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o Unknowns are the state and a part of the boundary



o Unknowns are the state and a part of the boundary

o The (transient) prototype: one-phase Stefan problem

T:— T ="1 for t >0, 0 < x <s(t)
s(t) = = Tx(s(2),t) fort >0
T(0,t)=T(s(t),t)=0 fort>0

T(x,0) = To(x) for 0 < x < s,

where (T, s) are unknown, while sy > 0 and (f, Ty) are given

o Model for the melting of a block of ice inside a container filled with
water
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o Unknowns are the state and a part of the boundary

o The (transient) prototype: one-phase Stefan problem

T:— T ="1 for t >0, 0 < x <s(t)
s(t) = —Tx(s(t), 1) fort >0
T(0,t)=T(s(t),t)=0 fort>0

T(x,0) = To(x) for 0 < x < s,

where (T, s) are unknown, while sy > 0 and (f, Ty) are given

o Model for the melting of a block of ice inside a container filled with
water

o The Stefan condition describes the motion of the melting interface.
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Figure: T is the temperature and s is the melting front. In our case,
gc, Tm = 0.




o The canonical example is the heat equation

ye—Ay=1f1, in(0,T)xQ
y=0 on (0, T) x 0Q (1)
Y=Y in Q,

where Q C RY is a bounded domain with C? boundary, w C Q, 1 is
the indicator function, and (f, yp) are given

o Smoothing effect: f1,=0on Q\w = y(t,) € C*(Q\ w) for
t >0, even if yp € L2(Q).



There are multiple concepts of controllability, the "basic" one being

For any yo,y1 € L%(Q), there exists f € L?((0, T) x ) such that the
solution y to (1) satisfies

|}’(T,X) =yi(x) forxe Q.|
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Controllability

There are multiple concepts of controllability, the "basic" one being

Definition (Exact controllability at time T > 0)

For any yo,y1 € L?(), there exists f € L?((0, T) x Q) such that the
solution y to (1) satisfies

|Y(TaX) =yi(x) forxe Q.|

A few remarks are in order:
o Smoothing effect = if w # Q, then (1) is not exactly controllable.
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Controllability of

There are multiple concepts of controllability, the "basic" one being

Definition (Exact controllability at time T > 0)

For any yo,y1 € L?(), there exists f € L?((0, T) x Q) such that the
solution y to (1) satisfies

|Y(TaX) =yi(x) forxe Q.|

A few remarks are in order:
o Smoothing effect = if w # Q, then (1) is not exactly controllable.
o Can we steer y to specific targets, such as y; = 07
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Controllability of t

There are multiple concepts of controllability, the "basic" one being

Definition (Exact controllability at time T > 0)

For any yo,y1 € L?(), there exists f € L?((0, T) x Q) such that the
solution y to (1) satisfies

|Y(TaX) =yi(x) forxe Q.|

A few remarks are in order:
o Smoothing effect = if w # Q, then (1) is not exactly controllable.

o Can we steer y to specific targets, such as y; = 07 This is the
problem of null-controllability.
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Hilbert Uniqueness Method: null-controllability at time T > 0 is
equivalent to: 3C = C(T) > 0 such that for all ¢ € [?(Q),

_
/ lo(x,0)2dx < C / / (o, 1) P,
Q 0o JQ

where ¢ is the solution to the adjoint problem

wr+Ap=0 in(0,T)xQ
=0 on (0, T) x 09
(T, )=9" inQ.



Hilbert Uniqueness Method: null-controllability at time T > 0 is
equivalent to: 3C = C(T) > 0 such that for all ¢ € [?(Q),

_
/ o(x,0)Pdx < € / / (o, 1) P,
Q 0o JQ

where ¢ is the solution to the adjoint problem

wr+Ap=0 in(0,T)xQ
=0 on (0, T) x 09
(T, )=9" inQ.

This is called an observability inequality, and we say that the adjoint
problem is (final-state) observable.



How to prove the observability inequality?

o Fourier techniques: if eigenvalues {Ax}ken known, roughly check if
)\k+1—>\k>0forall ke N

o Biorthogonals: technical condition, again using eigenvalues
o Carleman inequalities

Remark: Distributed = boundary null-controllability (observability) for
parabolic problems.



Free boundary problems
Controllability
Controllability of free boundary problems

Null-control

E.Férnandez-Cara et al. (2016): null-controllability roughly by means of
the scheme:

1 Fix s € CY([0, T]), and consider

Vi — Yo = 1y fort >0, 0 < x < s(t)
y(0,t) = y(s(t),t) =0 fort>0 (2)
y(x,0) = y(x) for 0 < x < sp.

Notice that we have removed the Stefan condition.
2 Prove that (2) is null-controllable: HUM + Carleman inequality.

3 Transfer this knowledge to the free boundary problem by means of a
Schauder fixed-point theorem applied to the map

A:s(t)— so —/0 yx(s(7), 7)dT.
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Liu, Takahashi and Tucsnak (2013): null-controllability for

Ve — Vax + v = ul, for t >0, x € (—1,1) \ {h(t)}
v(£1,t) =0 fort >0

h(t) = v(h(t), t) for t >0

h(t) = [w](h(t), t) for t >0

h(0) = ho,  h(0) = hy,

v(x,0) = v(x), for x € (=1,1) \ {ho}.

o Model for the motion of a single particle in a viscous fluid occupying
the pipe (—1,1)

o v represents the fluid velocity and h the position of the particle

o Null-controllability result includes h(T) =0, h(T) = 0.
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1 For t > 0, change of variable to fix the domain

n(t) (LN {A(8)} = (=1,1)\ {0}

yielding a nonlinear problem written in Cauchy-form

2(t) = Az(t) + Bi(t) + N ;
h(t) = Cz(t)

z(0) = z

h(0) = ho.

2 Consider the linear problem: replace N [i] by f

3 Prove null-control. of the linear problem with f = 0 using parabolic
techniques

4 Transfer null-control. result to problem with f # 0 if f has decay
properties (called source term method)

5 N is a contraction =—> Banach's fixed-point.
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The porous medium equation:
uy = Au™  on (0,00) x R?,

u > 0 is the gas density and m > 1.



The porous medium equation
Linearization

Analysis of the linear model
Perspectives

The porous medium equation:

ue = Au™  on (0,00) x R,

u > 0 is the gas density and m > 1.

o Can be written as a scalar conservation law

ur+ V- <— uvllu”’_1> =0;

m —

. . . . m —1
density is advected by negative gradient of the pressure 7 u™*.
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The porous medium equation:

uy = Au™  on (0,00) x R?,

u > 0 is the gas density and m > 1.

o Can be written as a scalar conservation law

ut—i—V-(—uV mlu"’_1>:0;

m —

. . . . m —1
density is advected by negative gradient of the pressure 7 u™*.
o If ug has compact support = free boundaries appear:

I = Osuppu.

The "empty" region {u = 0} and where there is gas {u > 0} are
separated by these interfaces.
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The porous medium equation
Linearization
Analysis of the linear model
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The porous medium equation:

uy = Au™  on (0,00) x R?,

u > 0 is the gas density and m > 1.

o Can be written as a scalar conservation law

u:—i—V-(—uV mlu"’_1>=0;

m —

. . . . m —1
density is advected by negative gradient of the pressure 7 u™*.

o If ug has compact support = free boundaries appear:
I = Osuppu.

The "empty" region {u = 0} and where there is gas {u > 0} are
separated by these interfaces.

o In d =1, T consists of two Lipschitz curves si(t), sa(t).
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We look to linearize around the explicit, source-type solution:

1 a(m—1) |x|2\ == B 1
”*(X’t)_tda(l_ 2m t2a)+ YT dm -1+ 2

It propagates at the rate |x| ~ t“.



We look to linearize around the explicit, source-type solution:

1

-1 N =+ 1
u(x, t) = td_a(l _ Mﬂ)

2m o)y 0 YT dm-1)+2
It propagates at the rate |x| ~ t“.

o We rescale: x = ft*% and t = exp(a™1f),
0= (aﬁ2)1/(m—1) t_adﬁ,

with 8 = a(lzn"ll).

o This renders Barenblatt stationary:

PN m-—1 12N T
0.(%) = — = (1= %)
o The equation in the new variables reads

0; — AO™ — V- (%0) =0, RecR%




The porous medium equation
Linearization
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We remove the hats. We recall the rescaled equation
up — Au™ =V - (xu) =0, x € RY.

o It is convenient to work with the pressure: v = %u’"_l. We set
2—m

o = == (recall that m > 1).
o The equation for v reads

vi — vAV — (0 + 1)(|VV[> + x - Vv) — dv = 0, x € RY.

o the Barenblatt pressure reads

o) = (1~ ).
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For any t > 0, we make a change of spatial variable (von Mises
transformation)

X

V2v(t, x) + X2

o Now z € B; since v(t,x) = 0 for [x| — oo (B = unit disk)

o Also, if v =p, then z = x.

Set
1+ w(t,z) =+/2v(t,x) + |x|2.

The equation for w reads

wi —p V- (p°TVw) = N[w] on By x (0, 00),

where N[w] = N[w, Vw] is the nonlinearity.



The preceding computations lead us to analyze/control the linear problem

wy — p V- (p°IVw) =f in By x (0,00)
W(O, ) = w in By.

o As p(z) = 3(1 — |z[?), the linear operator

L=pV-(p°"V)=—pA+(c+1)z-V

is not elliptic as it degenerates at the boundary 0B;.

o Well-posedness in which space? What about boundary conditions?



Let du, = p?dx with o > 0. We consider the weighed Lebesgue space

12 = {u: lul?dp, <oo},
By

and the weighed homogeneous Sobolev space
H;+1 = {U € Llloc(Bl): / |VU|2dHa+1 < OO}
B,

We will consider £ = —pA + (0 + 1)x - V as an unbounded operator on
both spaces.



The porous medium equation
Linearization

Analysis of the linear model
Perspectives

Functional setti

Let du, = p?dx with o > 0. We consider the weighed Lebesgue space

12 = {u: lul?dp, <oo},
By

and the weighed homogeneous Sobolev space
A = {ue (B [ [Vuldyir < o0},
B,

We will consider £ = —pA + (0 + 1)x - V as an unbounded operator on
both spaces.

Lemma (Hardy-Poincaré-Wirtinger inequality, Seis 2016)
There exists C > 0 such that

inf / o= clPdp, < C / VulPdpgsr Vue Fl,y.
By By

ceR
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The porous medium equation
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The operator £ :

Integration by parts shows that

/ Luvdp, = | Vu-Vvdusy1 Yu,ve C(B).
Bl Bl

o Thus L|C°°(B_1) is nonnegative and symmetric w.r.t. (-,-)12

o C®(By) dense in HL,;, we don't know if C*°(By) dense in L2 ...

Lemma (Seis 2016)

Forall f € L7 s.t. [ fdx =0, there exists u € Hi (B1) N Hy .y sit.

V- (p°t)=Ff inB
p’TIVu-v=0 ondB;.

The solution u is unique up to an additive constant.
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Integration by parts shows that

V(Hu)-Vvdpyi1 = c/ V(0" TV u)V-(p" TV V)du, Vu,v € C(By).

B1 Bl

o Thus H, coo () 1s NONNegative and symmetric w.r.t. (-, '>H§+1

o By density = may be extended to a self-adjoint operator on I-'I;+1
with domain

DH)={uec H NH: - Hue H,y, p°'Vu-v=00ndBi}.

o The boundary condition p*'Vu - v = 0 on OB interpreted in the
sense

Vu-Vvpotldx = —/ uV - (p"Vv)dx Vv e HL,,.

By By



The porous medium equation
Linearization

Analysis of the linear model
Perspectives

Null-controllability

Theorem (Seis 2016)
The spectrum of both £ and H is discrete,

x(£) =x(3) u{o},
and the eigenvalues of H are
Mk = (0 +1)(0+ 2k) + k(2k + 20 + d + 2)

where (£, k) € N x N\ {(0,0)} ifd > 2 and (¢, k) € {0,1} x N\ {(0,0)}
ifd=1.

Here N ={0,1,...}. An indicator if null-controllability holds is to check
for a gap between consecutive eigenvalues: 9y > 0 s.t.

)\j+1—)\j2’y forall j e N

after relabeling the eigenvalues {\y x}o i = {\j};.
~_ Borjan Geshkovski = Control and free boundaries 20/22



o Clarify the well-posedness for the linear problem: what are the
boundary conditions (if any), what is the adequate functional setting

o Check if null-controllability can hold, in d = 1 the spectrum seems
easier to manipulate.

o Consider alternative control/optimization properties that may be
studied

o A numerical study may hint possible results.



Thank you for your welcome and attention.
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