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Free boundary problems

Unknowns are the state and a part of the boundary

The (transient) prototype: one-phase Stefan problem
Tt − Txx = f for t ≥ 0, 0 < x < s(t)

ṡ(t) = −Tx(s(t), t) for t ≥ 0
T (0, t) = T (s(t), t) = 0 for t ≥ 0
T (x , 0) = T0(x) for 0 < x < s0,

where (T , s) are unknown, while s0 ≥ 0 and (f ,T0) are given
Model for the melting of a block of ice inside a container filled with
water
The Stefan condition describes the motion of the melting interface.
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Figure: T is the temperature and s is the melting front. In our case,
qc ,Tm ≡ 0.
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Basics on parabolic equations

The canonical example is the heat equation
yt −∆y = f 1ω in (0,T )× Ω

y = 0 on (0,T )× ∂Ω

y = y0 in Ω,

(1)

where Ω ⊂ Rd is a bounded domain with C 2 boundary, ω ⊂ Ω, 1 is
the indicator function, and (f , y0) are given
Smoothing effect: f 1ω ≡ 0 on Ω \ ω =⇒ y(t, ·) ∈ C∞(Ω \ ω) for
t > 0, even if y0 ∈ L2(Ω).
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Controllability of the heat equation

There are multiple concepts of controllability, the "basic" one being

Definition (Exact controllability at time T > 0)

For any y0, y1 ∈ L2(Ω), there exists f ∈ L2((0,T )× Ω) such that the
solution y to (1) satisfies

y(T , x) = y1(x) for x ∈ Ω.

A few remarks are in order:
Smoothing effect ⇒ if ω 6= Ω, then (1) is not exactly controllable.
Can we steer y to specific targets, such as y1 ≡ 0? This is the
problem of null-controllability.
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Null-controllability of the heat equation

Hilbert Uniqueness Method: null-controllability at time T > 0 is
equivalent to: ∃C = C (T ) > 0 such that for all ϕT ∈ L2(Ω),

∫
Ω

|ϕ(x , 0)|2dx ≤ C

∫ T

0

∫
Ω

|ϕ(x , t)|2dxdt,

where ϕ is the solution to the adjoint problem
ϕt + ∆ϕ = 0 in (0,T )× Ω

ϕ = 0 on (0,T )× ∂Ω

ϕ(T , ·) = ϕT in Ω.

This is called an observability inequality, and we say that the adjoint
problem is (final-state) observable.
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Null-controllability of the heat equation

How to prove the observability inequality?
Fourier techniques: if eigenvalues {λk}k∈N known, roughly check if
λk+1 − λk > 0 for all k ∈ N
Biorthogonals: technical condition, again using eigenvalues
Carleman inequalities

Remark: Distributed =⇒ boundary null-controllability (observability) for
parabolic problems.
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Null-control of the Stefan problem

E.Férnandez-Cara et al. (2016): null-controllability roughly by means of
the scheme:

1 Fix s ∈ C 1([0,T ]), and consider
yt − yxx = f 1ω for t ≥ 0, 0 < x < s(t)

y(0, t) = y(s(t), t) = 0 for t ≥ 0
y(x , 0) = y0(x) for 0 < x < s0.

(2)

Notice that we have removed the Stefan condition.
2 Prove that (2) is null-controllable: HUM + Carleman inequality.
3 Transfer this knowledge to the free boundary problem by means of a

Schauder fixed-point theorem applied to the map

Λ : s(t) 7→ s0 −
∫ t

0
yx(s(τ), τ)dτ.
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A different strategy

Liu, Takahashi and Tucsnak (2013): null-controllability for

vt − vxx + vvx = u1ω for t ≥ 0, x ∈ (−1, 1) \ {h(t)}
v(±1, t) = 0 for t ≥ 0
ḣ(t) = v(h(t), t) for t ≥ 0
ḧ(t) = [vx ](h(t), t) for t ≥ 0
h(0) = h0, ḣ(0) = h1,

v(x , 0) = v0(x), for x ∈ (−1, 1) \ {h0}.

Model for the motion of a single particle in a viscous fluid occupying
the pipe (−1, 1)

v represents the fluid velocity and h the position of the particle
Null-controllability result includes h(T ) = 0, ḣ(T ) = 0.
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1 For t ≥ 0, change of variable to fix the domain

η(·, t) : (−1, 1) \ {h(t)} → (−1, 1) \ {0}

yielding a nonlinear problem written in Cauchy-form
ż(t) = Az(t) + Bû(t) + N

[
z

h

]
ḣ(t) = Cz(t)

z(0) = z0

h(0) = h0.

2 Consider the linear problem: replace N

[
z
h

]
by f

3 Prove null-control. of the linear problem with f ≡ 0 using parabolic
techniques

4 Transfer null-control. result to problem with f 6≡ 0 if f has decay
properties (called source term method)

5 N is a contraction =⇒ Banach’s fixed-point.
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The porous medium equation:

ut = ∆um on (0,∞)× Rd ,

u ≥ 0 is the gas density and m > 1.

Can be written as a scalar conservation law

ut +∇ ·
(
− u∇ m

m − 1
um−1

)
= 0;

density is advected by negative gradient of the pressure m
m−1u

m−1.
If u0 has compact support =⇒ free boundaries appear:

Γ = ∂suppu.

The "empty" region {u = 0} and where there is gas {u > 0} are
separated by these interfaces.
In d = 1, Γ consists of two Lipschitz curves s1(t), s2(t).
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Barenblatt profile

We look to linearize around the explicit, source-type solution:

u∗(x , t) =
1
tdα

(
1− α(m − 1)

2m
|x |2

t2α

) 1
m−1

+
, α =

1
d(m − 1) + 2

.

It propagates at the rate |x | ∼ tα.

We rescale: x = βtαx̂ and t = exp(α−1t̂),

û = (αβ2)1/(m−1)t−αd û,

with β =
√

2m
α(m−1) .

This renders Barenblatt stationary:

û∗(x̂) =
m − 1
2m

(1− |x̂ |2)
1

m−1
+ .

The equation in the new variables reads

ût̂ −∆ûm −∇ · (x̂ û) = 0, x̂ ∈ Rd .

Borjan Geshkovski Control and free boundaries 13 / 22



Introduction
A toy model

The porous medium equation
Linearization
Analysis of the linear model
Perspectives

Barenblatt profile

We look to linearize around the explicit, source-type solution:

u∗(x , t) =
1
tdα

(
1− α(m − 1)

2m
|x |2

t2α

) 1
m−1

+
, α =

1
d(m − 1) + 2

.

It propagates at the rate |x | ∼ tα.
We rescale: x = βtαx̂ and t = exp(α−1t̂),
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with β =
√

2m
α(m−1) .

This renders Barenblatt stationary:
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We remove the hats. We recall the rescaled equation

ut −∆um −∇ · (xu) = 0, x ∈ Rd .

It is convenient to work with the pressure: v = m
m−1u

m−1. We set
σ = 2−m

m−1 (recall that m > 1).
The equation for v reads

vt − v∆v − (σ + 1)(|∇v |2 + x · ∇v)− dv = 0, x ∈ Rd .

the Barenblatt pressure reads

ρ(x) =
1
2

(1− |x |2)+.
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Fixing the domain (Koch’s thesis, 1999)

For any t ≥ 0, we make a change of spatial variable (von Mises
transformation)

z =
x√

2v(t, x) + |x |2
.

Now z ∈ B1 since v(t, x) = 0 for |x | → ∞ (B1 = unit disk)
Also, if v = ρ, then z = x .

Set
1 + w(t, z) =

√
2v(t, x) + |x |2.

The equation for w reads

wt − ρ−σ∇ · (ρσ+1∇w) = N[w ] on B1 × (0,∞),

where N[w ] = N[w ,∇w ] is the nonlinearity.

Borjan Geshkovski Control and free boundaries 15 / 22



Introduction
A toy model

The porous medium equation
Linearization
Analysis of the linear model
Perspectives

The linearized problem

The preceding computations lead us to analyze/control the linear problem{
wt − ρ−σ∇ · (ρσ+1∇w) = f in B1 × (0,∞)

w(0, ·) = w0 in B1.

As ρ(z) = 1
2 (1− |z |2), the linear operator

L = ρ−σ∇ · (ρσ+1∇) = −ρ∆ + (σ + 1)z · ∇

is not elliptic as it degenerates at the boundary ∂B1.
Well-posedness in which space? What about boundary conditions?
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Functional setting

Let dµσ = ρσdx with σ > 0. We consider the weighed Lebesgue space

L2
σ =

{
u :

∫
B1

|u|2dµσ <∞
}
,

and the weighed homogeneous Sobolev space

Ḣ1
σ+1 =

{
u ∈ L1

loc(B1) :

∫
B1

|∇u|2dµσ+1 <∞
}
.

We will consider L = −ρ∆ + (σ + 1)x · ∇ as an unbounded operator on
both spaces.

Lemma (Hardy-Poincaré-Wirtinger inequality, Seis 2016)

There exists C > 0 such that

inf
c∈R

∫
B1

|u − c |2dµσ ≤ C

∫
B1

|∇u|2dµσ+1 ∀u ∈ Ḣ1
σ+1.
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The operator L : D(L)→ L2σ

Integration by parts shows that∫
B1

Luvdµσ =

∫
B1

∇u · ∇vdµσ+1 ∀u, v ∈ C∞(B1).

Thus L|C∞(B1) is nonnegative and symmetric w.r.t. 〈·, ·〉L2
σ

C∞(B1) dense in Ḣ1
σ+1, we don’t know if C∞(B1) dense in L2

σ . . .

Lemma (Seis 2016)

For all f ∈ L2
σ s.t.

∫
B1

fdx = 0, there exists u ∈ H2
loc(B1) ∩ Ḣ1

σ+1 s.t.{
−∇ · (ρσ+1) = f in B1

ρσ+1∇u · ν = 0 on ∂B1.

The solution u is unique up to an additive constant.
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The operator H : D(H)→ Ḣ1
σ+1

Integration by parts shows that∫
B1

∇(Hu)·∇vdµσ+1 = c

∫
B1

∇·(ρσ+1∇u)∇·(ρσ+1∇v)dµσ ∀u, v ∈ C∞(B1).

Thus H|C∞(B1) is nonnegative and symmetric w.r.t. 〈·, ·〉H1
σ+1

By density =⇒ may be extended to a self-adjoint operator on Ḣ1
σ+1

with domain

D(H) = {u ∈ H3
loc ∩ Ḣ1

σ+1 : Hu ∈ Ḣ1
σ+1, ρ

σ+1∇u · ν = 0 on ∂B1}.

The boundary condition ρσ+1∇u · ν = 0 on ∂B1 interpreted in the
sense∫

B1

∇u · ∇vρσ+1dx = −
∫
B1

u∇ · (ρσ+1∇v)dx ∀v ∈ Ḣ1
σ+1.
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Null-controllability

Theorem (Seis 2016)

The spectrum of both L and H is discrete,

Σ(L) = Σ(H) ∪ {0},

and the eigenvalues of H are

λ`,k = (σ + 1)(`+ 2k) + k(2k + 2`+ d + 2)

where (`, k) ∈ N×N \ {(0, 0)} if d ≥ 2 and (`, k) ∈ {0, 1} ×N \ {(0, 0)}
if d = 1.

Here N = {0, 1, . . .}. An indicator if null-controllability holds is to check
for a gap between consecutive eigenvalues: ∃γ > 0 s.t.

λj+1 − λj ≥ γ for all j ∈ N

after relabeling the eigenvalues {λ`,k}`,k = {λj}j .
Borjan Geshkovski Control and free boundaries 20 / 22
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Perspectives

Clarify the well-posedness for the linear problem: what are the
boundary conditions (if any), what is the adequate functional setting
Check if null-controllability can hold, in d = 1 the spectrum seems
easier to manipulate.
Consider alternative control/optimization properties that may be
studied
A numerical study may hint possible results.
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Thank you for your welcome and attention.
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