ∩ Ω and let r > 0 be such that B2r(x0) ⊂ Ω14. We split
u = u1 + u2 in B2r(x0), where

∆u1 = ∆u, ∆u2 = 0 in B2r(x0)

u1 = 0, u2 = u in ∂B2r(x0).

We then proceed in estimating each of the functions u1 and u2 separately. To make
the notation easier to follow, we set m := ‖∆ψ‖L∞(Ω).

We begin with u1: observe that

(1.11) |∆u1(x)| ≤ m

for all x ∈ B2r(x0). We consider the smooth function

ϕ : x 7→ 1

2n
(4r2 − |x− x0|2).

Clearly ϕ(x) = 0 for every x ∈ ∂B2r(x0), and differentiating twice leads us to{
−∆ϕ = 1 in B2r(x0)

ϕ = 0 on ∂B2r(x0).

Combining this with (1.11) yields

∆mϕ(x) ≤ ∆u1(x) ≤ −∆mϕ(x)

for every x ∈ B2r(x0). Since ϕ(x) = u1(x) = 0 for x ∈ ∂B2r(x0), we may apply the
comparison principle for elliptic equations (see [25, Thm.3.3, p.33]) to deduce that

−mϕ(x) ≤ u1(x) ≤ mϕ(x)

14 For example, one may take r = dist(x0,∂Ω)
2 .
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holds for all x ∈ B2r(x0). Whence by using the definition of ϕ, we conclude that

(1.12) |u1(x)| ≤ mϕ(x) ≤ 2

n
r2m

for all x ∈ B2r(x0).
Now notice that since u2 is harmonic in B2r(x0) and u2 = u ≥ 0 on ∂B2r(x0), we

have u2 ≥ 0 in B2r(x0) by virtue of the weak maximum principle. Also, since x0 lies
in the free boundary ∂O ∩ Ω, one has u(x0) = 0. Therefore

u2(x0) = −u1(x0) ≤ 2

n
r2m

holds by (1.12). We may thence apply the Harnack inequality to the above to obtain

sup
x∈Br(x0)

u2(x) ≤ C inf
x∈Br(x0)

u2(x) ≤ Cu2(x0) ≤ 2C

n
r2m

for some C = C(n) > 0. Combining the estimates for u1 and u2 we obtain the
desired result.

Theorem 1.13 (C1,1 regularity). — Let u ∈ H2(Ω) ∩ C0(Ω), u ≥ 0 in Ω be a
solution to (1.9). Then u ∈ C1,1

loc (Ω) and

‖D2u‖L∞(K) ≤ C
(
‖u‖L∞(Ω) + ‖D2ψ‖L∞(Ω)

)
,

for any K b Ω, where C = C(n, dist(K, ∂Ω)).

Proof. — As discussed earlier, since u ∈ H2(Ω) and D2u = 0 a.e. on Oc, it suffices
to prove a uniform bound for D2u in O ∩K for any K b Ω.

Fix x0 ∈ O ∩K and set r = dist(x0,O
c) and ρ = dist(K, ∂Ω). Notice that such a

choice for r would imply Br(x0) ⊂ O and thence

∆u = −∆ψ in Br(x0).

We distinguish two different cases.
If r ≥ ρ/5, the interior derivative estimate (1.10) yields

‖D2u‖L∞(Br/2(x0)) ≤ C(n)
( 4

r2
‖u‖L∞(Ω) + ‖D2ψ‖L∞(Ω)

)
≤ C(n)

(100

ρ2
‖u‖L∞(Ω) + ‖D2ψ‖L∞(Ω)

)
.(1.13)

If r < ρ/5, applying estimate (1.10) leaves us with a quadratic dependence upon
r. To cancel this factor, one seeks to apply the quadratic growth estimate from
Theorem 1.12. To this end, let y0 ∈ ∂Br(x0) ∩ ∂O be a point on the free boundary.
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From the triangle inequality, it follows that B4r(y0) ⊂ B5r(x0) b Ω, so applying
Theorem 1.12 gives

‖u‖L∞(B2r(y0)) ≤ 4C(n)r2‖∆ψ‖L∞(Ω).

Now observe that by the triangle inequality, Br(x0) ⊂ B2r(y0), thus

‖u‖L∞(Br(x0)) ≤ 4C(n)r2‖∆ψ‖L∞(Ω).

Applying (1.10) and the above estimate respectively leads us to

‖D2u‖L∞(Br/2(x0)) ≤ C(n)
( 4

r2
‖u‖L∞(Ω) + ‖D2ψ‖L∞(Ω)

)
≤ C(n)

(
‖∆ψ‖L∞(Ω) + ‖D2ψ‖L∞(Ω)

)
.

By definition, one also has

‖∆ψ‖L∞(Ω) ≤ n‖D2ψ‖L∞(Ω).

Therefore

(1.14) ‖D2u‖L∞(Br/2(x0)) ≤ C(n)‖D2ψ‖L∞(Ω)

when r ≥ ρ/5. Since x0 ∈ O ∩ K was arbitrary, and one also has the estimate on
K ∩ Oc, by (1.13) and (1.14) we deduce

‖D2u‖L∞(K) ≤ C(n)
( 1

ρ2
‖u‖L∞(Ω) + ‖D2ψ‖L∞(Ω)

)
.

Remark 1.14. — One may in fact show that the C1,1 estimate can be extended
up to the boundary of the domain ∂Ω. The proof require estimates that are beyond
the scope of this work, and for more detail we refer to [41, Theorem 2.17, p.45].

2. The parabolic problem

As mentioned in the introduction, it is useful to consider an evolutionary analog
to the classical obstacle problem (1.2), as this would also yield a broad scope of
applications. The version of the problem we present here has been studied in [2], as
well as in [23]. We consider the space-time cylinder

Q := Ω× (0, T ),

in Rn+1, where the terminal time T ∈ (0,∞) is fixed and Ω ⊂ Rn is a bounded
domain with smooth boundary ∂Ω. We also consider the convex set

K(ψ) := {w ∈ L2(0, T ;H1
0 (Ω)) : wt ∈ L2(Q), w ≥ ψ a.e. in Q},
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where we are given an obstacle ψ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) satisfying ψt ∈ L2(Q)

and ψ(0, ·) = 0 in Ω. Note that if ψ ∈ L2(0, T ;H1
0 (Ω)) and ψt ∈ L2(0, T ;H−1(Ω)),

then ψ ∈ C0([0, T ], L2(Ω)), so the initial condition ψ(0, ·) = 0 in Ω makes sense.
For a proof of this fact, we refer to [21, Thm.3, p.303]. We also assume that we are
given an initial datum u0 ∈ H1

0 (Ω) and a source term f ∈ L2(Q). To simplify the
notations, we denote by

Σ := ∂Ω× (0, T )

the lateral boundary of the cylinder Q.
The problem we present consists in finding a solution u ∈ K(ψ) to the parabolic

variational inequality

(2.1)


∫
Q

ut(v − u)dxdt+

∫
Q

∇u · ∇(v − u)dxdt ≥
∫
Q

f(v − u)dxdt

u = 0 on Σ

u(0, ·) = u0 in Ω,

for all v ∈ K(ψ) with v(0, ·) = u0 in Ω. The variational inequality (2.1) is called a
parabolic obstacle problem. By arguing similarly as for ψ, for a function u ∈ K(ψ)
the initial condition u(0, ·) = u0 in Ω also makes sense.

2.1. Existence and uniqueness of a solution. — To simplify the notation for
what follows, we consider the set

V :=
{
w ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1

0 (Ω)) : wt ∈ L2(Q)
}
.

Note that a function u ∈ V would not only satisfy u ∈ C0([0, T ];L2(Ω)), but even
u ∈ C0([0, T ];H1(Ω)) (see [21, Thm.4, p.288]). We now state the main result of this
section.

Theorem 2.1. — There exists a unique solution u ∈ K(ψ) ∩ V to the parabolic
obstacle problem (2.1).

To prove this theorem, we use a penalization method as done for the regular-
ity study in the classical obstacle problem. Namely, we will consider a family of
semilinear parabolic equations involving a penalization term, show existence and
uniqueness of solutions to these problems, as well as adequate estimates which will
be used to obtain a limit by a compactness argument.

It is important to mention that since the estimates only give weak convergences,
due to the form of the variational inequality we may need a compact embedding the-
orem which will guarantee strong convergence in order to pass to the limit. However
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the classical result of Rellich-Kondrachov is not applicable in the parabolic setting.
This issue is rectified with the following result of J.-P. Aubin and J.-L. Lions, a proof
of which may be found in [7, 46, 34, 16].

Lemma 2.2 (Aubin-Lions). — Let X1, X and X−1 be Banach spaces such that
X1 ↪→ X ↪→ X−1, and assume that the continuous embedding X1 ↪→ X is also
compact. For 1 ≤ p, q ≤ ∞, let

W := {w ∈ Lp(0, T ;X1) : wt ∈ Lq(0, T ;X−1)}.
If p < ∞, then the embedding W ↪→ Lp(0, T ;X) is compact, while if p = ∞ and
q > 1, then the embedding W ↪→ C0([0, T ];X) is compact.

Now for fixed ε > 0, the penalized problem consists in finding a weak solution uε
to

(2.2)


uεt −∆uε + βε(u

ε − ψ) = f in Q,

uε = 0 on Σ

uε(0, ·) = u0 in Ω,

where the penalty function βε(·) := ε−1β(·) is satisfies the assumptions β ∈ C1(R),
β(x) = 0 if and only if x ∈ [0,∞) and 0 ≤ β′(·) ≤ 1 on R. Note that the last
assumption implies that β is monotone nondecreasing, and on the other hand, by
the mean-value theorem β is also Lipschitz continuous with Lipschitz constant 1.

We note that by a weak solution to the semilinear parabolic equation (2.2) we
mean a function uε ∈ L2(0, T ;H1

0 (Ω)) with uεt ∈ L2(0, T ;H−1(Ω)) such that for a.e.
0 ≤ t ≤ T , the weak form〈
uεt(t, ·), v

〉
+

∫
Ω

∇uε(t, x) · ∇v(x)dx+

∫
Ω

βε(u
ε − ψ)(t, x)v(x)dx =

∫
Ω

f(t, x)v(x)dx

holds for all v ∈ H1
0 (Ω), and

uε(0, ·) = u0 in Ω.

Here 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). For more detail

on this notion, we refer to [21, Chapter 7]. To show that the above problem admits
such a solution, we will use the following well-known fixed point theorem.

Theorem 2.3 (Banach’s Fixed Point). — Let X be a Banach space and let S :
X → X a nonlinear map. If S is a strict contraction, meaning there exists γ ∈ [0, 1)
such that

‖Sw − Sv‖X ≤ γ‖w − v‖X
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for all w, v ∈ X, then S has a unique fixed point.

Proposition 2.1. — For any ε > 0, there exists a unique weak solution uε ∈ V of
(2.2).

Proof. — Fix ε > 0 and assume without loss of generality that ψ ≡ 0. Since βε is
Lipschitz continuous with constant ε−1 and βε(0) = 0, it satisfies

(2.3) |βε(x)| ≤ 1

ε
|x|.

Our strategy will be to apply Banach’s fixed point theorem in the Banach space

X = C0([0, T ];L2(Ω))

endowed with the norm

‖w‖X := max
t∈[0,T ]

‖w(t, ·)‖L2(Ω).

Given any function w ∈ X, set gε(t, ·) := βε(w(t, ·)) for t ∈ [0, T ], and in light of
the growth estimate (2.3) we see that gε ∈ L2(Q). Consequently, by using classical
well-posedness results for linear evolution equations (see [21, Thm.3, p.356]), the
problem

(2.4)


yt −∆y = f − gε in Q

y = 0 on Σ

y(0, ·) = u0 on Ω,

has a unique weak solution

y ∈ L2(0, T ;H1
0 (Ω)), with yt ∈ L2(0, T ;H−1(Ω)).

Hence y ∈ X by the recurring argument [21, Thm.3, p.287], and since u0 ∈ H1
0 (Ω),

one has further regularity, namely y ∈ V (see [21, Thm.5, p.360]), and in fact y ∈ V

also implies y ∈ C0([0, T ];H1(Ω)) (see [21, Thm.4, p.288]).
We may now define S : X → X by setting Sw = y. We claim that if the

terminal time T > 0 is small enough, then S is a strict contraction. To show this,
let w, w̃ ∈ X and define y = Fw and ỹ = Fw̃. Consequently, y is a weak solution
of (2.4) for gε = βε(w) and ỹ satisfies an analogous weak form for g̃ε = βε(w̃).
Now for an arbitrary t ∈ [0, T ], subtracting the weak forms with the test function
y(t, ·)− ỹ(t, ·) ∈ H1

0 (Ω) gives∫
Ω

(y− ỹ)t(y− ỹ)(t, x)dx+

∫
Ω

|∇(y− ỹ)(t, x)|2dx =

∫
Ω

(gε − g̃ε)(y− ỹ)(t, x)dx.
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The above may be equivalently be rewritten as
d

dt

∫
Ω

|(y− ỹ)(t, x)|2dx+ 2

∫
Ω

|∇(y− ỹ)(t, x)|2dx = 2

∫
Ω

(gε − g̃ε)(y− ỹ)(t, x)dx.

We estimate the right-hand side by the Young (with α) and Poincaré inequalities
respectively:

2

∫
Ω

(gε − g̃ε)(y− ỹ)(t, x)dx ≤ α‖y(t, ·)− ỹ(t, ·)‖2
L2(Ω) +

1

α
‖gε(t, ·)− g̃ε(t, ·)‖2

L2(Ω)

≤ αC(Ω, n)‖y(t, ·)− ỹ(t, ·)‖2
H1

0 (Ω) +
1

α
‖gε(t, ·)− g̃ε(t, ·)‖2

L2(Ω),

for α > 0. Whence
d

dt
‖y(t, ·)− ỹ(t, ·)‖2

L2(Ω) +
(
2− αC(Ω, n)

)
‖y(t, ·)− ỹ(t, ·)‖2

H1
0 (Ω)

≤ 1

α
‖gε(t, ·)− g̃ε(t, ·)‖2

L2(Ω).

Choosing α ≤ 2
C(Ω,n)

yields

d

dt
‖y(t, ·)− ỹ(t, ·)‖2

L2(Ω) ≤
1

α
‖gε(t, ·)− g̃ε(t, ·)‖2

L2(Ω),

and since gε = βε(u) and βε being Lipschitz continuous (with constant ε−1), we also
have

d

dt
‖y(t, ·)− ỹ(t, ·)‖2

L2(Ω) ≤
1

αε2
‖w(t, ·)− w̃(t, ·)‖2

L2(Ω).

Consequently,

‖y(τ, ·)− ỹ(τ, ·)‖2
L2(Ω) ≤

1

αε2

∫ τ

0

‖w(t, ·)− w̃(t, ·)‖2
L2(Ω)dt(2.5)

≤ T

αε2
‖w − w̃‖2

X ,

for each τ ∈ [0, T ]. Maximizing the left-hand side with respect to τ gives

‖Sw − Sw̃‖2
X = ‖y− ỹ‖2

X ≤
T

αε2
‖w − w̃‖2

X .

Choosing T sufficiently small so that T < αε2 would imply that S is a strict con-
traction.

Now given any T > 0, in light of what precedes we select T1 > 0 so that T1 < αε2

and then apply Banach’s fixed point theorem to find a weak solution uε = y ∈ V of
the penalized problem (2.2) on the time interval [0, T1]. Since uε(t, ·) ∈ H1

0 (Ω) for



34 BORJAN GESHKOVSKI

a.e. t ∈ [0, T1], we can assume (we may redefine T1 if needed) that uε(T1, ·) ∈ H1
0 (Ω).

Observe that the time T1 depends only on ε. We therefore repeat the argument above
to extend this solution to the time interval [T1, 2T1]. After finitely many steps we
construct a final weak solution uε ∈ V existing on the full interval [0, T ].

To demonstrate uniqueness, fix ε > 0 and let uε, ũε be two weak solutions of the
penalty problem. Then we have y = uε, ỹ = ũε in (2.5), meaning

‖uε(τ, ·)− ũε(τ, ·)‖2
L2(Ω) ≤ C(ε)

∫ τ

0

‖uε(t, ·)− ũε(t, ·)‖2
L2(Ω)dt

for τ ∈ [0, T ]. By virtue of the differential form of Gronwall’s inequality (see Propo-
sition A.11 in the Appendix), we conclude that uε ≡ ũε.

We will need some uniform estimates in order to apply a compactness argument
and pass to the limit.

Lemma 2.4. — For fixed ε > 0, the solution uε ∈ V to the penalized problem (2.2)
satisfies

ess sup
t∈[0,T ]

‖uε(t, ·)‖H1
0 (Ω)+‖uε‖L2(0,T ;H2(Ω)) + ‖uεt‖L2(Q)

≤ C
(
‖∆ψ‖L2(Q) + ‖ψt‖L2(Q) + ‖f‖L2(Q) + ‖∇u0‖L2(Ω)

)
,

for some C = C(Ω, T ) > 0 independent of ε.

Proof. — Fix ε > 0. By virtue of the energy estimate [21, Thm.5, p.360]

ess sup
t∈[0,T ]

‖uε(t, ·)‖H1
0 (Ω)+‖uε‖L2(0,T ;H2(Ω)) + ‖uεt‖L2(Q)

≤ C(Ω, T )
(
‖βε(uε − ψ)‖L2(Q) + ‖f‖L2(Q) + ‖∇u0‖L2(Ω)

)
,(2.6)

we observe that it suffices to obtain an adequate bound for the L2(Q) norm of βε in
order to conclude. For fixed t ∈ [0, T ], using the penalty equation we obtain∫

Ω

(βε(u
ε − ψ)(t, x))2dx =

∫
Ω

βε(u
ε − ψ)[f − uεt + ∆uε](t, x)dx

=

∫
Ω

βε(u
ε − ψ)[∆(uε − ψ) + ∆ψ](t, x)dx

−
∫

Ω

βε(u
ε − ψ)(uε − ψ)t(t, x)dx

+

∫
Ω

βε(u
ε − ψ)[f − ψt](t, x)dx.
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Now, Green’s first identity yields∫
Ω

βε(u
ε − ψ)∆(uε − ψ)(t, x)dx = −

∫
Ω

β′ε(u
ε − ψ)|∇(uε − ψ)|2(t, x)dx ≤ 0,

since β′ε ≥ 0. By combining the previous computations we obtain∫
Ω

(βε(u
ε − ψ)(t, x))2dx ≤

∫
Ω

βε(u
ε − ψ)∆ψ(t, x)dx− d

dt

∫
Ω

ρε(u
ε − ψ)(t, x)dx

+

∫
Ω

βε(u
ε − ψ)[f − ψt](t, x)dx,

where ρ′ε = βε, ρε ≥ 0 on R and ρε = 0 on [0,+∞). Now we integrate the above
inequality over [0, T ]; first, observe that

−
∫ T

0

d

dt

∫
Ω

ρε(u
ε − ψ)(t, x)dxdt = −

∫
Ω

ρε(u
ε − ψ)(T, x)dx

+

∫
Ω

ρε(u
ε − ψ)(0, x)dx.

The second integral on the right hand side above is equal to 0, since uε(0, ·) ≥ 0,
ψ(0, ·) = 0 in Ω and ρε = 0 on [0,∞). Moreover, since ρε ≥ 0 on R and thus
ρε ◦ (uε − ψ)(T, ·) ≥ 0, we deduce that

−
∫ T

0

d

dt

∫
Ω

ρε(u
ε − ψ)(t, x)dxdt ≤ 0.

Consequently,∫
Q

(βε(u
ε − ψ))2dxdt ≤

∫
Q

βε(u
ε − ψ)∆ψdxdt+

∫
Q

βε(u
ε − ψ)[f − ψt]dxdt

≤ ‖βε(uε − ψ)‖L2(Q)

(
‖∆ψ‖L2(Q) + ‖f‖L2(Q) + ‖ψt‖L2(Q)

)
.

After simplification, we deduce that

(2.7) ‖βε(uε − ψ)‖L2(Q) ≤ ‖∆ψ‖L2(Q) + ‖f‖L2(Q) + ‖ψt‖L2(Q),

and by plugging this in (2.6) we obtain the desired estimate.

Remark 2.5. — The previous Lemma clearly asserts that the family of approxi-
mate solutions {uε}ε>0 is bounded in L2(0, T ;H1

0 (Ω)), and hence in L2(Q). To see
this, fix ε > 0 and observe that

‖uε‖2
L2(0,T ;H1

0 (Ω)) ≤ T ess sup
t∈[0,T ]

‖uε(t, ·)‖2
H1

0 (Ω).
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We deduce that

‖uε‖L2(0,T ;H1
0 (Ω)) ≤ C(Ω, n, T )

(
ess sup
t∈[0,T ]

‖uε(t, ·)‖H1
0 (Ω) + ‖uε‖L2(0,T ;H2(Ω)) + ‖uεt‖L2(Q)

)
.

This estimate also implies the boundedness of {uε}ε>0 in L2(Q) by the Poincaré
inequality.

We now let ε→ 0 to prove Theorem 2.1.

Proof of Theorem 2.1. — Denote by {uε}ε>0 ⊂ V the family of solutions to the pe-
nalized problem (2.2). By virtue of the energy estimate from Lemma 2.4, we deduce
that {uε}ε>0 and {uεt}ε>0 are bounded in L2(0, T ;H2(Ω)) and L2(Q) respectively,
while Remark 2.5 implies that {uε}ε>0 is also bounded in L2(0, T ;H1

0 (Ω)). Whence
by the Banach-Alaoglu theorem and Proposition A.7 in the Appendix, there exists
u ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) with ut ∈ L2(Ω) such that

uεt ⇀ ut weakly in L2(Q)

uε ⇀ u weakly in L2(0, T ;H2(Ω))

uε ⇀ u weakly in L2(0, T ;H1
0 (Ω))

along subsequences as ε→ 0. Applying the Aubin-Lions lemma with p = q = 2 and
the triple X1 = H1

0 (Ω), X = L2(Ω), X−1 = H−1(Ω), we deduce that

uε → u strongly in L2(Q)

along a subsequence as ε→ 0. Now observe that for almost every t ∈ [0, T ], one has

‖∇(uε − u)(t, ·)‖2
L2(Ω) ≤ ‖∆(uε − u)(t, ·)‖L2(Ω)‖(uε − u)(t, ·)‖L2(Ω)

by using Green’s first identity and the Cauchy-Schwarz inequality. Integrating be-
tween 0 and T gives

‖∇(uε − u)‖2
L2(Q) ≤ ‖∆(uε − u)‖L2(Q)‖uε − u‖L2(Q),

again by using the Cauchy-Schwarz inequality. The L2(0, T ;H2(Ω)) boundedness of
{uε}ε>0 implies that {∆uε}ε>0 is bounded in L2(Q) and since uε converges strongly
to u in L2(Q), we finally deduce that ∇uε → ∇u strongly in L2(Q), i.e.

uε → u strongly in L2(0, T ;H1
0 (Ω)).

Now for fixed ε > 0, since β ≤ 0 (as it is nondecreasing and equal to 0 on [0,∞)),
uε satisfies∫

Q

uεt(v − uε)dxdt+

∫
Q

∇uε · ∇(v − uε)dxdt ≥
∫
Q

f(v − uε)dxdt,
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for every v ∈ K(ψ). Observe that∫
Q

uεt(v − uε)dxdt =

∫
Q

uεt(v − u)dxdt−
∫
Q

uεt(u
ε − u)dxdt,

and similarly∫
Q

∇uε · ∇(v − uε)dxdt =

∫
Q

∇uε · ∇(v − u)dxdt−
∫
Q

∇uε · ∇(uε − u)dxdt.

Hence, using the strong convergences of {uε}ε>0, {∇uε}ε>0, the weak convergence of
{uεt}ε>0 and the boundedness of the latter two in L2(Q), we may let ε→ 0 to deduce∫

Q

ut(v − u)dxdt+

∫
Q

∇u · ∇(v − u)dxdt ≥
∫
Q

f(v − u)dxdt,

for all v ∈ K(ψ). Using estimate (2.7) and since βε = ε−1β, one obtains

(2.8) ‖β(uε − ψ)‖L2(Q) ≤ εC(ψ, f).

Because β is continuous and the strong L2(Q) convergence of {uε}ε>0 implies a.e.
convergence along some subsequence, letting ε→ 0 we deduce

‖β(u− ψ)‖L2(Q) = 0

by continuity of the norm. Recall that β = 0 only on [0,∞), thus it follows that
u ≥ ψ a.e. in Q and we may conclude that u ∈ K(ψ) solves the parabolic obstacle
problem (2.1). Finally, since {uε}ε>0 is bounded in L∞(0, T ;H1

0 (Ω)) and converges
weakly in L2(0, T ;H1

0 (Ω)) to u, we may apply Proposition A.8 from the Appendix
to obtain u ∈ V.

To demonstrate uniqueness, let u, ũ be two solutions. Whence, they satisfy∫
Q

ut(v − u)dxdt+

∫
Q

∇u · ∇(v − u)dxdt ≥
∫
Q

f(v − u)dxdt

and ∫
Q

ũt(v − ũ)dxdt+

∫
Q

∇ũ · ∇(v − ũ)dxdt ≥
∫
Q

f(v − ũ)dxdt

respectively for all v ∈ K(ψ). Choosing v = ũ and v = u respectively and adding
up both inequalities gives∫

Q

(u− ũ)t(ũ− u)dxdt+

∫
Q

∇(u− ũ) · ∇(ũ− u)dxdt ≥ 0.
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By rearranging the above inequality, we deduce that
1

2

∫
Q

|(u− ũ)t|2dxdt+

∫
Q

|∇(u− ũ)|2dxdt ≤ 0,

and by virtue of the Poincaré inequality, we conclude that u = ũ a.e. in Q.

Corollary 2.2. — Let u ∈ V∩K(ψ) be the solution to the parabolic obstacle problem
(2.1). Then

ess sup
t∈[0,T ]

‖u(t, ·)‖H1
0 (Ω) + ‖u‖L2(0,T ;H2(Ω)) + ‖ut‖L2(Q)

≤ C
(
‖∆ψ‖L2(Q) + ‖ψt‖L2(Q) + ‖f‖L2(Q) + ‖∇u0‖L2(Ω)

)
,

holds for some C = C(Ω, T ) > 0. Moreover, u ∈ C0([0, T ];H1(Ω)).

Proof. — Due to the weak convergences established in the previous proof, the esti-
mate follows from Lemma 2.4 and the weak lower semicontinuity of the norms and
Proposition A.8 from the Appendix. The fact that u ∈ C0([0, T ];H1(Ω)) follows
from [21, Thm.4, p.288].

2.2. Euler-Lagrange equations. — Assuming the existence of a continuous
(space-time) solution15 u, and assuming moreover ψ ∈ C0(Q), by virtue of a varia-
tional argument we may also deduce Euler-Lagrange equations as for the classical
obstacle problem. For v ∈ C∞c (O), where

O := {(t, x) ∈ Q : u(t, x) > ψ(t, x)},
and |τ | is sufficiently small, v := u+ τw ≥ ψ and so v ∈ K(ψ). Thus, plugging v in
the variational inequality gives

τ

∫
O

(utw +∇u · ∇w − fw)dxdt ≥ 0.

Due to Green’s first identity and since the above holds for τ both positive and
negative, we may conclude that

(2.9) ut −∆u = f a.e. in O.

15 We will not further discuss regularity results for the solution of the parabolic obstacle problem,
since the setup for the problem is not the same in literature. In the "dynamic obstacle" case
that we considered in this work, regularity is discussed for example in [40] and in [6], where
the problem is referred to as the "thick" obstacle problem (compared to the "thin" problem,
which we discuss on page 88). We also refer to [13, 14] for the regularity study of related
problems.



OBSTACLE PROBLEMS: THEORY AND APPLICATIONS 39

Now, by setting v := u+w where v ∈ C∞c (Q), v ≥ 0, and plugging in the variational
inequality, one obtains ∫

Q

(utw +∇u · ∇w − fw)dxdt ≥ 0.

Whence, we deduce

(2.10) ut −∆u ≥ f a.e. in Q.

To summarize, from (2.9) and (2.10), we deduce the Euler-Lagrange equations for
the parabolic obstacle problem

u ≥ ψ a.e. in Q

ut −∆u ≥ f a.e. in Q

ut −∆u = f a.e. in O

u = 0 on Σ

u(0, ·) = u0 in Ω.

As for the classical obstacle problem, we may derive the complementarity problem

ut −∆u− f ≥ 0 a.e. in Q

u ≥ ψ a.e. in Q

(ut −∆u− f)(u− ψ) = 0 a.e. in Q

u = 0 on Σ

u(0, ·) = u0 in Ω,

which in the literature is often written in the form
min{ut −∆u− f, u− ψ} = 0 a.e. in Q

u = 0 on Σ

u(0, ·) = u0 in Ω.

2.3. Euler’s method for a homogeneous problem. — We now illustrate in
a mostly formal way a method for studying a slightly different parabolic obstacle
problem, namely one where the obstacle does not vary with time. The key idea in this
method is to use the implicit Euler scheme for a finite difference approximation of the
time derivative, reducing the problem to a steady-state variational inequality at each
time step. The latter in turn will be shown to posses a unique solution by applying
monotone operator theory. One then constructs an adequate approximation by
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"gluing" the solutions at the discrete time steps, lets the mesh size go to 0 and
deduces a limit by a compactness argument.

We will work in a simple case, as we assume that f ≡ 0 and that the obstacle
does not depend on time. While such assumptions may seem restrictive, we will
nonetheless observe the constructive nature of the method which renders it useful
in numerical analysis and computation.

The obstacle problem we are will study consists in finding u ∈ L2(0, T ;H1
0 (Ω))

with ut ∈ L2(Q) such that for a.e. t ∈ (0, T ), u(t, ·) ∈ K(ψ) and

(2.11)


∫

Ω

ut(v − u)dx+

∫
Ω

∇u · ∇(v − u)dx ≥ 0

u(0, ·) = u0 in Ω,

for every v ∈ K(ψ), where

K(ψ) := {v ∈ H1
0 (Ω) : v ≥ ψ a.e. in Ω}

is the closed and convex set that appears in the classical obstacle problem. The
obstacle ψ is assumed in H2(Ω), and we will require additional regularity on the
initial datum, namely we assume u0 ∈ H2(Ω)∩K(ψ). Note that if there is a solution
u as above, we immediately deduce that u ∈ C0([0, T ];L2(Ω)) by the recurring
argument [21, Thm.3, p.303], so the initial condition u(0, ·) = u0 in Ω makes sense.

We begin by stating the main result of this subsection.

Proposition 2.3. — There exists a unique solution to the parabolic obstacle prob-
lem (2.11).

We begin by partitioning the time interval [0, T ] intom equal sub-intervals [ti−1, ti]
where m ∈ N is fixed, i ∈ {1, . . . ,m}, ti = ih and h = T

m
is the mesh size. We now

consider the semidiscretized problem consisting of finding ui ∈ K(ψ) such that

(2.12)
∫

Ω

(ui − ui−1

h

)
(v − ui)dx+

∫
Ω

∇ui · ∇(v − ui)dx ≥ 0

for every v ∈ K(ψ) and for each i ∈ {1, . . . ,m}. When i = 1, we set ui−1 := u0

where u0 is the initial datum. We may rewrite the variational inequality (2.12) as

1

h

∫
Ω

ui(v − ui)dx+

∫
Ω

∇ui · ∇(v − ui)dx ≥
1

h

∫
Ω

ui−1(v − ui)dx,
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and since ui−1 is known at each time step i ∈ {1, . . . ,m}, we see that this corresponds
to the variational inequality〈

Aui, v − ui
〉
≥
〈ui−1

h
, v − ui

〉
L2(Ω)

where the operator A : K(ψ)→ H−1(Ω) is given by

A : u 7→ Au : v 7→ 1

h

∫
Ω

uvdx+

∫
Ω

∇u · ∇vdx.

Here 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). We see that

A linear, thus continuous on finite dimensional subspaces, and also coercive and
strictly monotone due to its inner product form. We may thence apply Theorem
B.1 and deduce the existence of a unique solution ui ∈ K(ψ) to (2.12) for each
i ∈ {1, . . . ,m}.

We have thus obtained a family of solutions {ui}mi=1 which may be used to form
the proposed approximate solution um : [0, T ]→ H1

0 (Ω) as

um(t, ·) := ui−1 + (t− ti−1)
ui − ui−1

h
, for t ∈ [ti−1, ti], i ∈ {1, . . . ,m}.

Observe that um ∈ C0([0, T ];H1
0 (Ω)) is affine in time over each subinterval [ti−1, ti]

and one also has um(ti−1, ·) = ui−1 and um(ti, ·) = ui, so the time variable plays the
role of a homotopy parameter in some sense, connecting ui−1 at time ti−1 to ui at
time ti. We also consider the step function um : [0, T ]→ H1

0 (Ω) defined as

um(t, ·) := ui for t ∈ [ti−1, ti], i ∈ {1, . . . ,m}.
We will use these functions to reformulate the semidiscretized variational inequality
(2.12).

To show that um converges to a solution u of the parabolic obstacle problem (2.11)
as m→∞, we first establish some uniform estimates in order to pass to the limit.

Lemma 2.6. — There exist constants C0, C1 > 0 depending only on T, u0 such that∥∥∥ui − ui−1

h

∥∥∥
L2(Ω)

≤ C0(2.13)

‖∇ui‖L2(Ω) ≤ C1,(2.14)

for each m ∈ N and i ∈ {1, . . . ,m}.
Proof. — First, by setting i = 0 and v = u0 in (2.12), we obtain

1

h

∫
Ω

(u1 − u0)(u0 − u1)dx+

∫
Ω

∇u1 · ∇(u0 − u1)dx ≥ 0.
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Slightly rearranging this inequality leads us to∫
Ω

∇u0 · ∇(u0 − u1)dx ≥ ‖∇(u1 − u0)‖2
L2(Ω) +

1

h
‖u1 − u0‖2

L2(Ω)

≥ 1

h
‖u1 − u0‖2

L2(Ω).

Since u0 ∈ H2(Ω)∩H1
0 (Ω), we may use Green’s first identity and the Cauchy-Schwarz

inequality to estimate the left-hand side:∫
Ω

∇u0 · ∇(u0 − u1)dx ≤ ‖∆u0‖L2(Ω)‖u1 − u0‖L2(Ω).

Combining the two estimates yields

(2.15)
∥∥∥u1 − u0

h

∥∥∥
L2(Ω)

≤ ‖∆u0‖L2(Ω).

Now fix j ≥ 2. The variational inequality (2.12) for i = j and v = uj−1 reads∫
Ω

(uj − uj−1

h

)
(uj−1 − uj)dx+

∫
Ω

∇uj · ∇(uj−1 − uj)dx ≥ 0

and similarly for i = j − 1 and v = uj∫
Ω

(uj−1 − uj−2

h

)
(uj − uj−1)dx+

∫
Ω

∇uj−1 · ∇(uj − uj−1)dx ≥ 0.

Adding up these inequalities and switching the signs gives
1

h

∫
Ω

(uj−1 − uj−2)(uj − uj−1)dx ≥ ‖∇(uj − uj−1)‖2
L2(Ω) +

1

h
‖uj − uj−1‖2

L2(Ω)

≥ 1

h
‖uj − uj−1‖2

L2(Ω).

We may estimate the left-hand side using the Cauchy-Schwarz inequality:∫
Ω

(uj−1 − uj−2

h

)
(uj − uj−1)dx ≤

∥∥∥uj−1 − uj−2

h

∥∥∥
L2(Ω)
‖uj − uj−1‖L2(Ω).

By combining these estimates, we deduce∥∥∥uj − uj−1

h

∥∥∥
L2(Ω)

≤
∥∥∥uj−1 − uj−2

h

∥∥∥
L2(Ω)

for j ∈ {2, . . . ,m}. We may now "iterate" the above inequality and use (2.15) to
obtain ∥∥∥uj − uj−1

h

∥∥∥
L2(Ω)

≤ ‖∆u0‖L2(Ω),
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which gives (2.13).
Now note that for any 1 ≤ i ≤ m,

ui = (ui − ui−1) + (ui−1 − ui−2) + . . .+ (u1 − u0) + u0.

Coupling this with (2.13), we deduce that

‖ui‖L2(Ω) ≤ C0hm+ ‖u0‖L2(Ω) ≤ C1T + ‖u0‖L2(Ω)

for every i ∈ {1, . . . ,m} as h = T
m
. Also, for v = 0 in (2.12) we have

‖∇ui‖2
L2(Ω) ≤

1

h

∫
Ω

(ui−1 − ui)uidx,

so (2.14) follows from the Cauchy-Schwarz and Poincaré inequalities.

Proof of Proposition 2.3. — First, using the bound (2.14) we observe that for a.e.
t ∈ (0, T ), we have the estimates

‖um(t, ·)‖H1
0 (Ω) ≤ 3C(2.16)

and

‖um(t, ·)‖H1
0 (Ω) ≤ C(2.17)

where C = C(T, u0) > 0 is independent of m. Notice that the bound (2.13) provides
a uniform estimate on the time derivative of the piecewise differentiable function
um, since the weak derivative is

(um)t =
ui − ui−1

h
,

thus

(2.18) ess sup
τ∈[0,T ]

‖(um)t(τ, ·)‖L2(Ω) ≤ C0.

The above estimate gives

(2.19) ‖um(t, ·)− um(τ, ·)‖L2(Ω) ≤ C0|t− τ | for t, τ ∈ [0, T ].

This implies that the family {um}∞m=1 is equicontinuous, thus the Arzelà-Ascoli
theorem guarantees the existence of u ∈ C0([0, T ];L2(Ω)) such that

um → u strongly in C0([0, T ];L2(Ω))
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along some subsequence as m → ∞. It also follows from (2.17) and the Banach-
Alaoglu theorem that {um}∞m=1 has a subsequence that converges weakly in
L2(0, T ;H1

0 (Ω)). Now (2.13) yields the bound

‖um(t, ·)− um(t, ·)‖L2(Ω) ≤ hC1 + |t− ti−1|C1 ≤ 2hC1 =
2TC1

m
,

for a.e. t ∈ [0, T ], from which it follows that u ∈ L2(0, T ;H1
0 (Ω)) and

um ⇀ u weakly in L2(0, T ;H1
0 (Ω))

along a subsequence as m → ∞. Moreover, since K(ψ) is weakly closed, u(t, ·) ∈
K(ψ) for a.e. t ∈ (0, T ). Finally, by exploiting the bound (2.16) in a similar fashion,
we deduce that ut ∈ L2(Q) and

(um)t ⇀ ut weakly in L2(Q)

along a subsequence as m→∞.
Now in terms of um and um, the semidiscretized variational inequality reads∫

Ω

(um)t(v − um)dx+

∫
Ω

∇um · ∇(v − um)dx ≥ 0

for all v ∈ K(ψ) and holds a.e. in [0, T ]. For arbitrary points τ1, τ2 ∈ [0, T ],
integrating the above from τ1 to τ2 gives∫ τ2

τ1

∫
Ω

(um)t(v − um)dxdt+

∫ τ2

τ1

∫
Ω

∇um · ∇(v − um)dxdt ≥ 0

for all v ∈ K(ψ). Since the norm and the inner product (for fixed v) are weakly
lower semicontinuous functions (see the Appendix), we have

lim inf
m→∞

(∫ τ2

τ1

∫
Ω

|∇um|2dxdt+

∫ τ2

τ1

∫
Ω

∇um · ∇(−v)dxdt
)

≥
∫ τ2

τ1

∫
Ω

|∇u|2dxdt−
∫ τ2

τ1

∫
Ω

∇u · ∇vdxdt,

by virtue of superadditivity of the limit inferior and the weak L2(0, T ;H1
0 (Ω)) con-

vergence of um. Taking the limit inferior as m→∞, we finally obtain∫ τ2

τ1

∫
Ω

ut(v − u)dtdx+

∫ τ2

τ1

∫
Ω

∇u · ∇(v − u)dxdt ≥ 0

for all v ∈ K(ψ) by using the previous limiting argument as well as the weak L2(Q)
convergence of (um)t and the strong L2(Q) convergence of um. Since the above holds
for any τ1, τ2 ∈ [0, T ], we deduce that u is a solution of (2.11).
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Uniqueness follows by arguing in the same way as for (2.1).

3. Numerical experiments

To conduct numerical simulations of obstacle problems, we used the FEniCS
software [5, 35, 37, 36]. FEniCS is a collection of open-source software compo-
nents aimed at the numerical resolution of PDEs using the finite element method,
and can be used from both Python and C++. As input, FEniCS takes the vari-
ational formulation of a PDE and then proceeds in discretizing and assembling
the associated matrices. Once the variational formulation has been discretized,
one chooses a solver (linear or nonlinear) depending on the PDE to solve the
system of algebraic equations. The code for obtaining the figures is available at
https://github.com/borjanG.

3.1. The finite element method. — We first give a very brief presentation of
the finite element method. Assume that V is a real Hilbert space with dual V ′ and
consider the problem

Find u ∈ V such that F (u) = f,

where F : V → V ′ and f ∈ V ′. The map F may for instance represent a differential
operator such as the Dirichlet Laplacian. The weak form of the above problem reads

Find u ∈ V such that 〈F (u), v〉 = 〈f, v〉 for all v ∈ V,
where 〈·, ·〉 denotes the duality pairing between V ′ and V . The idea behind the finite
element method is to use the Galerkin technique, where one replaces the above weak
form by

Find uh ∈ Vh such that 〈F (uh), vh〉 = 〈f, vh〉 for all vh ∈ Vh,
where Vh ⊂ V is a finite dimensional subspace of V (say of dimension N) with a finite
dimensional dual space V ′h. In conforming finite-element spaces, i.e. when Vh ( V ,
well-posedness of the discrete problem is inherited from the infinite dimensional
setting. If F is linear, then one can fix a basis {φk}Nk=1 of Vh, define the matrix
Fh ∈ RN×N representing F on Vh (called the stiffness matrix ) as well as the data
vector fh =

(
〈f, φk〉

)
1≤k≤N and rewrite the discrete weak form as the linear system

of equations
Find U ∈ RN such that FhU = fh.
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The vector U is the vector of degrees of freedom that are to be computed, which are
the coefficients of the solution uh in the basis {φk}Nk=1, i.e.

uh(x) =
N∑
k=1

Ukφk(x).

The basis functions are called shape functions. We will use piecewise linear shape
functions. The discrete spaces used in the numerical experiments in this work are
based on either an unstructured triangular mesh over the ball B2(0) ⊂ R2 consisting
of 8270 points and 16136 cells, or a structured triangular mesh over the square
(−1, 1)2 consisting of 4225 points and 8192 cells.

Figure 4. Meshes for the ball B2(0) (left) and the square (−1, 1)2 (right).

3.2. Classical obstacle problem. — Recall that the variational formulation of
the obstacle problem (1.2) is not an equation but rather an inequality. In order to use
the finite element method, our approach will be to approximate the inequality via a
family of penalized problems as we did for the regularity analysis. For programming
purposes, we use a slightly different penalty function (proposed in [28]). Namely,
for ε > 0 we look for a weak solution uε ∈ H1

0 (Ω) to the nonlinear problem

(3.1)

{
−∆uε − 1

ε
max{−uε + ψ, 0} = f in Ω

uε = 0 on ∂Ω.
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Due to the monotonicity of the map u 7→ −max{u− ψ, 0} (which is defined point-
wise) it can be shown that for each ε > 0 there exists a unique solution to the
penalized problem (3.1). One may also show that this solution converges weakly in
H1

0 (Ω) to the unique solution of the classical obstacle problem. For more detail, we
refer to [28].

Now for a numerical resolution of nonlinear partial differential equations of the
form

−∆u+ F (u) = 0,

there are two common approaches:
• Fixed point iteration: Pick u0 and for k ≥ 1, solve

−∆uk+1 + F (uk) = 0.

In other words, one replaces u by uk+1 in all linear terms and by uk in all
nonlinear terms.
• Newton’s method : Pick u0 and for k ≥ 1, solve for δu

−∆δu+ F ′(uk)δu = −(∆uk + F (uk)),

and set uk+1 := uk + δu.
Naturally the choice of which method to use depends on the differentiability proper-
ties of the nonlinearity F . In our approximation problem, the map x 7→ max{x, 0} is
not differentiable at the origin. We will use the Newton approach (which is autom-
atized in FEniCS) by regularizing the max map using C1-approximations. Namely,
for a fixed parameter α > 0 we consider (see Figure 5)

maxα : x 7→


x− α

2
if x ≥ α

x2

2α
if 0 < x < α

0 if x ≤ 0.

It is readily seen that maxα is monotone, convex, continuously differentiable, and
the range of its derivative is included in [0, 1]. Consequently maxα is Lipschitz
continuous with Lipschitz constant 1 by the mean-value theorem. Moreover, the
error decreases linearly with α as

0 ≤ max(0,x)−maxα(x) ≤ α

2

holds for any x ∈ R.
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Figure 5. The penalty function and its approximation with α = 10−1.

We now present some numerical experiments. Post-processing was conducted by
using the ParaView software.

Example 3.1. — As a first example we present a case where the exact solution is
known. Consider the ball Ω = B2(0) ⊂ R2, f ≡ 0 and consider the obstacle

ψ : (x1, x2) 7→
{√

1− x2
1 − x2

2 if x2
1 + x2

2 < 1

0 otherwise.

In this case the problem has a radial solution u(x1, x2) = v(r) with r =
√
x2

1 + x2
2.

For r 6= 0, a simple computation gives rxi = xi
r
, and consequently by the chain rule

we have

uxixi = v′′(r)
x2
i

r2
+ v′(r)

(1

r
− x2

i

r3

)
for i = 1, 2. Therefore

∆u = v′′(r) +
1

r
v′(r),

and if u > ψ then v′′(r) + 1
r
v′(r) = 0, whence

v(r) = −b log r + c
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where b and c are constants. If the free boundary ∂{u > ψ} is at the position r = a,
then we seek for a, b, c satisfying the nonlinear equations

v(a) = ψ(a), v′(a) = ψ′(a), v(2) = 0.

Clearly 0 < a < 1 (see the definition of ψ) and the equations reduce to the following
nonlinear equation for a:

a2(ln 2− ln a) = 1− a2,

with b = a2(1− a2)−1/2, and c = b ln 2. One may find the root of the above equation
numerically and obtain a = 0.69797, b = 0.68026 and c = 0.47152. For the penalty
parameter ε = 10−5 and approximation parameter α = 10−4 we obtain the following
result.

Figure 6. The solution u (wireframe in color) is above the obstacle ψ
(solid in white).

Example 3.2. — We now consider the square Ω = (−1, 1)2 ⊂ R2, the source term
f ≡ −10 and we the "staircase" obstacle

ψ : (x1, x2) 7→


−0.2 if x1 ∈ [−1,−0.5)

−0.4 if x1 ∈ [−0.5, 0)

−0.6 if x1 ∈ [0, 0.5)

−0.8 if x1 ∈ [0.5, 1].

For the penalty parameter ε = 10−5 and approximation parameter α = 10−4 we
obtain the following result.
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Figure 7. The solution u (wireframe) is above the obstacle ψ (solid).

The negative source term would physically represent gravity (the minus sign is
due to the fact that gravity points downwards). Intuitively, the membrane will sag
through and touch the staircase under this load.

Example 3.3. — Finally, let Ω = (−1, 1)2, ψ : (x1, x2) 7→ −x2
1 and f ≡ −4. For

the penalty parameter ε = 10−5 and approximation parameter α = 10−4 we obtain
the following result.

Figure 8. The solution u (wireframe) is above the obstacle ψ (solid).



OBSTACLE PROBLEMS: THEORY AND APPLICATIONS 51

3.3. Parabolic obstacle problem. — The numerical implementation of the
parabolic obstacle problem is similar to the one for the heat equation. Namely,
we discretize the time derivative using an implicit Euler scheme (which guarantees
unconditional stability), and much like the theoretical result presented in the previ-
ous section, solve a steady-state problem at each time-step. In view of what was done
for simulating the classical obstacle problem, this leads us to consider a penalized
problem, namely, for fixed ε > 0, finding a weak solution uε to

uεt −∆uε − 1
ε

max{−uε + ψ, 0} = f in Q

uε = 0 on Σ

uε(t, ·) = u0 in Ω.

After discretizing the time derivative using the Euler scheme and approximating the
max map by the C1 approximations proposed for the classical obstacle problem, we
proceed in conducting numerical experiments.

Example 3.4. — We consider the square Ω = (−2, 2)2 ⊂ R2, f ≡ 0, and we
consider the static obstacle from Example 3.1. We are in a transient setting, so we
also need an initial datum and a final time; take T = 16 and u0(x) = ψ(x). For
ε = 10−5 and α = 10−4, we obtain the following results.

Figure 9. Clockwise from top left: t = 0, 2, 8, 16. We observe that at each
time the solution u (wireframe) is above the obstacle (solid), and we also
observe the expected diffusion phenomenon.
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PART II
AN OBSTACLE PROBLEM WITH COHESION

4. The cohesive obstacle problem

We now present a paper of M. Hintermüller, V.A. Kovtunenko and K. Kunisch
[27], in which the authors investigate a variant of the classical obstacle problem,
namely a steady-state obstacle problem subject to cohesion forces. As before, we
consider Ω ⊂ Rn a bounded domain with smooth boundary ∂Ω. Let ψ ∈ H2(Ω) ∩
C0(Ω) with ψ = 0 on ∂Ω be a given obstacle. Consider a membrane which occupies
the domain Ω and is clamped at the boundary ∂Ω. Under a loading force f ∈
L2(Ω), the membrane is in contact with the obstacle in such a way that a cohesion
phenomenon, i.e. a mutual attraction of the molecules, occurs between these two
bodies. The cohesion force is described by fixed material parameters: γ > 0 (unit of
force times distance) and δ > 0 (unit of distance). The problem consists in finding
the normal displacement u ∈ H2(Ω)∩H1

0 (Ω) and the normal force ξ ∈ L2(Ω) of the
membrane such that the pair (u, ξ) form a strong solution of

(4.1)

{
−D∆u− f = ξ in Ω

u = 0 on ∂Ω,

where D > 0 is a fixed constant, and

(4.2) u ≥ ψ,


ξ = 0 if u > ψ + δ

ξ = −γ
δ

if ψ < u ≤ ψ + δ

ξ ≥ −γ
δ

if u = ψ,

hold almost everywhere in Ω16.

4.1. Physical interpretation. — In linear elasticity theory (see [43]), D denotes
the flexural rigidity17 of the membrane and is given by

D =
Eθ3

12(1− ν2)
> 0,

16 Notice that the map u 7→ ξ defined is discontinuous whenever u(x) = ψ(x) + δ.
17 In layman’s terms, this represents the resistance offered by a structure while undergoing bend-

ing.
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where E denotes Young’s modulus (a measure of the stiffness, i.e. the rigidity of a
solid), ν denotes Poisson’s ratio (the negative of the ratio of the signed lateral strain
to the signed axial strain) and θ denotes the elastic thickness of the membrane.
However, for computational convenience, we henceforth set D = 1.

The ratio γ
δ
represents the elastic limit of the membrane, meaning the point

beyond which any deformation of the membrane becomes permanent. One may
thence give a natural interpretation of the conditions (4.2) which define the normal
force ξ: if the membrane is sufficiently far from the obstacle, then the normal force
is 0, otherwise the membrane will bend, and the deformation is permanent if the
membrane is in contact with the obstacle. In fact, by virtue of the the Heaviside
function H : x 7−→ 1[0,∞)(x), we may show after simple computations that the
constraints in (4.2) are equivalent to the complementarity system

(4.3)


u ≥ ψ a.e. in Ω

ξ + γ
δ
H(δ − u+ ψ) ≥ 0 a.e. in Ω[

ξ + γ
δ
H(δ − u+ ψ)

]
(u− ψ) = 0 a.e. in Ω.

The cohesion force is described by p := γ
δ
H(δ − u+ ψ). The constraints formulated

in the complementarity system above imply that the normal force ξ acts in the
opposite direction to the cohesion force p. Models which take into consideration
cohesion forces have been actively studied in recent years [33, 31] in view of their
applications to fracture mechanics − the field of mechanics concerned with the study
of the propagation of cracks in materials.

4.2. Mathematical interpretation. — From a mathematical viewpoint, the co-
hesion model (4.1), (4.2) results from the minimization of an objective functional
subject to contact constraints, much like the classical obstacle problem. There is
however an additional unknown in the equation, and interpreting this system is not
trivial at first glance. Perhaps a useful example for illustrating how such a formu-
lation is derived is Stokes’ problem from fluid dynamics. The problem consists in
minimizing the functional

S[w] :=
1

2

∫
O

|Dw|2dx−
∫
O

f ·wdx

over all w ∈ K, where K := {w ∈ H1
0 (Ω) : divw = 0 in O}, O ⊂ R3 is open,

bounded and simply connected, and f ∈ L2(O;R3) is a given vector field. Existence
and uniqueness of a minimizer u ∈ K may be shown by using the direct method.
We interpret u as representing the velocity field of a steady fluid flow (continuous
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motion) within the region O, subject to the external force f . The constraint that
divu = 0 ensures that the flow is incompressible18. The interesting question however
is to see how the constraint manifests itself in the first order necessary condition given
by the Euler-Lagrange equation. In fact, it can be shown (see [21, Thm.6, p.472])
that there exists a scalar field p ∈ L2

loc(O) such that∫
O

Du : Dvdx =

∫
O

(
p div v + f · v

)
dx

for all v ∈ H1(O;R3) with compact support inside O. We interpret the above
variatonal formulation as saying that the pair (u, p) form a weak solution of Stokes’
problem 

−∆u = f −∇p in O

divu = 0 in O

u = 0 on ∂O.

The function p is the pressure and arises as a Lagrange multiplier corresponding to
the incompressibility condition divu = 0.

The methodology for solving the cohesive obstacle problem is slightly different to
Stokes’ problem. While the former will also manifest itself as an optimality condition
for a minimization problem, only the contact constraint will be included in the set
over which we minimize. The cohesion force will be embedded in the variational
formulation, and much like the classical obstacle problem, will be an inequality. Due
to the form of the objective functional in the minimization problem, there will be
no guarantee for uniqueness of a minimizer, and necessary and sufficient optimality
conditions won’t coincide.

We will first show existence of a minimizer and necessary optimality conditions,
and we will derive the normal force ξ as a function of this minimizer and the cohesion
force. We will also show sufficient conditions by considering the Lagrangian asso-
ciated to the contact constraint, and see that the saddle-point for this Lagrangian
may allow us to interpret ξ as a Lagrange multiplier.

18 This roughly means that the effects of pressure on the fluid density are zero or negligible.
Thus the density and the specific volume of the fluid (i.e. the ratio of the fluid’s volume to its
mass) do not change during the flow.
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5. Necessary conditions

The strategy we will use to derive the cohesive obstacle problem (4.1), (4.2) is
analogous to the classical obstacle problem − we incorporate the constraint u ≥ ψ
in a certain set of functions and solve a related variational problem on this set. In
fact, the set in question is the same as for the classical problem:

K(ψ) := {u ∈ H1
0 (Ω) : u ≥ ψ a.e. in Ω}.

The difference for the variational problem comes from the added unknown ξ and
the constraint it must satisfy, as they lack smoothness and add a nonlinearity to the
problem. The associated variational inequality will remain similar nonetheless. We
look for u ∈ K(ψ) such that∫

Ω

∇u · ∇(v − u)dx−
∫

Ω

[
f +

γ

δ
H(δ − u+ ψ)

]
(v − u)dx ≥ 0(5.1)

for all v ∈ K(ψ). Inequality (5.1) is called a hemivariational inequality.
We begin our study by linking this problem and the equations for the cohesive

problem. In fact, we may interpret them as the Euler-Lagrange equations for the
obstacle problem with cohesion.

Proposition 5.1. — If there exists a solution u ∈ K(ψ) to the hemivariational in-
equality (5.1), then u ∈ H2(Ω). Moreover, the formulation (4.1), (4.2) is equivalent
to the hemivariational inequality.

Proof. — Suppose that a solution u ∈ K(ψ) of (5.1) exists. Setting

f := f − γ

δ
H(δ − u+ ψ) ∈ L2(Ω),

we have ∫
Ω

∇u · ∇(v − u)dx−
∫

Ω

f(v − u)dx ≥ 0,

for all v ∈ K(ψ). This is the classical obstacle problem, and since the data (f , ψ)
satisfy the required assumptions, the previously established regularity results imply
u ∈ H2(Ω).

Suppose now that u ∈ K(ψ)∩H2(Ω) satisfies (4.1), (4.2). Taking the L2(Ω) inner
product by v − u where v ∈ K(ψ) is arbitrary, and using Green’s first identity, we
obtain ∫

Ω

(
∇u · ∇(v − u)− f(v − u) + ξ(v − u)

)
dx = 0.



56 BORJAN GESHKOVSKI

By (4.3), we have ξ ≥ −γ
δ
H(δ − u + ψ), and plugging this in the identity above

yields (5.1). The converse can be argued with ξ := −∆u − f ∈ L2(Ω) by choosing
appropriate variations v.

It remains to be seen whether there exists a solution to the hemivariational in-
equality. To do so, we show in fact that it represents a necessary optimality condi-
tion for a certain minimization problem. First, we define (pointwise) the continuous,
nondifferentiable19 and concave map (see Figure 10 for a visualization)

(5.2) g : u 7→ γ

δ
min(δ, u− ψ).

The following lemma will be of use in the proofs to come, and hints why we might
deduce the Heaviside term from a minimization problem. For a proof, we refer the
reader to the Appendix.

Lemma 5.1. — The map g satisfies

g(v)− g(u) ≤ γ

δ
H(δ − u+ ψ)(v − u),

for all u, v ∈ H1
0 (Ω).

We now set up the hinted minimization problem. Consider the cost functional
J : H1

0 (Ω)→ R defined as

J[u] :=
1

2

∫
Ω

|∇u|2dx−
∫

Ω

fudx+

∫
Ω

g(u)dx = E[u] +

∫
Ω

g(u)dx.

Notice that J is nonconvex and nondifferentiable solely due to the presence of g.

Proposition 5.2. — There exists at least one function u ∈ K(ψ) satisfying

(5.3) J[u] = inf
w∈K(ψ)

J[w].

Moreover, u ∈ H2(Ω).

Proof. — The arguments of the proof mainly follow the direct method in the calculus
of variations. We begin by observing that the map g is nonnegative over the setK(ψ).
Hence, for an arbitrary w ∈ K(ψ) we have

J[w] = E[w] +

∫
Ω

g(w)dx ≥ E[w].

19 This follows from the definition of the min map in terms of the absolute value. In fact, this
characterization also implies that g is Lipschitz continuous.
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Since E is coercive, the above inequality implies that J is also coercive.
Now let {uk}∞k=1 ⊂ K(ψ) be a minimizing sequence. Using the coercivity of J, by

contraposition we deduce that {uk}∞k=1 is bounded in H1
0 (Ω). The Banach-Alaoglu

theorem asserts the existence of u ∈ H1
0 (Ω) such that

uk ⇀ u weakly in H1
0 (Ω)

along a subsequence as k → ∞. Since K(ψ) is weakly closed, u ∈ K(ψ), and by
the Rellich-Kondrachov theorem, we also have strong L2(Ω) convergence. The latter
convergence implies that uk → u a.e. in Ω along an additional subsequence. Whence,
by using the superadditivity of the limit inferior, the weak lower semicontinuity of
E, and the Fatou lemma (recall that g is continuous) respectively, we have (along
the subsequence)

lim inf
k→∞

J[uk] ≥ lim inf
k→∞

E[uk] + lim inf
k→∞

∫
Ω

g(uk)dx ≥ E[u] +

∫
Ω

g(u)dx = J[u].

We conclude20 that u minimizes J over K(ψ). Finally, we use Propositions 5.3 and
5.1 respectively to conclude that u ∈ H2(Ω).

Now we may link the hemivariational inequality to the problem of minimizing J.

Proposition 5.3. — The hemivariational inequality (5.1) is the necessary optimal-
ity condition for the minimization problem (5.3).

Proof. — Let u ∈ K(ψ) be a solution of (5.3), hence

E[u] +

∫
Ω

g(u)dx ≤ E[v] +

∫
Ω

g(v)dx,

for all v ∈ K(ψ). By rearranging this inequality and using Lemma 5.1, one obtains

E[u]− E[v] ≤
∫

Ω

(g(v)− g(u))dx ≤ γ

δ

∫
Ω

H(δ − u+ ψ)(v − u)dx,

for all v ∈ K(ψ). Fix τ ∈ (0, 1] and consider v := τw + (1− τ)u where w ∈ K(ψ) is
arbitrary. Since K(ψ) is convex, v ∈ K(ψ) and plugging in the previous inequality
we obtain

1

τ

(
E[u+ τ(w − u)]− E[u]

)
≥ −γ

δ

∫
Ω

H(δ − u+ ψ)(w − u)dx.

20 The above also shows that J : H1
0 (Ω)→ R is a weakly lower semicontinuous functional.
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As E : H1
0 (Ω)→ R is Gâteaux differentiable with Gâteaux derivative

δE[u;w − u] =

∫
Ω

∇u · ∇(w − u)dx−
∫

Ω

f(w − u)dx,

we may pass to the limit as τ → 0 to obtain (5.1).

Henceforth, we set L2
+(Ω) := {f ∈ L2(Ω) : f ≥ 0 a.e. in Ω}. We may regroup the

previous results in the following theorem.

Theorem 5.2. — There exist u ∈ K(ψ) ∩H2(Ω) and λ ∈ L2
+(Ω) satisfying∫

Ω

[
∇u · ∇v − fv +

γ

δ
H(δ − u+ ψ)v

]
dx =

∫
Ω

λvdx,(5.4)

for all v ∈ H1
0 (Ω), and satisfy the complementarity condition

(5.5)
∫

Ω

λ(u− ψ)dx = 0.

The function u is a solution to the hemivariational inequality (5.1), and the pair
(u, ξ) where

ξ := λ− γ

δ
H(δ − u+ ψ),

is a strong solution to the cohesive obstacle problem (4.1), (4.2).

Proof. — We take a minimizer u ∈ K(ψ) ∩ H2(Ω) of J. Its existence follows from
Proposition 5.2. Now consider

λ := −∆u− f +
γ

δ
H(δ − u+ ψ).

Since u ∈ H2(Ω), we have λ ∈ L2(Ω), hence λ is well defined a.e. in Ω. Multiplying
λ by an arbitrary test function v ∈ H1

0 (Ω) and integrating over Ω, we deduce∫
Ω

[
∇u · ∇v − fv +

γ

δ
H(δ − u+ ψ)v

]
dx =

∫
Ω

λvdx,

which is (5.4).
We may now rewrite the hemivariational inequality (5.1) equivalently as∫

Ω

λ(v − u)dx ≥ 0,

for all v ∈ K(ψ), which in turn by choosing appropriate variations v implies that
λ ≥ 0 a.e. in Ω and ∫

Ω

λ(u− ψ)dx = 0.
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Hence λ ∈ L2
+(Ω) and (5.5) also holds. We conclude that the pair (u, ξ) are a strong

solution to the cohesion problem by virtue of Proposition 5.1.

6. Sufficient conditions

Since J is non convex, the solution to (5.3) is not necessarily unique, therefore
(5.4), (5.5) do not represent a sufficient optimality condition. To deduce sufficient
optimailty conditions, we consider the Lagrangian functional associated to the con-
tact constraint u ≥ ψ:

L[u, λ] := J[u]−
∫

Ω

λ(u− ψ)dx,

and study a related saddle-point problem.

Proposition 6.1. — If there exist u ∈ H1
0 (Ω) and λ ∈ L2

+(Ω) such that the pair
(u, λ) satisfies

L[u, µ] ≤ L[u, λ] ≤ L[v, λ](6.1)

for all v ∈ H1
0 (Ω) and µ ∈ L2

+(Ω), then u ∈ K(ψ), u is a minimizer of J, and the
pair (u, λ) satisfy (5.4) and the complementarity condition (5.5).

Proof. — Let (u, λ) ∈ H1
0 (Ω) × L2

+(Ω) be a solution of saddle point problem. The
left-hand side inequality in (6.1) implies∫

Ω

(µ− λ)(u− ψ)dx ≥ 0,

for every µ ∈ L2
+(Ω). By choosing appropriate variations µ, we deduce that u ≥ ψ

a.e. in Ω, and ∫
Ω

λ(u− ψ)dx = 0,

which gives (5.5). Next, by using the right-hand side inequality in (6.1) we obtain

J[u]− J[v] ≤ −
∫

Ω

λ(v − ψ)dx ≤ 0,
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for all v ∈ K(ψ). This implies that J[u] ≤ J[v] for all v ∈ K(ψ), thus u is a minimizer
of J. Using the inequality above and Lemma 5.1 respectively leads us to

E[u]− E[v]−
∫

Ω

λ(u− v)dx ≤
∫

Ω

(g(v)− g(u))dx

≤ γ

δ

∫
Ω

H(δ − u+ ψ)(v − u)dx,

for all v ∈ H1
0 (Ω). Now fix τ ∈ (0, 1] and consider v := τw + (1 − τ)u where

w ∈ H1
0 (Ω) is arbitrary. By plugging in the inequality above we and dividing by τ ,

we obtain
1

τ

(
E[u+ τ(w − u)]− E[u]

)
−
∫

Ω

λ(u− w)dx ≥ −γ
δ

∫
Ω

H(δ − u+ ψ)(w − u)dx.

As E : H1
0 (Ω)→ R is Gâteaux differentiable with Gâteaux derivative

δE[u;w − u] =

∫
Ω

∇u · ∇(w − u)dx−
∫

Ω

f(w − u)dx,

we may pass to the limit as τ → 0 in the previous inequality and then choose
appropriate variations w to obtain (5.4).

In the above proof, we assumed that the saddle point problem (6.1) had a solution.
Now, we look to show that this is indeed the case.

6.1. Existence of a saddle point. — To this end, we regularize the nondifferen-
tiable functional J by virtue of a family of approximate functionals which contain a
regularization of the nondifferentiable term g. We show existence of a saddle point
for the Lagrangian functional associated to the approximation functionals, obtain
adequate estimates for the family of solutions, and conclude by taking the limit.

For ε > 0, let gε ∈ C1(R) be a function satisfying

0 ≤ gε(·) ≤ c0 < +∞,
0 ≤ g′ε(·) ≤ c1 < +∞,
gε(·) = g(·) +O(ε),

for some constants c0, c1 > 0 independent of ε. An example of such a function is

gε : x 7→ γ


1− ε

2
for x ≥ ψ(x) + δ

1− ε
2
− (x−ψ(x)−δ)2

2εδ2
for ψ(x) + δ(1− ε) < x < ψ(x) + δ

x−ψ(x)
δ

for ψ(x) ≤ x ≤ ψ(x) + δ(1− ε),
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Figure 10. The map g and its approximation gε for ε = 10−1.

where x = u(x) for x ∈ Ω. Its derivative is given by

g′ε : x 7→ γ

δ


0 for x ≥ ψ(x) + δ

−x−ψ(x)−δ
εδ

for ψ(x) + δ(1− ε) < x < ψ(x) + δ

1 for ψ(x) ≤ x ≤ ψ(x) + δ(1− ε).
We may now state the regularized minimization problem. For each ε > 0, we seek
a function uε ∈ K(ψ) such that

(6.2) Jε(u
ε) = inf

v∈K(ψ)
Jε(v),

where

Jε[u] := E[u] +

∫
Ω

gε(u)dx.

We begin by showing that such a function exists.

Lemma 6.1. — For every ε > 0 there exists a solution uε ∈ K(ψ) ∩H2(Ω) to the
regularized minimization problem (6.2). The estimate

‖uε‖H2(Ω) ≤ C,

also holds for some C > 0 independent of ε.
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Proof. — Fix ε > 0. Since gε is nonnegative over R, the arguments from Proposition
5.2 hold here as well, so there exists a solution uε ∈ K(ψ) to (6.2).

Now using the fact that uε is a minimizer, we may take the directional derivative
of Jε at uε in the direction v − uε for arbitrary v ∈ K(ψ), and obtain the following
first order optimality condition:∫

Ω

∇uε · ∇(v − uε)dx−
∫

Ω

[
f + g′ε(u

ε)
]
(v − uε)dx ≥ 0.

Arguing similarly as in Proposition 5.2, we deduce that uε ∈ H2(Ω). The estimate
follows from Corollary 1.3.

Now for fixed ε > 0 we define

(6.3) λε := −∆uε − f + g′ε(u
ε).

In light of what precedes, λε ∈ L2(Ω) and it satisfies

(6.4)
∫

Ω

[
∇uε · ∇v − fv + g′ε(u

ε)v
]
dx =

∫
Ω

λεvdx,

for all v ∈ H1
0 (Ω). From the definition of λε and (6.4), we deduce that λε ≥ 0 a.e.

in Ω and

(6.5)
∫

Ω

λε(uε − ψ)dx = 0.

Now for fixed ε > 0, we consider the regularized Lagrangian functional

Lε[u, λ] := Jε[u]−
∫

Ω

λ(u− ψ)dx.

Analogously, we will consider a regularized saddle point problem. For fixed ε > 0,
we seek for a pair (uε, λε) ∈ H1

0 (Ω)× L2
+(Ω) such that

Lε[u
ε, λ] ≤ Lε[u

ε, λε] ≤ Lε[v, λ
ε],(6.6)

for all (v, λ) ∈ H1
0 (Ω)× L2

+(Ω).
The existence of solutions to these regularized saddle-point problems is derived

by the properties of the functionals Lε and use of so-called mini-max theorems (see
[20, p.171]). For fixed ε > 0, the primal variable uε of any solution of this saddle
point problem minimizes Jε, whereas the dual variable λε satisfies (6.3) and (6.4).

We now look to pass to the limit as ε → 0 to deduce existence of a solution for
the saddle point problem (6.1).
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Proposition 6.2. — There exists at least one pair (u, λ) ∈ (H2(Ω) ∩ H1
0 (Ω)) ×

L2
+(Ω) satisfying the saddle point problem (6.1).

Proof. — Let {uε, λε}ε>0 ⊂ (H2(Ω) ∩H1
0 (Ω))× L2

+(Ω) be the family of solutions to
the approximate problems (6.6). From (6.3), the uniform estimate from Lemma 6.1,
the properties of g′ε and f ∈ L2(Ω), we infer that there exists C > 0 such that

‖λε‖L2(Ω) ≤ C

for all ε > 0. Since Lemma 6.1 gives a similar estimate on the family {uε}ε>0, the
Banach-Alaoglu theorem asserts the existence of λ ∈ L2(Ω) and u ∈ H2(Ω)∩H1

0 (Ω)
such that

uε ⇀ u weakly in H2(Ω)(6.7)

uε ⇀ u weakly in H1
0 (Ω)(6.8)

uε → u strongly in L2(Ω)(6.9)

λε ⇀ λ weakly in L2(Ω)(6.10)

along a subsequence as ε → 0 (observe that for (6.9) we have used the Rellich-
Kondrachov theorem). Since g′(·) ≤ c1 on R, by using the mean value theorem we
have

|gε(uε)− g(u)| ≤ c1|uε − u|
pointwise a.e., thus

(6.11) gε(u
ε)→ g(u) strongly in L2(Ω)

as ε→ 0. Now, the right inequality in (6.6) reads∫
Ω

(1

2
|∇uε|2 − fuε + gε(u

ε)− λε(uε − ψ)
)

dx ≤
∫

Ω

(1

2
|∇v|2 − fv + gε(v)− λε(v − ψ)

)
dx.

Using the superadditivity of the limit inferior, the weak convergence (6.8) coupled
with the weak lower semicontinuity of the E, the strong convergences (6.9), (6.11)
and the boundedness of {λε}ε>0, we have∫

Ω

(1

2
|∇u|2−fu+g(u)−λ(u−ψ)

)
dx ≤ lim inf

ε→0

∫
Ω

(1

2
|∇uε|2−fuε+gε(uε)−λε(uε−ψ)

)
dx.

As a result of this limiting argument, taking the limit inferior in the inequality that
precedes and using the weak convergence (6.10) for the right-hand side gives

L[u, λ] ≤ L[v, λ]

for all v ∈ H1
0 (Ω).
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Since K(ψ) is weakly closed in H1
0 (Ω) and L2

+(Ω)21 is weakly closed in L2(Ω), we
have also u ∈ K(ψ) and λ ∈ L2

+(Ω). Thence u ≥ ψ and λ ≥ 0 a.e. in Ω. Now recall
that for every ε > 0, ∫

Ω

λε(uε − ψ)dx = 0.

This implies ∫
Ω

λε(uε − u)dx+

∫
Ω

λε(u− ψ)dx = 0.

Similarly to previous limiting arguments, using the convergences (6.9), (6.10) and
the boundedness of {λε}ε>0, we let ε→ 0 in the above identity to deduce∫

Ω

λ(u− ψ)dx = 0.

Hence
L[u, λ] = J[u],

and since u ≥ ψ a.e. in Ω, we also have

J[u] ≥ J[u]−
∫

Ω

µ(u− ψ)dx = L[u, µ],

for every µ ∈ L2
+(Ω). We thus conclude that

L[u, µ] ≤ L[u, λ]

for every µ ∈ L2
+(Ω). The pair (u, λ) therefore satisfies the saddle point problem

(6.1).

7. Active set method and algorithm

We will use the optimality system (5.4), (5.5) to formulate an algorithm for solving
the obstacle problem with cohesion. We may rewrite (5.5) equivalently as

(7.1) λ−max{0, λ− (u− ψ)} = 0

where the max is taken pointwise. Using this formulation, we define the active and
inactive sets with respect to the contact condition

Ac = {x ∈ Ω: λ(x) > u(x)− ψ(x)}
Ic = {x ∈ Ω: λ(x) ≤ u(x)− ψ(x)},

21 Clearly L2
+(Ω) is convex, and it is also closed by the same argument as for K(ψ), so we may

apply Theorem A.4.
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thus Ic = Ω \Ac, and with respect to the cohesion force

Ap = {x ∈ Ω: u(x) ≤ ψ(x) + δ}
Ip = {x ∈ Ω: u(x) > ψ(x) + δ},

thus Ip = Ω \ Ap. Now using (7.1) as well as the active and inactive sets, we can
rewrite the optimality system (5.4), (5.5) equivalently as

∫
Ω

(
∇u · ∇v − fv + pv − λv

)
dx = 0 for all v ∈ H1

0 (Ω)(7.2)

p =
γ

δ
on Ap, p = 0 on Ip(7.3)

u = ψ on Ac, λ = 0 on Ic.(7.4)

We present the following algorithm for solving the reformulated optimality system
(7.2), (7.3), (7.4).

Algorithm 1 : Primal dual active set algorithm for the cohesion problem.
1. Choose A−1

c ,A−1
p ⊂ Ω.

2. Set I−1
c = Ω \A−1

c , I−1
p = Ω \A−1

p .
3. Set k = 0.
4. While not Stop:

4.1. Solve for uk ∈ H1
0 (Ω), λk ∈ L2(Ω), pk ∈ L2(Ω):

∫
Ω

(
∇uk · ∇v − fv + pkv − λkv

)
dx = 0 for all v ∈ H1

0 (Ω)(7.5)

pk =
γ

δ
on Ak−1

p , pk = 0 on Ik−1
p(7.6)

uk = ψ on Ak−1
c , λk = 0 on Ik−1

c .(7.7)

4.2. Update the active and inactive sets at uk, λk:
Ak
c := {x ∈ Ω: λk(x) > uk(x)− ψ(x)}
Ikc := {x ∈ Ω: λk(x) ≤ uk(x)− ψ(x)}
Ak
p := {x ∈ Ω: uk(x) ≤ ψ(x) + δ}
Ikp := {x ∈ Ω: uk(x) > ψ(x) + δ}.

4.3. If Ak
c = Ak−1

c and Ak
p = Ak−1

p then Stop.
4.4. Else: k := k + 1.
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We now turn to the study of the properties of this algorithm, starting by showing
that the step (4.1) makes sense.

Lemma 7.1. — There exists a unique solution to the system (7.5), (7.6) (7.7).

Proof. — Fix an arbitrary iteration k ≥ 0. We can clearly determine pk at each step
by (7.6). Now consider the closed and convex set

Kk−1
c (ψ) := {u ∈ H1

0 (Ω) : u = ψ a.e. on Ak−1
c },

as well as the minimization problem which consists of finding uk ∈ Kk−1
c (ψ) such

that

E[uk] +

∫
Ik−1
c

pkukdx ≤ E[v] +

∫
Ik−1
c

pkvdx

for all v ∈ Kk−1
c (ψ). By virtue of the properties of the functional E (see the

Appendix) we apply Theorem 1.3 to obtain the existence of a unique solution
uk ∈ Kk−1

c (ψ). Now using the fact that uk is a minimizer, by differentiating the
cost functional at uk in the direction v − uk for arbitrary v ∈ Kk−1

c (ψ), we obtain
the first order necessary and sufficient optimality condition∫

Ω

(
∇uk · ∇(v − uk)− f(v − uk) + pk(v − uk)

)
dx ≥ 0.

Choosing the test functions v := uk±ϕ for arbitrary ϕ ∈ C∞c (Ω) with supp(ϕ) ⊂ Ik−1
c

yields

(7.8) −∆uk − f + pk = 0 in Ik−1
c

in the sense of distributions, whence ∆uk ∈ L2(Ik−1
c ). Since uk ∈ Kk−1

c (ψ), we also
have ∆uk = ∆ψ in Ak−1

c in the sense of distributions, so ∆uk ∈ L2(Ak−1
c ) as well.

Consequently, ∆uk ∈ L2(Ω). We may now define

(7.9) λk := −∆uk − f + pk ∈ L2(Ω).

Notice that having determined λk in such a way, the identity (7.8) implies that
λk = 0 in Ik−1

c , which corresponds to (7.7). Taking the L2(Ω) scalar product by
v ∈ H1

0 (Ω) in (7.9) and applying Green’s first identity gives (7.5).

We now show that most of the iterates of Algorithm 1 are monotonic. We shall
see at the end of this part that the strategy of the proof is in fact more important
than the actual result.
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Lemma 7.2. — If I−1
p = ∅, then the iterates (uk,Ak

c , p
k,Ak

p) of Algorithm 1 are
monotonic in the following sense:

ψ ≤ u1 ≤ . . . ≤ uk−1 ≤ uk ≤ . . .

Ω ⊇ A0
c ⊇ . . . ⊇ Ak−1

c ⊇ Ak
c ⊇ . . .

γ

δ
= p0 ≥ p1 ≥ . . . ≥ pk−1 ≥ pk ≥ . . .

Ω = A−1
p ⊇ A0

p ⊇ . . . ⊇ Ak−1
p ⊇ Ak

p ⊇ . . .

Proof. — The proof will be done by induction. For k ≥ 1 we define the differences

δk−1
u := uk − uk−1, δk−1

λ := λk − λk−1, δk−1
p := pk − pk−1.

We proceed in three steps.
Step 1: The assertion (7.6) which determines pk can be rewritten equivalently as

pk =
γ

δ
1Ak−1

p
.

So if Ak−1
p ⊆ Ak−2

p , then δk−1
p ≤ 0 a.e. in Ω. In particular, this property is satisfied

for k = 1 since the initialization I−1
p = ∅ implies A0

p ⊆ A−1
p = Ω. Thus δ0

p ≤ 0
a.e. in Ω.
Step 2: Observe that for k ≥ 0, showing Ak

c ⊆ Ak−1
c is equivalent to showing

Ik−1
c ⊆ Ikc . Now if x ∈ Ik−1

c , from (7.7) we have that λk(x) = 0. Thus to show this
set inclusion, it would suffice to show that uk(x)− ψ(x) ≥ 0 for a.e. x ∈ Ik−1

c .
Now fix k ≥ 1. Using the property (7.7) once again, we see that for x ∈ Ω, we

either have λk−1(x) = 0 or uk−1(x) = ψ(x). Using the definition of the active and
passive sets with respect to the contact condition, we obtain the following mutually
exclusive possibilities:
• If λk−1 = 0, then

uk−1 < ψ a.e. in Ak−1
c and uk−1 > ψ a.e. in Ik−1

c ;

• If uk−1 = 0, then

λk−1 > 0 a.e. in Ak−1
c and λk−1 ≤ 0 a.e. in Ik−1

c .

Whence it follows that

uk−1 ≤ ψ and λk−1 ≥ 0 a.e. in Ak−1
c ,

as well as

(7.10) uk−1 ≥ ψ and λk−1 ≤ 0 a.e. in Ik−1
c .
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Using (7.7) as well as the above, we deduce that

δk−1
u = uk − uk−1 ≥ uk − ψ ≥ 0 a.e. in Ak−1

c

and

(7.11) δk−1
λ = λk − λk−1 ≥ λk ≥ 0 a.e. in Ik−1

c .

Now taking the difference of the iterates at steps k and k − 1 in (7.5) gives

(7.12) ∆(δk−1
u ) = δk−1

p − δk−1
λ a.e. in Ω.

If δk−1
p ≤ 0 a.e. in Ω (note that by Step 1, this would be true if Ak−1

p ⊆ Ak−2
p ), then

using (7.11) and (7.12) we deduce that

∆(δk−1
u ) ≤ 0 a.e. in Ik−1

c .

By virtue of the weak maximum principle, the minimum of δk−1
u is attained on the

boundary ∂Ik−1
c . Since δk−1

u ∈ H1
0 (Ω), one also has δk−1

u = 0 on ∂Ik−1
c ∩ ∂Ω, and

δk−1
u ≥ 0 on ∂Ak−1

c ∩ ∂Ik−1
c . Therefore δk−1

u ≥ 0 a.e. on ∂Ik−1
u . Consequently

δk−1
u ≥ 0 a.e. in Ω.

Now for a.e. x ∈ Ik−1
c , by (7.10), we have uk−1(x) ≥ ψ(x), so by what precedes we

also have uk(x) ≥ ψ(x). The remark made at the beginning of this step implies that

Ak
c ⊆ Ak−1

c .

From δk−1
u ≥ 0 it also follows that uk−1(x) ≤ uk(x) < ψ(x) + δ for a.e. x ∈ Ak

p.
Hence

Ak
p ⊆ Ak−1

p .

Step 3: Notice that in Step 2, we only worked on the assumption Ak−1
p ⊆ Ak−2

p

for an arbitrary k ≥ 1. Under this assumption, Step 1 and 2 give the desired
monotonicity properties. Since Ak−1

p ⊆ Ak−2
p holds for k = 1 as remarked in Step 1,

we look to conclude by induction.
Let k > 1 and assume that Ak−1

p ⊆ Ak−2
p . Then Step 1 yields δk−1

p ≤ 0 a.e. in
Ω, while Step 2 yields δk−1

u ≥ 0 a.e. in Ω. But the latter also gives Ak
c ⊆ Ak−1

c and
Ak
p ⊆ Ak−1

p , which finishes the proof.

The following result is the reason behind the stopping rule set in the Algorithm.

Lemma 7.3. — If Ak?

c = Ak?−1
c and Ak?

p = Ak?−1 at some step k? ∈ N ∪ {0}, then
the pair (uk

?
, λk

?
) satisfies the optimality system (5.4), (5.5).
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Proof. — If Ak?

c = Ak?−1
c , then uk? = ψ a.e. in Ak? and λk? = 0 a.e. in Ik

? . Using
also the definition of the active set Ak?

c and the passive set Ik?c , we deduce λk? ≥ 0
and uk? ≥ ψ a.e. in Ω respectively. The first remark also gives∫

Ω

λk
?

(uk
? − ψ)dx =

∫
Ak

?
λk

?

(uk
? − ψ)dx+

∫
Ik
?
λk

?

(uk
? − ψ)dx = 0.

Hence uk? and λk? satisfy the condition (5.5).
Now if Ak?

p = Ak?−1, then pk? = γ
δ
H(δ−uk? +ψ), which coupled with (7.5) implies

(5.4). Thus the pair (uk
?
, λk

?
) satisfies (5.4), (5.5).

It is important to note however that these results do not imply the convergence
of the iterates to the solutions (u, λ, p), since we do not know the rate of increase
of {uk}∞k=0 and {λk}∞k=0 is not necessarily monotone. To show the convergence of
Algorithm 1, we discretize the system using the finite element method and show
that convergence holds in the finite dimensional setting by using finite dimensional
analogs of Lemma 7.2 and Lemma 7.3.

7.1. Finite element discretization. — For simplicity, let us assume that n = 2
and the boundary ∂Ω is polyhedral. For a fixed discretization parameter N ∈ N, we
consider a mesh of triangles T = {T} of Ω and vertices {xi}Ni=1 ⊂ Ω such that

Ω =
⋃
T∈T

T and µ(Ω) =
∑
T∈T

µ(T ).

Here µ denotes the Lebesgue measure in R2. The partition T is assumed to be
conforming or compatible, i.e. the intersection of any two triangles T1 and T2 in T
is either empty or an edge. We will discretize Algorithm 1 in such a way that the
active and inactive sets for the discretized problem can be entirely determined by
the vertices of the mesh {xi}Ni=1 and the values of the discretized functions uN , λN
at these points. We assume that the stiffness matrix R = (Rij) ∈ RN×N , which
corresponds to the finite element discretization of the Dirichlet Laplacian −∆ is
non-singular (i.e. detR 6= 0) and that for every partitioning of R into blocks

R =

[
RAA RAI

RIA RII

]
,

R−1
II ≥ 0 and RIA ≤ 0 hold component-wise. For example, if Rij ≤ 0 for i 6= j and
<(λ) ≥ 0 for any eigenvalue λ, then this holds. In some sense, this will serve as a
"discrete" weak maximum principle in the proof of the convergence.
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We approximate a function u ∈ H1
0 (Ω) by

u(x) ≈
N∑
i=1

uNi φi(x)

where {φi}Ni=1 ∈ (H1
0 (Ω))N is some finite element basis. We discretize the load and

normal forces by using the projection operator projN : L2(Ω) 7→ RN , given by

(projNf)i :=

∫
Ω

f(x)φi(x)dx

for i ∈ {1, . . . , N}. In particular, for

f(x) ≈
N∑
j=1

fNj φj(x),

we have projNf = MfN , where M is the mass matrix:

(Mij)1≤i,j≤N = (〈φi, φj〉L2(Ω))1≤i,j≤N .

The representation of projNp where p = γ
δ
H(δ − u + ψ) is more delicate since it

involves a nonlinearity with the Heaviside function. Given u, we define the active
set

A = {x ∈ Ω: H(δ − u+ ψ)(x) = 1},
whence p = γ

δ
1A. We approximate A by

Ã ≈
⋃

T∈T ,T⊂A

T,

and then we approximate projNp = γ
δ
projN1A by

(projN1A)i =

∫
Ω

1A(x)φi(x)dx ≈
∫

Ω

1
Ã

(x)φi(x)dx = (projN1Ã
)i

for i ∈ {1, . . . , N}. We will consider the discrete active set AN = {xi}Ni=1 ∩ A, and
we may then determine the discrete cohesion force pN = γ

δ
1AN at the vertices of

the mesh. Let us note that by unisolvence, knowledge of the discrete active nodal
points uniquely determines the active finite element cells T and the approximate set
Ã. Therefore

(π(1AN ))i :=

∫
Ω

1
Ã

(x)φi(x)dx = (projN1Ã
)i
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is well defined. Hence for given AN we have π(pN) = γ
δ
π(1AN ). For the convergence

analysis, we assume that π(1AN ) is nonnegative (component-wise) for every partition
AN , and

π(1AN ) ≥ π(1BN ) if and only if AN ⊇ BN .

This is satisfied for the continuous and piecewise-linear finite elements on a regular
grid. In the following, we remove the superscript N for notation simplicity. In the
finite dimensional subspace, the reference problem (7.2), (7.3), (7.4) takes the matrix
form 

Ru−Mf + π(p)− λ = 0(7.13)

p =
γ

δ
on Ap, p = 0 on Ip(7.14)

u = ψ on Ac, λ = 0 on Ic.(7.15)

Analogously, the system (7.5), (7.6), (7.7) in Algorithm 1 can be expressed as
Ruk −Mf + π(pk)− λk = 0(7.16)

pk =
γ

δ
on Ak−1

p , pk = 0 on Ik−1
p(7.17)

uk = ψ on Ak−1
c , λk = 0 on Ik−1

c .(7.18)

Taking into account all of these assumptions, we have the following convergence
result.

Theorem 7.4. — If I−1
p = ∅, then the iterates (uk, λk, pk) of Algorithm 1 written in

the form (7.16), (7.17), (7.18) converge to a solution (uk
?
, λk

?
, pk

?
) of (7.13), (7.14),

(7.15) in a finite number of steps k∗ ∈ N, and satisfy

ψ ≤ u1 ≤ . . . ≤ uk−1 ≤ uk ≤ . . .

{xk}Nk=1 ⊇ A0
c ⊇ . . . ⊇ Ak−1

c ⊇ Ak
c ⊇ . . .

γ

δ
= p0 ≥ p1 ≥ . . . ≥ pk−1 ≥ pk ≥ . . .

{xk}Nk=1 = A−1
p ⊇ A0

p ⊇ . . . ⊇ Ak−1
p ⊇ Ak

p ⊇ . . .

Proof. — The idea is to repeat the arguments of the proof for Lemma 7.2, essentially
by replacing the "a.e. inequalities" with "component-wise inequalities". Notably,
one would use the assumptions on the stiffness matrix R instead of the weak max-
imum principle in the argument. Having deduced the monotonicity properties, we
apply Lemma 7.3 to deduce the convergence.
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For k ≥ 1, we define the following difference vectors in RN :
δk−1
u := uk − uk−1, δk−1

λ := λk − λk−1 δk−1
p = π(pk)− π(pk−1).

The discrete analog of Step 1 in the proof of Lemma 7.2 remains true when replacing
the a.e. arguments by component-wise ones for the involved vectors.

From (7.16) we derive the identity

Rδk−1
u = δk−1

λ − δk−1
p ,

which is the matrix version of (7.12) in Step 2 in the proof of Lemma 7.2, replacing
−∆ by R. Distinguishing the values of δu and δλ − δp on Ak−1

c and Ik−1
c , we split

the system in the following way:[
RAk−1

c Ak−1
c

RAk−1
c Ik−1

c

RIk−1
c Ak−1

c
RIk−1

c Ik−1
c

] [
(δk−1
u )Ak−1

c

(δk−1
u )Ik−1

c

]
=

[
(δk−1
λ − δk−1

p )Ak−1
c

(δk−1
λ − δk−1

p )Ik−1
c

]
,

and deduce the equality
(7.19) RIk−1

c Ik−1
c

(δk−1
u )Ik−1

c
= −RIk−1

c Ak−1
c

(δk−1
u )Ak−1

c
+ (δk−1

λ − δk−1
p )Ik−1

c
.

By inverting the left-hand side, we obtain
(7.20) (δk−1

u )Ik−1
c

= −R−1

Ik−1
c Ik−1

c
RIk−1

c Ak−1
c

(δk−1
u )Ak−1

c
+R−1

Ik−1
c Ik−1

c
(δk−1
λ − δk−1

p )Ik−1
c
.

From (7.18), we have either λk−1 = 0 or uk−1 = ψ, thus δk−1
u ≥ 0 on Ak−1

c , and
δk−1
λ ≥ 0 on Ik−1

c . If δk−1
p ≤ 0, then δk−1

λ −δk−1
p ≥ 0 on Ik−1

c . The assumptions on the
blocks of R yield δk−1

u ≥ 0 on Ik−1
c . Consequently δk−1

u ≥ 0 for every vertex of the
mesh. But if δk−1

u ≥ 0 then Ak
p ⊆ Ak−1

p and δk−1
p ≤ 0 due to the assumption made

on π. Repeating the induction argument from Step 3, we infer the monotonicity
properties of the iteration process.

The monotoniicty of the active set iterates in the finite dimensional subspace
guarantees that the stopping rule is satisfied after a finite number of steps. A finite
dimensional analog of Lemma 5 yields the desired convergence.
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PART III
OPTIMAL CONTROL OF OBSTACLE PROBLEMS

As discussed in the introduction, obstacle problems may be used to model many
natural or social phenomena. We have however only considered such problems with
a given obstacle satisfying certain assumptions. A question that one may naturally
ask is whether it is possible to obtain an optimal solution of an obstacle problem
by means of choosing the obstacle22. For example, we may be interested in finding
an obstacle that drives this solution to some given target ud and satisfies some
reasonable assumptions (for example it is of "minimal energy"). Hence, we find
ourselves in the context of optimal control : the control (which we seek to minimize)
is the obstacle ψ, and the associated state u is the solution to an obstacle problem.

We will only discuss optimal control of the parabolic obstacle problem presented
in Section 4, following [2]. For the sake of completeness, we very briefly review the
setting and main results of the elliptic case.

8. Overview of the elliptic problem

Optimal control of the obstacle in the elliptic case has been studied in [1, 3]. The
problem of interest is minimizing the objective functional

J[ψ] :=
1

2

∫
Ω

(σ(ψ)− ud)2dx+

∫
Ω

|∇ψ|2dx,

over all obstacles ψ ∈ H1
0 (Ω), where σ : H1

0 (Ω) → K(ψ) maps an obstacle ψ to
the solution of the variational inequality for the obstacle problem (1.2), and ud ∈
L2(Ω) is a given target profile. The authors first considered the case where the
source term f ≡ 0. Existence and uniqueness of an optimal control ψ? are shown,
and the main result states that the optimal state σ(ψ?) coincides with the optimal
control, i.e. σ(ψ?) = ψ?. The optimal control is then shown to be characterized
by adjoint variables and approximation; one considers the the penalized problem
for the variational inequality as the state equation, then derives some stationary
conditions for the approximate controls and states, and obtains uniform estimates
in order to pass to the limit. This methodology is followed in the parabolic problem
we present next. When the source term f ≤ 0, it is shown that the above result

22 Optimal control of the source term on the right-hand side for a fixed obstacle has also been
considered in the literature, see [10]. We will only be interested in controlling the obstacle.



74 BORJAN GESHKOVSKI

persists, otherwise, different cases based on the sign of the target profile ud and the
shape of the domain Ω are deduced. An active set algorithm in the nature of the
cohesion problem from Part II is presented in [29].

9. The parabolic problem

We assume, if otherwise not stated, that the framework is the same as the one set
up in Section 4. We consider the control set

U :=
{
ψ ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) : ψt ∈ L2(Q), ψ(0, ·) = 0 in Ω
}
.

By virtue of the repeated argument [21, Thm.5, p.382], the initial condition installed
in U makes sense. Given a control ψ ∈ U and a source term f ∈ L2(Q), the
corresponding state u is defined as the solution of the parabolic obstacle problem
(2.1). We seek for an obstacle ψ? ∈ U which minimizes the error in L2 norm between
the corresponding state u? and a given target profile ud ∈ L2(Q), and one which
does so with the least energy. Namely, the problem in question is the (quadratic)
minimization problem under variational inequality constraints, which consists of
finding ψ? ∈ U such that

(9.1) J[ψ?] = inf
ψ∈U

J[ψ],

where
J[ψ] :=

∫
Q

(σ(ψ)− ud)2dxdt+

∫
Q

(
|∆ψ|2 + |ψt|2

)
dxdt,

and where σ : U → K(ψ) denotes the solution map which maps an obstacle ψ ∈ U

to the solution u ∈ K(ψ) of the parabolic variational inequality (2.1).

9.1. Existence of an optimal control. — We begin our study by showing the
existence of an optimal control, i.e. a minimizer of the functional J defined above.

Theorem 9.1. — There exists a solution ψ? ∈ U to the minimization problem (9.1).

Proof. — The arguments of the proof follow the direct method. Since J[ψ] ≥ 0 for
all ψ ∈ U, we may invoke a minimizing sequence {ψk}∞k=1 ⊂ U of J. Observe that

lim
k→∞

J[ψk] = inf
ψ∈U

J[ψ] ≤ J[ψ1]

and so the sequence {J[ψk]}∞k=1 is bounded by some constant independent of k. Due
to the form of J, we immediately deduce that the sequences {(ψk)t}∞k=1 and {∆ψk}∞k=1

are bounded in L2(Q), and by a Green’s first identity and Cauchy-Schwarz argument,
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we deduce that {ψk}∞k=1 is bounded in L2(0, T ;H1
0 (Ω)) (hence in L2(Q) as well). The

Banach-Alaoglu theorem and Proposition A.7 in the Appendix assert the existence
of ψ? ∈ U such that

ψk → ψ? strongly in L2(Q)

ψk ⇀ ψ? weakly in L2(0, T ;H1
0 (Ω))

(ψk)t ⇀ ψ?t weakly in L2(Q)

∆ψk ⇀ ∆ψ? weakly in L2(Q)

along subsequences as k → ∞. It remains to be seen whether σ(ψk) converges to
the solution σ(ψ?) of the parabolic variational inequality (2.1) in order to conclude
the direct method argument. For k ∈ N, consider uk = σ(ψk). Using the energy
estimates in Proposition 2.4, Remark 2.5 with the established bounds on {ψk}∞k=1

and its derivatives, and arguing as in the proof of Theorem 2.1, we deduce a limit
u? ∈ V such that

uk → u? strongly in L2(Q)

uk → u? strongly in L2(0, T ;H1
0 (Ω))

(uk)t ⇀ u?t weakly in L2(Q)

∆uk ⇀ ∆u? weakly in L2(Q)

along subsequences as k → ∞. Now consider a test function v ∈ K(ψ?). Note
that a priori v /∈ K(ψk) for k ∈ N, so uk would not immediately satisfy a parabolic
variational inequality for such a test function. To rectify this problem, for k ∈ N,
we consider vk := max{v, ψk}. Then vk ∈ K(ψk) and satisfies

(9.2)
∫
Q

(uk)t(vk − uk)dxdt+

∫
Q

∇uk · ∇(vk − uk)dxdt ≥
∫
Q

f(vk − uk)dxdt

for all k ∈ N. To pass to the limit, we need to establish some convergence of {vk}∞k=1.
Recall that the distributional derivative of the piecewise smooth function x 7→ |x|
is the function sgn : x 7→ |x|

x
, x 6= 0. Now using the chain rule [25, Thm.7.8, p.153]

and the fact that

vk =
|v − ψk|+ (v + ψk)

2
,

we deduce that
‖∇vk‖L2(Q) ≤ ‖∇(v − ψk)‖L2(Q),
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for all k ∈ N. Since {ψk}∞k=1 is bounded in L2(0, T ;H1
0 (Ω)), so is {vk}∞k=1, and by

the Banach-Alaoglu theorem we deduce

vk ⇀ v weakly in L2(0, T ;H1
0 (Ω))

along a subsequence as k → ∞. The same argument may be used to show that
{(vk)t}∞k=1 is bounded in L2(Q), whence by the Aubin-Lions lemma we obtain

vk → v strongly in L2(Q)

as k →∞. Now notice that∫
Q

(uk)t(vk−uk)dxdt =

∫
Q

(uk)t(vk−v)dxdt+

∫
Q

(uk)t(v−u?)dxdt+

∫
Q

(uk)t(u
?−uk)dxdt,

as well as∫
Q

∇uk ·∇(vk−uk)dxdt =

∫
Q

∇(uk−u?)·∇vkdxdt+

∫
Q

∇u?·∇vkdxdt−
∫
Q

|∇uk|2dxdt,

and∫
Q

f(vk − uk)dxdt =

∫
Q

f(vk − v)dxdt+

∫
Q

f(v − u?)dxdt+

∫
Q

f(u? − uk)dxdt.

Using the strong L2(Q) convergence of {uk}∞k=1, {∇uk}∞k=1 and {vk}∞k=1, as well as
the weak convergence and boundedness of {(uk)t}∞k=1 in L2(Q) and of {vk}∞k=1 in
L2(0, T ;H1

0 (Ω)), we may pass to the limit in (9.2) to obtain∫
Q

u?t (v − u?)dxdt+

∫
Q

∇u? · ∇(v − u?)dxdt ≥
∫
Q

f(v − u?)dxdt

for any v ∈ K(ψ?). Since uk ≥ ψk a.e. in Q, the strong L2(Q) convergence implies
a.e. convergence along a subsequence, thence u? ≥ ψ? a.e. in Ω. Hence u? ∈ K(ψ?)
solves (2.1) and u? = σ(ψ?). Now using the weak lower semicontinuity of the L2(Q)
norm coupled with the weak convergences of {∆ψk}∞k=1 and {(ψk)t}∞k=1 and since
σ(ψk)→ σ(ψ?) as k →∞, we have

J[ψ?] ≤ lim inf
k→∞

J[ψk],

from which it follows that
J[ψ?] ≤ inf

ψ∈U
J[ψ].

Thus ψ? is a minimizer of J.

Remark 9.2. — It is not obvious whether the functional J satisfies convexity prop-
erties. We therefore cannot immediately conclude on the possible uniqueness of an
optimal control.
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9.2. Characterizing an optimal control. — We now look to characterize an
optimal control ψ? as well as its associated state σ(ψ?). We seek to differentiate
the functional J in some sense at the minimizer ψ? and deduce stationary condi-
tions in terms of Euler-Lagrange equations. However, showing that the map σ is
differentiable may prove to be a difficult task, and we thence cannot immediately
differentiate in the sense of Gâteaux. Rather, we will use the penalized problem
(2.2) set up in Section 4. We will study the properties of the approximate solution
map, introduce adjoint variables and a sequence of approximate controls. We will
then use some uniform estimates and deduce conditions on (ψ?, σ(ψ?)) by taking the
limit.

The following theorem gives us some differentiability for the approximate solution
map σε : ψ 7→ uε, mapping an obstacle ψ ∈ U to the solution uε ∈ V of the penalized
problem (2.2).

Theorem 9.3. — Let ε > 0 be fixed. The map σε has a weak directional derivative
in L2(0, T ;H1

0 (Ω)), in the sense that given an obstacle ψ ∈ U and a direction v ∈
L2(Q) such that ψ + hv ∈ U, there exists ξε ∈ L2(0, T ;H1

0 (Ω)) such that

σε(ψ + hv)− σε(ψ)

h
⇀ ξε weakly in L2(0, T ;H1

0 (Ω))

along a subsequence as h → 0. Moreover, ξε satisfies ξεt ∈ L2(0, T ;H−1(Ω)) and is
a weak solution of 

ξεt −∆ξε + β′ε(u
ε − ψ)(ξε − v) = 0 in Q

ξε = 0 on Σ

ξε(0, ·) = 0 in Ω.

(9.3)

Remark 9.4. — Notice that the initial condition ξε(0, ·) = 0 in Ω would make
sense in such a setup by the recurring argument [21, Thm.5, p.382].

Proof. — Fix ε > 0. Set uε,h := σε(ψ+hv), uε := σε(ψ), and let t ∈ (0, T ) be fixed.
We consider the cylinder Qt = Ω× (0, t), on which the following identity holds a.e.

(9.4) uε,ht − uεt −∆(uε,h − uε) + βε(u
ε,h − (ψ + hv))− βε(uε − ψ) = 0.

The choice of this domain will allow us to delete the time derivative when integrating,
as seen in the computations. Multiplying (9.4) by (uε,h − uε), integrating over Qt
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and using Green’s first identity gives∫
Qt

(uε,h − uε)t(uε,h − uε)dxds+

∫
Q

|∇(uε,h − uε)|2dxds

= −1

ε

∫
Qt

[
β(uε,h − (ψ + hv))− β(uε − ψ)

]
(uε,h − uε)dxds.(9.5)

We invoke the following trick
d

dθ
β(θ(uε,h − ψ − hv) + (1− θ)(uε − ψ))

= β′(θ(uε,h − ψ − hv) + (1− θ)(uε − ψ))(uε,h − uε − hv)(9.6)
and plug it in the right-hand side integral above to obtain

− 1

ε

∫
Qt

(
β(uε,h − (ψ + hv))− β(uε − ψ)

)
(uε,h − uε)dxds

(9.7)

= −1

ε

∫
Qt

∫ 1

0

d

dθ
β(θ(uε,h − ψ − hv) + (1− θ)(uε − ψ))(uε,h − uε)dθdxds

= −1

ε

∫
Qt

∫ 1

0

β′(θ(uε,h − ψ − hv) + (1− θ)(uε − ψ))
(
(uε,h − uε)2 − hv(uε,h − uε)

)
dθdxds.

Observe that since uε,h(0, ·)− uε(0, ·) = 0, we have∫
Qt

(uε,h − uε)t(uε,h − uε)(s, x)dxds =
1

2

∫
Ω

[
(uε,h − uε)2(s, x)

]t
0
dx

=
1

2

∫
Ω

(uε,h − uε)2(t, x)dx.

Combining this with (9.5) and (9.7) gives
1

2

∫
Ω

(uε,h − uε)2(t, x)dx+

∫
Qt

|∇(uε,h − uε)|2dxds

=
1

ε

∫
Qt

∫ 1

0

β′(θ(uε,h − ψ − hv) + (1− θ)(uε − ψ))
(
hv(uε,h − uε)

)
dθdxds

− 1

ε

∫
Qt

∫ 1

0

β′(θ(uε,h − ψ − hv) + (1− θ)(uε − ψ))(uε,h − uε)2dθdxds

≤ h

ε

∫
Qt

v(uε,h − uε)dxds,(9.8)
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since 0 ≤ β′(·) ≤ 1 on R. We may estimate the right-hand side using the Cauchy-
Schwarz and the Young inequalities respectively:

h

ε

∫
Qt

v(uε,h − uε)dxds ≤ h

ε
‖v‖L2(Qt)‖uε,h − uε‖L2(Qt)

≤ h2

2ε2
‖v‖2

L2(Qt)
+

1

2
‖uε,h − uε‖2

L2(Qt)
.(9.9)

Now observe that since |∇(uε,h − uε)|2 ≥ 0, (9.8) and (9.9) imply∫
Ω

(uε,h − uε)(t, x)dx ≤ h2

ε2
‖v‖2

L2(Q) + ‖uε,h − uε‖2
L2(Qt)

.

The integral form of Gronwall’s inequality (see Proposition A.12 in the Appendix)
then gives ∫

Ω

(uε,h − uε)(t, x)dx ≤ h2

ε2
‖v‖2

L2(Q)(1 + TeT ),

and by integrating between 0 and T one finally obtains

‖uε,h − uε‖2
L2(Q) ≤

h2

ε2
‖v‖2

L2(Q)(1 + TeT )T.

Plugging this in (9.9) yields

(9.10)
h

ε

∫
Qt

v(uε,h − uε)dxds ≤ h2

2ε2
‖v‖2

L2(Q)(1 + T (1 + TeT )).

Since |∇(uε,h − uε)|2 ≥ 0, coming back to (9.8) we obtain by what precedes

1

2

(∫
Ω

(uε,h − uε)2(t, x)dx+

∫
Qt

|∇(uε,h − uε)|2dxds
)
≤ h2

2ε2
‖v‖2

L2(Q)(1 + T (1 + TeT )).

In particular, this inequality implies∫ T

0

∫
Ω

|∇(uε,h − uε)|2dxdt ≤ h2

ε2
‖v‖2

L2(Q)(1 + T (1 + TeT )).

By rearranging the above estimate, we deduce

(9.11)
∥∥∥uε,h − uε

h

∥∥∥
L2(0,T ;H1

0 (Ω))
≤ C(T )

ε
‖v‖L2(Q).
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Thus
{
uε,h−uε

h

}
h>0

is bounded in L2(0, T ;H1
0 (Ω)). By the Banach-Alaoglu theorem,

there exists ξε ∈ L2(0, T ;H1
0 (Ω)) such that

uε,h − uε
h

⇀ ξε weakly in L2(0, T ;H1
0 (Ω))

along a subsequence as h → 0. By the weak lower semicontinuity of the norm (see
the Appendix), we also obtain

‖ξε‖L2(0,T ;H1
0 (Ω)) ≤

C(T )

ε
‖v‖L2(Q),

which can be rewritten as

(9.12) ‖∇ξε‖L2(Q) ≤
C(T )

ε
‖v‖L2(Q).

We now look to show that ξεt ∈ L2(0, T ;H−1(Ω)). To this end, we will estimate the
quantity ∥∥∥(uε,h − uε

h

)
t

∥∥∥
L2(0,T ;H−1(Ω))

,

and conclude by letting h→ 0. Using the identity (9.4), we observe that

∥∥∥(uε,h − uε
h

)
t

∥∥∥
L2(0,T ;H−1(Ω))

≤
∥∥∥∆
(uε,h − uε

h

)∥∥∥
L2(0,T ;H−1(Ω))

(9.13)

+
∥∥∥βε(uε,h − ψ − hv)− βε(uε − ψ)

h

∥∥∥
L2(Q)

.

We now estimate the two norms on the right-hand side. For the first norm, we
conclude by (9.11):

∥∥∥∆
(uε,h − uε

h

)∥∥∥
L2(0,T ;H−1(Ω))

≤
∥∥∥∇(uε,h − uε

h

)∥∥∥
L2(Q)

≤ C(T )

ε
‖v‖L2(Q).



OBSTACLE PROBLEMS: THEORY AND APPLICATIONS 81

On the other hand, by using the trick (9.6) and the fact that 0 ≤ β′(·) ≤ 1 on R, we
have∫

Q

(βε(uε,h − ψ − hv)− βε(uε − ψ)

h

)2

dxdt

=
1

h2

∫
Q

(∫ 1

0

β′ε(θ(u
ε,h − ψ − hv) + (1− θ)(uε − ψ))(uε,h − uε − hv)dθ

)2

dxdt

≤ 1

ε2

∫
Q

(uε,h − uε − hv
h

)2

dxdt

≤ 2

ε2

∫
Q

[(uε,h − uε
h

)2

+ v2
]
dxdt.

From the above and (9.11), it follows that∫
Q

(βε(uε,h − ψ − hv)− βε(uε − ψ)

h

)2

dxdt ≤ C

ε2
‖v‖2

L2(Q)

holds for some C = C(T ) > 0. Therefore∥∥∥(uε,h − uε
h

)
t

∥∥∥
L2(0,T ;H−1(Ω))

≤ C

ε
‖v‖L2(Q)

for some C = C(T ) > 0. Arguing by compactness just as with the previous conver-
gence, we deduce that ξεt ∈ L2(0, T ;H−1(Ω)) and(uε,h − uε

h

)
t
⇀ ξεt weakly in L2(0, T ;H−1(Ω))

along a subsequence as h→ 0. Using both of the established weak convergences and
the Aubin-Lions lemma, we finally deduce that

(9.14)
uε,h − uε

h
→ ξε strongly in L2(Q)

along a subsequence as h→ 0.
To deduce the equation, we multiply the identity (9.4) by an arbitrary test function

ϕ ∈ L2(0, T ;H1
0 (Ω)) and integrate over Q to obtain∫

Q

(uε,h − uε
h

)
t
ϕdxdt+

∫
Ω

∇
(uε,h − uε

h

)
· ∇ϕdxdt(9.15)

+

∫
Q

(βε(uε,h − (ψ + hv))− βε(uε − ψ)

h

)
ϕdxdt = 0.
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Observe that in order to pass to the limit in (9.15), we only need to investigate the
third integral term, as the established weak convergences would account for the first
two. It is now easier argue with the original notation uε,h = σε(ψ+hv), uε = σε(ψ).
The strong L2 convergence (9.14) implies that

(9.16)
σε(ψ + hv)− σε(ψ)

h
→ ξε a.e. in Q

along a further subsequence as h → 0. If we set ζ(x) := σε(x) − x, we deduce the
following identity:

βε(u
ε,h − (ψ + hv))− βε(uε − ψ)

h
=
βε(ζ(ψ + hv))− βε(ζ(ψ))

h
.

Now by virtue of (9.16), notice that
ζ(ψ + hv)− ζ(ψ)

h
→ ξε − v a.e. in Q

as h→ 0. Consequently, since βε ∈ C1(R), using the previous convergence and the
chain rule, we obtain

βε(ζ(ψ + hv))− βε(ζ(ψ))

h
→ β′ε(ζ(ψ))(ξε − v) a.e. in Q

as h→ 0, or equivalently,
βε(u

ε,h − (ψ + hv))− βε(uε − ψ)

h
→ β′ε(u

ε − ψ)(ξε − v) a.e. in Q.

We may now let h→ 0 in (9.15) by using both of the established weak convergences
for the first two integrals and the Lebesgue dominated convergence theorem for the
third to deduce that∫ T

0

〈ξεt (t, ·), ϕ(t, ·)〉dt+

∫
Q

∇ξε · ∇ϕdxdt+

∫
Q

β′ε(u
ε − ψ)(ξε − v)ϕdxdt = 0

holds for all ϕ ∈ L2(0, T ;H1
0 (Ω)). Whence ξε is a weak solution of (9.3).

We now consider the set

W := {w ∈ H1(Q) : w = 0 on Σ, w(0, ·) = 0 in Ω}
endowed with the ‖·‖H1(Q) norm, and letW′ be its dual. Recall that the Sobolev space
H1(Q) consists of all functions u ∈ L2(0, T ;H1(Ω)) such that ut ∈ L2(0, T ;H1(Ω)),
and is endowed with the norm

‖u‖2
H1(Q) := ‖u‖2

L2(Q) + ‖ut‖2
L2(Q).
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It is also worth noting that the initial value installed in W makes sense since u ∈
H1(Q) implies u ∈ C0([0, T ];L2(Ω)) (see [21, Thm.1, p.303]).

As discussed in what precedes, we will look to differentiate the functional associ-
ated to the approximate problem. Fix ε > 0 and consider:

Jε[ψ] :=

∫
Q

(σε(ψ)− ud)2dxdt+

∫
Q

(
|∆ψ|2 + |ψt|2

)
dxdt

for ψ ∈ U. The existence of a minimizer to this functional follows from arguments
similar to the proof of Theorem 9.1. As it shall be seen in the computations that
follow, it will be useful to introduce an adjoint variable. We have the following
Lemma.

Lemma 9.5. — Let ε > 0 be fixed. Given a minimizer ψε ∈ U of Jε, there exists a
unique adjoint state pε ∈ L2(0, T ;H1

0 (Ω)) with pεt ∈ L2(0, T ;H−1(Ω)) such that pε is
a weak solution of

(9.17)


−pεt −∆pε + β′ε(u

ε − ψε)pε = uε − ud in Q

pε = 0 on Σ

pε(T, ·) = 0 in Ω,

and the estimate

(9.18) sup
t∈[0,T ]

‖pε(t, ·)‖L2(Ω) + ‖pε‖L2(0,T ;H1
0 (Ω)) + ‖β′ε(uε − ψε)pε‖W′ + ‖pεt‖W′ ≤ C

holds for some constant C = C(T, ud) > 0 independent of ε.

Proof. — Fix ε > 0. As the adjoint equation (9.17) is linear, β′ε(uε − ψε) ∈ L∞(Q)
and uε − ud ∈ L2(Q), by virtue of the change of variable t← T − t and [21, Thm.3,
p.378] we deduce the existence of a unique weak solution pε ∈ L2(0, T ;H1

0 (Ω)) with
pεt ∈ L2(0, T ;H−1(Ω)).

We now look to show the uniform estimate. Recall that in Remark 2.5, we showed
that the family of approximate solutions {uε}ε>0 is bounded in L2(Q). Since ud ∈
L2(Q), there exists some constant C > 0 such that the following estimate of the
right-hand side of (9.17)

(9.19) ‖uε − ud‖L2(Q) ≤ C

holds for all ε > 0. Consider for fixed t ∈ [0, T ) the cylinder Qt := Ω × (t, T ). The
weak form of the adjoint equation for the test function pε reads∫

Qt

(
− pεtpε + |∇pε|2 + β′ε(u

ε − ψ)(ψε)2
)
dxds =

∫
Qt
pε(uε − ud)dxds.
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Since β′(·) ≥ 0 on R, we also have∫
Qt
β′ε(u

ε − ψ)(pε)2dxds ≥ 0,

thus ∫
Qt

(−pεtpε + |∇pε|2)dxds ≤
∫
Qt
pε(uε − ud)dxds.

Similarly as in the previous proof, observe that

−
∫
Qt

(pεtp
ε)dxds = −1

2

∫
Ω

[
(pε)2

]T
t

dx =
1

2

∫
Ω

pε(t, x)2dx(9.20)

since pε(T, ·) = 0 in Ω. Whence,

(9.21)
∫

Ω

pε(t, x)2dx+

∫
Qt
|∇pε|2dxds ≤ 2

∫
Qt
pε(uε − ud)dxds.

We may estimate the right-hand side by using the Cauchy-Schwarz and Young in-
equalities respectively:

2

∫
Qt
pε(uε − ud)dxds ≤ 2‖pε‖L2(Qt)‖uε − ud‖L2(Qt)

≤ ‖pε‖2
L2(Qt) + ‖uε − ud‖2

L2(Qt).

As |∇pε|2 ≥ 0, the above and (9.21) yield∫
Ω

pε(t, x)2dx ≤ ‖pε‖2
L2(Qt) + ‖uε − ud‖2

L2(Qt).

Now using the integral form of Gronwall’s inequality (see Proposition A.12 in the
Appendix) and integrating between 0 and T , we obtain∫

Q

pε(uε − ud)dxds ≤ C(T )‖uε − ud‖2
L2(Q).

Plugging this in (9.21) gives∫
Ω

pε(t, x)2dx+

∫
Q

|∇pε|2dxdt ≤ C(T )‖uε − ud‖2
L2(Q),

which allows us to conclude that

(9.22) sup
t∈[0,T ]

‖pε(t, ·)‖L2(Ω) + ‖∇pε‖L2(Q) ≤ C‖uε − ud‖L2(Q)

holds for some C = C(T ) > 0.
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Now let ϕ ∈W be arbitrary. From the weak form of the adjoint equation, we see
that ∣∣∣ ∫

Q

β′ε(u
ε − ψε)pεϕdxdt

∣∣∣ =
∣∣∣ ∫

Q

(
(uε − ud)ϕ− pεϕt +∇pε · ∇ϕ

)
dxdt

∣∣∣
≤ ‖uε − ud‖L2(Q)‖ϕ‖L2(Q) + ‖pε‖L2(Q)‖ϕt‖L2(Q)

+ ‖∇pε‖L2(Q)‖∇ϕ‖L2(Q).

Using the Poincaré inequality and (9.22), we obtain∣∣∣ ∫
Q

β′ε(u
ε − ψε)pεϕdxdt

∣∣∣ ≤ C(T )‖uε − ud‖L2(Q)‖ϕ‖W.

Consequently, one has

‖β′ε(uε − ψε)pε‖W′ ≤ C(T )‖uε − ud‖L2(Q).

Similarly, from the weak form of the adjoint equation for the test function ϕ ∈ W,
the estimate on the gradient (9.22) and the W′ estimate above, we deduce

‖pεt‖W′ ≤ C(T )‖uε − ud‖L2(Q).

Combining all of these estimates, we conclude by virtue of (9.19) that

sup
t∈[0,T ]

‖pε(t, ·)‖L2(Ω) + ‖∇pε‖L2(Q) + ‖β′ε(uε − ψε)pε‖W′ + ‖pεt‖W′ ≤ C

for some C = C(T ) > 0 independent of ε.

We now define the notion of solution of an equation that a minimizer ψε of Jε will
be shown to satisfy.

Definition 9.6. — Fix ε > 0. Given pε ∈ L2(0, T ;H1
0 (Ω)), the function ψε ∈ U is

a weak solution of

(9.23)


−ψεtt + ∆2ψε + β′ε(u

ε − ψε)pε = 0 in Q

ψε = ∆ψε = 0 on Σ

ψε(0, ·) = ψεt (T, ·) = 0 in Ω,

if ∆ψε ∈ L2(0, T ;H1
0 (Ω)), ψεt ∈ L2(Q), ψεtt ∈W′ and∫

Q

(
ψεtϕt −∇∆ψε · ∇ϕ+ β′ε(u

ε − ψε)pεϕ
)
dxdt = 0

holds for all ϕ ∈W.
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Proposition 9.1. — Let ε > 0 be fixed and let ψε ∈ U be a minimizer of Jε. Then
ψε is a weak solution of equation (9.23) in the stated sense, with associated state
uε = σε(ψ

ε), and the estimate and

(9.24) ‖ψεt‖L2(0,T ;H1
0 (Ω)) + ‖∆ψε‖L2(0,T ;H1

0 (Ω)) + ‖ψεtt‖W′ ≤ C

holds for some constant C = C(T, ud) > 0 independent of ε.

Remark 9.7. — By the Poincaré inequality, the estimates from the previous lemma
and this proposition would also imply that {pε}ε>0, {∆ψε}ε>0 and {ψεt}ε>0 are
bounded in L2(Q).

Proof. — Fix ε > 0 and set uε := σε(ψ
ε) and uε,h := σε(ψ

ε + hv) for an arbitrary
direction v ∈ C∞c (Q) with v(0, ·) = 0 and h > 0. Since ψε is a minimizer of Jε, one
has

Jε[ψ
ε] ≤ Jε[ψ

ε + hv],

which in turn implies

0 ≤ lim inf
h→0+

Jε[ψ
ε + hv]− Jε[ψ

ε]

h
.

After some computations, using the weak and strong convergences of the difference
quotients established in Theorem 9.3 as well as Green’s first identity, we deduce

lim inf
h→0+

Jε[ψ
ε + hv]− Jε[ψ

ε]

h
= 2

∫
Q

(
ξε(uε − ud) + ∆ψε∆v + ψεtvt

)
dxdt.

Using the adjoint equation (9.17) and Green’s first identity once more, we also have∫
Q

(
ξε(uε − ud) + ∆ψε∆v + ψεtvt

)
dxdt

=

∫
Q

(
− ξεpεt +∇ξε · ∇pε + ξεβ′ε(u

ε − ψε)pε + ∆ψε∆v + ψεtvt
)
dxdt

=

∫
Q

(
ξεt p

ε +∇ξε · ∇pε + ξεβ′ε(u
ε − ψε)pε + ∆ψε∆v + ψεtvt

)
dxdt,

and note that to obtain the last integral we used the initial conditions ξε(0, ·) = 0
and pε(T, ·) = 0. Finally, using equation (9.3), we deduce∫

Q

(
ξεt p

ε +∇ξε · ∇pε + ξεβ′ε(u
ε − ψε)pε + ∆ψε∆v + ψεtvt

)
dxdt

=

∫
Q

(
β′ε(u

ε − ψε)vpε + ∆ψε∆v + ψεtvt
)
dxdt.
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Whence,

0 ≤
∫
Q

(
β′ε(u

ε − ψε)vpε + ∆ψε∆v + ψεtvt
)
dxdt.

Since v was taken arbitrary we deduce the weak form of (9.23). We conclude that ψε
satisfies (9.23) with the stated boundary conditions (see [2] for more detail). Now,
multiplying (9.23) by ∆ψε, integrating over Q and using Green’s first identity, we
have ∫

Q

(
ψεtt∆ψ

ε + |∇∆ψε|2
)
dxdt =

∫
Q

β′ε(u
ε − ψε)pε∆ψεdxdt.

Using Green’s first identity once more as well as the adjoint equation (9.17), the
above may be rewritten as∫

Q

(
|∇ψεt |2 + |∇∆ψε|2

)
dxdt =

∫
Q

(uε − ud + pεt + ∆pε)∆ψεdxdt.

From the W′ estimates above and the Cauchy-Schwarz inequality, we deduce the
L2(0, T ;H1

0 (Ω)) estimates for ψεt and ∆ψε. Using (9.23) we deduce the W′ estimate
for ψεtt (see [2] for more detail on this point).

Now observe that the approximate adjoint equation and the equation for the
minimizer of the approximate objective functional have a term in common. By
rewriting, we deduce that (ψε, pε) satisfy

−pεt −∆pε + ψεtt −∆2ψε = uε − ud in Q

pε = ψε = ∆ψε = 0 on Σ

pε(T, ·) = ψε(0, ·) = ψεt (T, ·) = 0 in Ω,

in the weak W′ sense defined above. We now look to use the established estimates
for a compactness argument and let ε → 0 in the above equation. First, we define
the notion of solution for the equation that the limit functions ψ? and p will be
shown to satisfy.

Definition 9.8. — The pair (ψ?, p) is a weak solution of
−pt −∆p+ ψ?tt −∆2ψ? = u? − ud in Q

p = ψ = ∆ψ? = 0 on Σ

p(T, ·) = ψ?(0, ·) = ψ?t (T, ·) = 0 in Ω,

(9.25)
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where u? = σ(ψ?), if ψ? ∈ U, ∆ψ? ∈ L2(0, T ;H1
0 (Ω)), ψ?t ∈ L2(0, T ;H1

0 (Ω)), ψ?tt ∈
W′, p ∈ L2(0, T ;H1

0 (Ω)), pt ∈W′ and∫
Q

(
pϕt +∇p · ∇ϕ+∇∆ψ? · ∇ϕ− ψ?tϕt

)
dxdt =

∫
Q

(u? − ud)ϕdxdt

holds for all ϕ ∈W.

Theorem 9.9. — There exist an optimal control ψ? (i.e. a minimizer of J) and an
adjoint state p such that the pair (ψ?, p) is a weak solution of (9.25). Moreover, the
corresponding state u? = σ(ψ?) satisfies the parabolic obstacle problem (2.1).

Proof. — Consider the family of minimizers {ψε}ε>0 ⊂ U of the approximate objec-
tive functionals, as well as the family of solutions {pε}ε>0 ⊂ L2(0, T ;H1

0 (Ω)) of the
family of adjoint problems (9.17). In light of what precedes, for fixed ε > 0 these
approximations satisfy the weak formulation

(9.26)
∫
Q

(
pεϕt +∇pε · ∇ϕ+∇∆ψε · ∇ϕ− ψεtϕt

)
dxdt =

∫
Q

(uε − ud)ϕdxdt

for all ϕ ∈ W. Arguing as in previous proofs, from the estimates in Proposi-
tion 9.1 and the lemma before, we deduce the existence of ψ? ∈ U with ∆ψ? ∈
L2(0, T ;H1

0 (Ω)), ψ?t ∈ L2(0, T ;H1
0 (Ω)), ψ?tt ∈ W′, and p ∈ L2(0, T ;H1

0 (Ω)) with
pt ∈W′, and with the following convergences in particular

pε ⇀ p weakly in L2(Q)

pε ⇀ p weakly in L2(0, T ;H1
0 (Ω))

ψεt ⇀ ψ?t weakly in L2(Q)

∆ψε ⇀ ∆ψ? weakly in L2(0, T ;H1
0 (Ω))

along subsequences as ε→ 0. Using also previously established convergences of the
approximate solutions {uε}ε>0 (see the proof of Theorem 2.1), we may pass to the
limit in (9.26) to deduce that (ψ?, p) satisfy (9.25) in the defined weak sense.

To show that u? solves the parabolic obstacle problem, we argue as in Theorem
9.1. Let v ∈ K(ψ?) be an arbitrary test function. Since a priori v /∈ K(ψε), we
cannot say that uε satisfies a parabolic variational inequality for such v and for each
ε > 0. Rather, fix ε > 0 and set vε = max{v, ψε} ∈ K(ψε). Then since uε solves the
penalization problem (2.2), one has (as in the proof of Theorem 9.1)∫

Q

uεt(v
ε − uε)dxdt+

∫
Q

∇uε · ∇(vε − uε)dxdt ≥
∫
Q

f(vε − uε)dxdt,
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and in Theorem 9.1, we also showed that
vε ⇀ v weakly in L2(0, T ;H1

0 (Ω))

vε → v strongly in L2(Q)

along subsequences as ε → 0. We may use these convergences as well as the weak
L2(Q) convergence of {uεt}ε>0 and strong L2(Q) convergence of {∇uε}ε>0 (see the
proof of Theorem 2.1) to let ε→ 0 in the above inequality and deduce∫

Q

u?t (v − u?)dxdt+

∫
Q

∇u? · ∇(v − u?)dxdt ≥
∫
Q

f(v − u?)dxdt.

Recall the estimate (2.7):
‖β(uε − ψ?)‖L2(Q) ≤ εC(ψ?, f).

Using the properties of β and the strong L2(Q) convergence of {uε}ε>0 as in the
proof of Theorem 9.1, we may let ε → 0 and deduce that u? ∈ K(ψ?), and we may
therefore conclude that u? = σ(ψ?), i.e. u? solves the parabolic obstacle problem
(2.1).

Finally, we show that ψ? is a minimizer of J. Since for each ε > 0, ψε is a
minimizer for Jε, we have

Jε[ψ
?] ≥ Jε[ψ

ε].

Since σε(ψ?)→ u? strongly in L2(Q) (see the proof of Theorem 2.1), we also have
J[ψ?] = lim sup

ε→0
Jε[ψ

?] ≥ lim sup
ε→0

Jε[ψ
ε].

By weak lower semicontinuity of the norms, we deduce
lim inf
ε→0

Jε[ψ
ε] ≥ J[ψ?].

Therefore ψ? is a minimizer of J.
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Remarks and further topics

We discuss some interesting topics concerning obstacle problems that have not
been covered.
• An important problem which is beyond the scope of this work is the mathe-
matical analysis of the free boundary

Γ(u) := ∂{u > ψ}.
This topic is an interplay of analysis of PDEs and geometric measure theory,
and has (and still is, for different variants of the problem) been an important
challenge in the mathematical study of obstacle problems. The main question
is to understand the geometry and the regularity of the free boundary, as a
priori this could be a very irregular object. The main results state that the
free boundary is of finite perimeter, all the points on the free boundary are
classified in regular and singular points. The set of regular points is an open
subset of the free boundary, and is C∞, while the singular points are in some
sense very "rare" (the contact set has Lebesgue density 0 at these points). The
regularity study and results are presented in [12] and [41]
• Given its variational formulation, it is natural to solve the obstacle problem
numerically by using the finite element method. As for all PDEs, an impor-
tant question is to know the error (in both energy and max-norms) for the
approximations of the solution (and even for the free boundary). In the setup
of Section I, for an "appropriate" mesh T of Ω and a finite dimensional ap-
proximation KT ⊂ K, the discrete problem consists of finding uT ∈ KT such
that

〈∇uT ,∇(v − uT )〉L2(Ω) ≥ 〈f, v − uT 〉L2(Ω)

for all v ∈ KT . It can be shown that this problem also has a unique solution,
with the error estimates

‖∇(u− uT )‖L2(Ω) . hT (‖f‖L2(Ω) + ‖ψ‖H2(Ω))

and
‖u− uT ‖L∞(Ω) < Ch2

T | log hT |‖u‖W 2,∞(Ω),

where hT denotes the mesh size (defined as the maximum of the diameters
of every cell in the mesh). Pointwise error estimates are usually derived by
analyzing the error in mesh cells near the contact set of the continuous solution
{u = ψ}, and by subsequently applying a discrete maximum principle. For
more detail, we refer to [39].



OBSTACLE PROBLEMS: THEORY AND APPLICATIONS 91

• An important variant (for both physics and mathematics) of the obstacle prob-
lem is the so-called thin obstacle problem. Consider the hyperplane M := {x ∈
Rn : xn = 0} and let Ω+ ⊂ B(0, 1) ∩ {xn ≥ 0} be a domain in Rn with smooth
boundary. The problem arises when minimizing

D[u] :=

∫
Ω+

|∇u|2dx

among all functions u ∈ {w ∈ H1
0 (Ω+) : w ≥ ϕ on M ∩Ω+}. Here the function

ϕ : M → R satisfying ϕ < 0 on M ∩ ∂Ω+ is called the thin obstacle, because
u is constrained to stay above the obstacle ϕ only on the (n − 1)-dimensional
hyperplane M and not on the entire n-dimensional domain Ω+. Considering
a slight change of the boundary conditions, namely u = 0 on ∂Ω+ \M and
u ≥ ϕ on M yields the so-called Signorini problem. This problem arises in
linear elasticity theory, namely in the study of the equilibrium of an elastic
membrane that rests above a very thin object. Existence and uniqueness of
solutions is guaranteed by similar arguments as for the classical problem. It
is shown in [41, Chapter 9] that the optimal regularity for the solution is
C1,α

loc (Ω+∪M). The proof uses a penalization method, but requires results that
are beyond the scope of this work. In the literature, the problem is often stated
in its complementarity form{

∆u = 0 in Ω+ ∩ {xn > 0}
min{−∂xnu, u− ϕ} = 0 on Ω+ ∩M.

• As mentioned in the introduction, some phenomena give rise to obstacle prob-
lems with integro-differential operators such as the fractional Laplacian (−∆)s,
s ∈ (0, 1). In recent years, many of the known results for the classical and
parabolic obstacle problems have found their analog in the case where the
Laplacian is changed with its fractional counterpart. The regularity theory
for the elliptic and parabolic fractional obstacle problems has been studied
in [45] and [13] respectively, and convergence analysis for the finite element
discretization may be found in [39].
• We did not manage to present numerical experiments for computing the optimal
control (obstacle) for the elliptic or parabolic obstacle problem. A problem that
has more often been considered in the mathematical and numerical literature
is minmimizing the L2 error between the state and the target profile

1

2
‖y − yd‖2

L2 +
α

2
‖u‖2

L2
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{u = ϕ}

{u > ϕ}
∆u = 0 free boundary

(lower dimensional)

∂xn
u = 0

Figure 11. The free boundary and the contact set for the thin obstacle
problem. This figure was adapted from [44].

(here α is small) subject to a variational inequality constraint on the state
〈Ly, v − y〉 ≥ 〈f + u, v − y〉, v ≥ ψ,

where the obstacle ψ is given, and L is an elliptic or parabolic operator. Such
problems fall in the realm of mathematical programs with equilibrium con-
straints. An optimal control (should it exist) may be computed, for example,
by considering a penalization of the variational inequality and reduce the prob-
lem to PDE-constrained minimization, and then solve this problem using the
adjoint method.
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APPENDIX

Convexity, coercivity, weak lower semicontinuity

Proposition A.1. — The set

K(ψ) := {u ∈ H1
0 (Ω) : u ≥ ψ a.e. in Ω}

is convex, closed and is non-empty.

Proof. — Let u, v ∈ K(ψ). Then for any θ ∈ [0, 1], we have θu + (1 − θ)v ≥
θψ + (1− θ)ψ = ψ. Thus K(ψ) is convex.

To show thatK(ψ) is closed, let {uk}∞k=0 ⊂ K(ψ) be a sequence converging strongly
in H1

0 (Ω) to some u ∈ H1
0 (Ω). By the Poincaré inequality, uk → u strongly in L2(Ω)

as k → ∞. Moreover, there exists a subsequence {ukj}∞j=0 of {uk}∞k=0 such that
ukj → u almost everywhere in Ω as j → ∞. But for every j ∈ N, one has ukj ≥ ψ
a.e. in Ω, hence by letting j →∞ we deduce that u ∈ K(ψ).

To show that K(ψ) is non-empty, observe that since ψ ∈ H2(Ω) ∩ C0(Ω), ψ+ ∈
H1(Ω) (see [25, Lem.7.6, p.152]) where ψ+ = max{ψ, 0} denotes the positive part
of ψ. Since ψ ≤ 0 on ∂Ω, we have ψ+ = 0 on ∂Ω in the trace sense. This implies
ψ+ ∈ H1

0 (Ω), and since ψ+ ≥ ψ, we deduce that ψ+ ∈ K(ψ).

We now present some properties of the Dirichlet energy functional

E[u] :=
1

2

∫
Ω

|∇u|2dx−
∫

Ω

fudx,

that we used in various proofs.

Proposition A.2 (Convexity of E). — The functional E : H1
0 (Ω)→ R is convex

and strictly convex.

Proof. — Let u, v ∈ H1
0 (Ω) and θ ∈ [0, 1] be arbitrary. Then by the triangle in-

equality,

E[θu+(1−θ)v] ≤ θ2

2

∫
Ω

|∇u|2dx+
(1− θ)2

2

∫
Ω

|∇v|2dx−θ
∫

Ω

fudx−(1−θ)
∫

Ω

fvdx.

Since t2 ≤ t on [0, 1], the convexity of E follows.
Recall that E is strictly convex if

E[θu+ (1− θ)v] < θE[u] + (1− θ)E[v],
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for u, v ∈ H1
0 (Ω) with u 6≡ v and θ ∈ (0, 1). Observe that if u 6≡ v, then at least

either u 6≡ 0 or v 6≡ 0. Thus the strict convexity also follows from the inequality
above, as t2 < t on (0, 1).

Proposition A.3 (Coercivity of E). — The functional E : H1
0 (Ω) → R is coer-

cive, meaning
E[u]→ +∞ as ‖u‖H1

0 (Ω) → +∞.

Proof. — Let u be an arbitrary element of H1
0 (Ω). One obtains

E[u] ≥ 1

2
‖u‖2

H1
0 (Ω) −

∣∣∣ ∫
Ω

fudx
∣∣∣

≥ 1

2
‖u‖2

H1
0 (Ω) − ‖f‖L2(Ω)‖u‖L2(Ω)

≥
(1

2
‖u‖H1

0 (Ω) − C(Ω, n)‖f‖L2(Ω)

)
‖u‖H1

0 (Ω)

by virtue of the Cauchy-Schwarz and Poincaré inequalities respectively. Now observe
that as ‖u‖H1

0 (Ω) → +∞, at some point one clearly has 1
2
‖u‖H1

0 (Ω) > c(Ω, n)‖f‖L2(Ω).
Thus, E is coercive.

9.3. Weak topology results. — We now present some helpful results for show-
ing weak lower semicontinuity of various functionals. Henceforth X denotes a real
Banach space.

Definition A.1. — A map f : X → (−∞,+∞] is said to be strongly (resp. weakly)
lower semicontinuous if for every α ∈ R the set

{x ∈ X : f(x) ≤ α}
is closed (resp. weakly closed).

If f is strongly (resp. weakly) lower semicontinuous, then for every sequence
{xk}∞k=0 ⊂ X such that xk → x strongly in X (resp. xk ⇀ x weakly in X) for some
x ∈ X as k →∞, we have

f(x) ≤ lim inf
k→∞

f(xk),

and conversely.

Theorem A.4. — Let K be a convex subset of X. Then K is weakly closed if and
only if it is strongly closed.
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Proof. — Convexity is actually not needed to show that if K is weakly closed then
it is strongly closed. In effect, this follows merely from the fact that strong (i.e.
norm) convergence implies weak convergence.

Now suppose that K is strongly closed. We will show that X \K is weakly open.
Let x0 ∈ X \ K. By the Hahn-Banach theorem (second geometric form, see [11,
Thm.1.7, p.7]), there exists a closed hyperplane strictly separating {x0} and K,
meaning there exist some f ∈ X ′ and α ∈ R such that

(9.27) f(x0) < α < f(y) for all y ∈ K.

Now set
O := {x ∈ X : f(x) < α}.

Then O = f−1((α,+∞)) is weakly open, and from (9.27), it follows that x0 ∈ O and
O ∩K = ∅. Hence O ⊂ X \K and so X \K is weakly open.

Corollary A.5. — Assume that f : X → (−∞,+∞] is convex and strongly lower
semicontinuous. Then f is weakly lower semicontinuous.

Proof. — For every α ∈ R the set

K = {x ∈ X : f(x) ≤ α}
is strongly closed and convex. By the previous Theorem, it is also weakly closed and
thus f is weakly lower semicontinuous.

It may be difficult to show that a function is weakly lower semicontinuous. In
practice, we use the above Corollary to continuous and convex functions f and
deduce that f is weakly lower semicontinuous. For example, the function f(x) = ‖x‖
is convex and strongly continuous, thus it weakly lower semicontinuous.

Proposition A.6 (Weak lower semicontinuty of E). — The functional E :
H1

0 (Ω)→ R is weakly lower semicontinuous.

Proof. — We proceed by analyzing separately both terms. In light of the previous
Corollary and the subsequent remarks, we only need to investigate the second inte-
gral term as the first is the ‖ · ‖H1

0 (Ω) norm. Observe that the map F : H1
0 (Ω) → R

defined as
F : u 7→

∫
Ω

−fudx

is linear, and also bounded by the Cauchy-Schwarz and Poincaré inequalities (recall
that f ∈ L2(Ω)). It is thus convex and strongly continuous, therefore weakly lower
semicontinuous.
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Now assume uk ⇀ u weakly in H1
0 (Ω). Since the limit inferior is superadditive, it

follows that

E[u] =
1

2
‖u‖H1

0 (Ω) + F (u) ≤ lim inf
k→∞

‖uk‖H1
0 (Ω) + lim inf

k→∞
F (uk)

≤ lim inf
k→∞

(1

2
‖uk‖H1

0 (Ω) + F (uk)
)

= lim inf
k→∞

E[uk].

Proposition A.7. — Assume that

uk ⇀ u weakly in L2(0, T ;H1
0 (Ω))

(uk)t ⇀ v weakly in L2(0, T ;H−1(Ω))

as k →∞. Then v = ut.

This is Problem 4 from [21, p.425].

Proof. — Let ϕ ∈ C∞c (Q) and w ∈ H1
0 (Ω). Then the map t 7→ ϕ(t, ·)w is in

L2(0, T ;H1
0 (Ω)). Now denoting by 〈·, ·〉 the duality pairing between H−1(Ω) and

H1
0 (Ω), we have 〈∫ T

0

ϕt(t, ·)u(t, ·)dt, w
〉

=

∫ T

0

〈ϕt(t, ·)u(t, ·), w〉dt

=

∫ T

0

〈u(t, ·), ϕt(t, ·)w〉dt.

The weak L2(0, T ;H1
0 (Ω)) convergence gives∫ T

0

〈u(t, ·), ϕt(t, ·)w〉dt = lim
k→∞

∫ T

0

〈uk(t, ·), ϕt(t, ·)w〉dt

= lim
k→∞

〈∫ T

0

ϕt(t, ·)uk(t, ·)dt, w
〉
.

By definition of the weak derivative, we have

lim
k→∞

〈∫ T

0

ϕt(t, ·)uk(t, ·)dt, w
〉

= lim
k→∞

〈
−
∫ T

0

ϕ(t, ·)(uk)t(t, ·)dt, w
〉

= lim
k→∞

∫ T

0

−〈(uk)t(t, ·), ϕ(t, ·)w〉dt.
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Using the weak L2(0, T ;H−1(Ω)) convergence of the derivatives, we obtain

lim
k→∞

∫ T

0

−〈(uk)t(t, ·), ϕ(t, ·)w〉dt =

∫ T

0

−〈v(t, ·), ϕ(t, ·)w〉dt

=
〈
−
∫ T

0

ϕ(t, ·)v(t, ·)dt, w
〉
.

Combining the previous chain of equalities, we deduce〈∫ T

0

ϕt(t, ·)u(t, ·)dt+

∫ T

0

ϕ(t, ·)v(t, ·)dt, w
〉

= 0.

Since the above holds for all w ∈ H1
0 (Ω) and for every test function ϕ ∈ C∞c (Q), we

obtain the desired result.

Proposition A.8. — Suppose H is a real Hilbert space and

uk ⇀ u weakly in L2(0, T ;H).

Suppose further that there exists C > 0 such that

ess sup
t∈[0,T ]

‖uk(t, ·)‖H ≤ C,

for all k ∈ N. Then
ess sup
t∈[0,T ]

‖u(t, ·)‖H ≤ C.

This is Problem 5 from [21, p.425].

Proof. — Let v ∈ H and 0 ≤ a ≤ b ≤ T be given. From the assumed bound, we
clearly have ∫ b

a

〈v, uk(t, ·)〉Hdt ≤ C‖v‖H |b− a|,

and from the assumed weak convergence, we also deduce∫ b

a

〈v, u(t, ·)〉Hdt ≤ C‖v‖H |b− a|.

Now notice that ∫ T

0

|〈v, u(t, ·)〉H |2dt ≤ T‖v‖H‖u‖L2(0,T ;H)
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by applying Cauchy-Schwarz twice, hence t 7→ 〈v, u(t, ·)〉H is in L2(0, T ;H). Now
the bound before last may be rewritten as

1

|b− a|

∫ b

a

〈v, u(t, ·)〉Hdt ≤ C‖v‖H ,

whence the Lebesgue differentiation theorem yields

〈v, u(t, ·)〉H ≤ C‖v‖H
for a.e. t ∈ (0, T ) and for all v ∈ H. Choosing v = u(t, ·) shows the claim.

Inequalities

Proposition A.9 (Young). — Let 1 < p, q <∞, 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+
bq

q

for a, b > 0.

Proof. — Since x 7→ ex is convex, it follows that

ab = eln a+ln b = e
1
p

ln ap+ 1
q

ln bq ≤ 1

p
eln ap +

1

q
eln bq =

ap

p
+
bq

q
.

We will often use Young’s inequality and its following variant in the case p = q = 2.

Proposition A.10 (Young with ε). — Let 1 < p, q <∞, 1
p

+ 1
q

= 1. Then

ab ≤ εap +
(εp)−q/pbq

q

for a, b > 0 and ε > 0.

Proof. — Observe that
ab =

(
(εp)1/pa

)(
(εp)−1/pb

)
,

so applying Young’s inequality yields the desired result.

Proposition A.11 (Gronwall, differential form). — Let f be a nonnegative,
absolutely continuous function on [0, T ], which satisfies the differential inequality

f ′(t) ≤ ϕ(t)f(t) + g(t)
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for a.e. t ∈ [0, T ], where ϕ, g are nonnegative, integrable functions on [0, T ]. Then

f(t) ≤ e
∫ t
0 ϕ(s)ds

(
f(0) +

∫ t

0

g(s)ds
)

for all t ∈ [0, T ]. In particular, if g ≡ 0 on [0, T ] and f(0) = 0, then f ≡ 0 on [0, T ].

Proof. — Using the assumed differential inequality, one has
d

ds

(
f(s)e

∫ s
0 ϕ(τ)dτ

)
= e−

∫ s
0 ϕ(τ)dτ

(
f ′(s)− ϕ(s)f(s)

)
≤ e−

∫ s
0 ϕ(τ)dτg(s)

for a.e. s ∈ [0, T ]. Now for each t ∈ [0, T ], we integrate the above between 0 and t
to obtain

f(t)e−
∫ t
0 ϕ(τ)dτ − f(0) ≤

∫ t

0

e−
∫ s
0 ϕ(τ)dτg(s)ds.

Since ϕ is nonnegative, rearranging the above we obtain the desired result.

Proposition A.12 (Gronwall, integral form). — Let ζ be a nonnegative, inte-
grable function on [0, T ] which satisfies the integral inequality

ζ(t) ≤ C1

∫ t

0

ζ(s)ds+ C2

for a.e. t ∈ [0, T ] and for some constants C1, C2 ≥ 0. Then

ζ(t) ≤ C2(1 + C1te
C1t)

for a.e. t ∈ [0, T ]. In particular, if C2 = 0, then ζ = 0 a.e. on [0, T ].

Proof. — Consider

f(t) :=

∫ t

0

ζ(s)ds.

Then f ′ ≤ C1f + C2 a.e. in [0, T ] by assumption. Due to the differential form of
Gronwall’s inequality, one has

f(t) ≤ eC1t(f(0) + C2t) = C2te
C1t.

Then by the assumed integral inequality,

ζ(t) ≤ C1f(t) + C2 ≤ C2(1 + C1te
C1t).

We now prove Lemma 5.1 giving an inequality for the map

g : u 7→ γ

δ
min{δ, u− ψ}.
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Proof of Lemma 5.1. — Let u, v ∈ H1
0 (Ω) be arbitrary. One has

g(v)− g(u) =
γ

δ


0 if v ≥ ψ + δ and u ≥ ψ + δ

δ − u+ ψ if v ≥ ψ + δ and u < ψ + δ

v − ψ − δ if v < ψ + δ and u ≥ ψ + δ

v − u if v < ψ + δ and u < ψ + δ

=
γ

δ


H(δ − u+ ψ)(v − u) if v ≥ ψ + δ and u ≥ ψ + δ

H(δ − u+ ψ)(δ − u+ ψ) if v ≥ ψ + δ and u < ψ + δ

v − ψ − δ if v < ψ + δ and u ≥ ψ + δ

H(δ − u+ ψ)(v − u) if v < ψ + δ and u < ψ + δ.

Now observe that δ−u+ψ ≤ v−u when v ≥ ψ+δ, and v−ψ−δ < H(δ−u+ψ)(v−u)
when v < ψ+ δ and u ≥ ψ+ δ. Whence from the above computation it follows that

g(v)− g(u) ≤ γ

δ
H(δ − u+ ψ)(v − u).

Monotone operator theory

We briefly present some results from monotone operator theory related to the
study of variational inequalities in a Hilbert space. The property of monotonicity is
often useful for showing the existence of a solution to a variational inequality. We
will see that a variational inequality associated to a monotone operator over a convex
set enjoying certain continuity properties can be solved. In general, if the convex
set is unbounded, it will be necessary to add hypotheses of coercivity to achieve the
existence of a solution.

Let H be a real Hilbert space, a priori not identified with its dual H ′, and denote
by 〈·, ·〉 their duality pairing. Let K ⊂ H be a closed convex and non-empty set;
further assumptions will be made subsequently.

Definition B.1. — A map A : K→ H ′ is called monotone if

〈Au− Av, u− v〉 ≥ 0

for all u, v ∈ K. A is called strictly monotone if

〈Au− Av, u− v〉 = 0 implies u = v.

Definition B.2. — A map A : K → H ′ is continuous on finite dimensional sub-
spaces if for any finite dimensional subspace M ⊂ H the map A : K ∩M → H ′ is
weakly continuous.
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Definition B.3. — A map A : K→ H ′ is coercive if there exists ϕ ∈ K such that
〈Au− Aϕ, u− ϕ〉
‖u− ϕ‖H

→ +∞ as ‖u‖H → +∞

for any u ∈ K.

We prove the following simple but powerful lemma due to Minty.

Lemma B.2 (Minty). — Let K ⊂ H be a closed and convex set, and let A :
K→ H ′ be monotone and continuous on finite dimensional subspaces. Then u ∈ K

satisfies

(9.28) 〈Au, v − u〉 ≥ 0 for all v ∈ K

if and only if it satisfies

(9.29) 〈Av, v − u〉 ≥ 0 for all v ∈ K.

Proof. — Assume that u ∈ K solves (9.28). By monotonicity of A,

0 ≤ 〈Av − Au, v − u〉 = 〈Av, v − u〉 − 〈Au, v − u〉
for all v ∈ K. Thus,

0 ≤ 〈Au, v − u〉 ≤ 〈Av, v − u〉
for all v ∈ K.

Conversely, assume that u solves (9.29). Let w ∈ K and set v := u+τ(w−u) ∈ K

for τ ∈ (0, 1] since K is convex. Hence by (9.29)

〈A(u+ τ(w − u)), τ(w − u)〉 ≥ 0,

whence it follows that
〈A(u+ τ(w − u)), w − u〉 ≥ 0

for all w ∈ K. Since A is weakly continuous on the intersection of K and the finite
dimensional subspace spanned by u and w, we let τ → 0 to obtain (9.28).

We now give without proof the main existence results (see [30]).

Theorem B.1. — Let K ⊂ H be a closed, bounded and convex, and let A : K→ H ′

be monotone and continuous on finite dimensional subspaces. Then there exists
u ∈ K solving the variational inequality

〈Au, v − u〉 ≥ 0

for all v ∈ K. Moreover, if A is strictly monotone, then u is unique.
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Corollary B.4. — Let K ⊂ H be a closed, bounded, convex and non-empty set,
and let F : K→ K be a proper map. Then the set of fixed points of F is closed and
non-empty.

Corollary B.5. — Let K ⊂ H be a closed, convex and non-empty set and let A :
K → H ′ be monotone, coercive and continuous on finite dimensional subspaces.
Then there exists u ∈ K such that

〈Au, v − u〉 ≥ 0

for all v ∈ K.
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