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Collective behavior models

• They describe the dynamics of a system of interacting individuals.

• They are applied in a large spectrum of subjects such as synchronization
of coupled oscillators, random networks, multi-area power grid, opinion
propagation,...

Fitz-Hugh-Nagumo oscillators

[Davison et al., Allerton 2016] Yeast’s protein interactions

[Jeong et al., Nature, 2001]

European natural gas pipeline

network [www.offiziere.ch]
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Complex behavior by simple interaction rules

Systems of Ordinary Differential Equations (ODEs) in which each agent’s
dynamics follows a prescribed law of interactions.

First-order consensus model

ẋi (t) =
1
N

N∑
j=1

ai,j (xj (t)− xi (t)), i = 1, . . . ,N

• It describes the opinion formation in a group of N individuals.

• xi ∈ Rd , d ≥ 1, represents the opinion of the i-th agent.

• It applies in several fields including information spreading of social
networks, distributed decision-making systems or synchronizing sensor
networks, ...
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Linear versus Nonlinear

Linear networked multi-agent models1: ai,j are the elements of the
adjacency matrix of a graph with nodes xi

ai,j > 0, if i 6= j and xi is connected to xj

ai,j = 0, otherwise.

Nonlinear alignment models2:

ai,j := a(|xj − xi |), where a : R+ → R+,

a ≥ 0 is the influence function. The connectivity depends on the contrast of
opinions between individuals.

1 Olfati-Saber, Fax, and Murray, IEEE Proc., 2007
2 Motsch and Tadmor, SIAM Rev., 2014
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Consensus

Depending on the nature of the interactions, the system may converge to a
particular configuration, called consensus which is characterized by the
property x1 = x2 = . . . = xN := x∞.

• ••• ••• •••
•••

•

•

xi (t)

x∞

Caponigro, Carrillo, Fornasier, Piccoli, Tadmor,Trélat,...

Convergence to consensus happens naturally whenever the system is suffi-
ciently close to this configuration.
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Control strategies (N fixed)

Controlled model{
ẋ(t) = 1

N
∑N

j=1 ai,j (xj (t)− xi (t)) +
∑M

j=1 bi,j uj (t), i = 1, . . . ,N,
x(0) = x0,

• Linear: ẋ + Lx = Bu ⇒ Classical Kalman rank condition.

• Nonlinear: controllability and stabilizability are much more challenging1.

• The linear model can be viewed as the linearization of the nonlinear one around
the consensus configuration.

Different control strategies

• To act on all the components of the system (certainly effective but not always
optimal).

• To focus on a small number of agents at each time (sparse control).

• To look for a single leader who acts on the whole crowd and steers it to the desired
configuration (control through leadership).

1 Caponigro, Fornasier, Piccoli, and Trélat, Math. Models Methods Appl. Sci., 2015
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Mean-field limit equations

When the number of agents N tends to infinity, the ODE consensus model is replaced
with a suitable PDE.

Nonlinear alignment models:

ẋi =
1
N

N∑
j=1

a(|xj − xi |)(xj − xi ), i = 1, . . . ,N, a : R+ → R+.

Classical mean-field theory suggests to consider the N-particle distribution function

µN = µN(x , t) :=
1
N

N∑
i=1

δxi (t).

and to look for the equation it satisfies as N → +∞.

Particle method
Analogies with the particle method (P. A. Raviart, J. Comp. Math., 1986) which refers
to numerical schemes for time-dependent problems in PDE where, for each time t , the
exact solution is approximated by a linear combination of Dirac measures.
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The limit µ = limN→+∞ µ
N solves the non-local transport equation 1,2

∂tµ = ∂x

(
µ(x , t)

∫
Rd

a(|y − x |)(x − y)µ(y , t) dy
)
.

The convolution kernel describes the mixing of opinions due to the interactions
among the agents during the time evolution of the dynamics.

The system of ODEs describing the agents dynamics defines the
characteristics of the underlying transport equation. The coupling of the agents
dynamics introduces the non-local effects on transport.

1 Ha and Tadmor, Kinetic Relat. Methods, 2008
2 Motsch and Tadmor, SIAM Rev., 2014
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Mean-field limit for linear models?

• The mean-field equation involves the density µ, which does not contain
the full information of the state since it does not keep track of the
identities of agents (label i).

Linear networked model with three agents

ẋ + Lx = 0 and L =

 1 −1 0
−1 2 −1
0 −1 1

 .

Two different initial data
x1(0) = (−1, 0, 1) (left)
and x2(0) = (−2, 3,−1)
(right) whose dynamics are
different though they have
the same distribution µ3.
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Graph limit method

• Based on the theory of graph limits.
• Considers the phase-value function xN(s, t) defined as

xN(s, t) =
N∑

i=1

xi (t)χIi (s, t), s ∈ (0, 1), t > 0,
N⋃

i=1

Ii = [0, 1].

An opinion datum for N = 20 and its function z20 on [0, 1]
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Formal procedure

Let (xN
i )N

i=1 be the solution of the following consensus model

ẋN
i =

1
N

N∑
j=1

aN
i,jψ(xN

j − xN
i ),

where aN
i,j are constant and ψ represents nonlinearity.

The graph limit theory says that if

W N(s, s∗) =
N∑

i,j=1

aN
i,jχ[ i

N ,
(i+1)

N

)(s)χ[ j
N ,

(j+1)
N

)(s∗)

is uniformly bounded and converges to W , then the phase-value function
xN(s, t) converges to the solution of the non-local diffusive equation

∂tx(s, t) =

∫ 1

0
W (s, s∗)ψ(x(s∗, t)− x(s, t))ds∗1 .

1 Medvedev, SIAM J. Math. Anal., 2014
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Example of the graph limit

Model with a periodic dense network

ẋ + Lr x = 0, Lr =
1
N

(li,j )N
i,j=1, r ∈ (0, 1/2]

li,j =


`, if i = j
−1, if j − i ∈ [−`, `] \ {0} (mod N)

0, otherwise

` = [rN], the closest integer to rN.

This leads to the non-local diffusion equation with

W (θ, θ∗) = χ[−2πr,2πr ](θ∗ − θ), θ, θ∗ ∈ S1.
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Non-local diffusion equation

∂tx(θ, t) =

∫
S1

W (θ∗, θ)(x(θ∗, t)− x(θ, t)) dθ∗

W (θ, θ∗) = χ[−2πr,2πr ](θ∗ − θ), θ∗, θ ∈ S1.

•
∫
S1 W (θ∗, θ)(x(θ∗, t)− x(θ, t)) dθ∗ = 0 for weak interactions r → 0,

leading to the trivial dynamics:

∂tx(s, t) ≡ 0.

• A non trivial limit dynamics requires a large number of interactions among
the agents

(# of nonzero aij ) ∼ N2 as N → +∞.
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Nonlinear subordination

• Finite ODE collective dynamics:

ẋi =
1
N

N∑
j=1

a(|xj − xi |)(xj − xi ).

• Graph limit model:

xt (s, t) =
∫ 1

0
a(|x(s∗, t)− x(s, t)|)(x(s∗, t)− x(s, t))ds∗.

• Mean-field limit model:

µt (x , t) +∇x (V [µ]µ) = 0, where V [µ] :=

∫
X

a(x∗ − x)µ(x∗, t)dx∗.

Subordination transformation
From non-local "parabolic" to non-local "hyperbolic":µ(x , t) =

∫
S δ(x − x(s, t))ds.

Similar to the link between kinetic equations and conservation laws.

P.-L. Lions, B. Perthame and E. Tadmor, J. Amer. Math. Soc., 1994.
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Consider the control problem associated to the linear consensus model

ẋ + Lx = Bu.

One looks for u = u(t) so to steer the system into the consensus at time T :

x(T ) = (x̄ , . . . , x̄)T .

Different types of control actions

On one single agent or a few ones:

B = (1, 0, . . . , 0)T or B = (0, . . . , 0, Ik , 0, . . . , 0)T ,

for k × k identity matrix Ik .

For finite-dimensional linear systems, the Kalman rank condition provides a
necessary and sufficient condition

rank[B, LB, . . . , LN−1B] = N.
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Challenge

Analyze the behavior as N → +∞.

We discuss four examples of linear networked consensus models, inspired in
previous knowledge on:

• 1− d heat equations.

• 2− d heat equations.

• Non-local diffusive equations.

• Fractional heat equations.

Rough answer

Control properties ARE NOT UNIFORM as N → +∞. The goal should
rather be getting sharp estimates on how these properties diverge with N.
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A model with sparse graph

Sparse graph

ai,j = 1 if j = i ± 1, ai,j = 0 otherwise.

Each agent i communicates with its neighbors, i − 1 and i + 1.

ẋ1
ẋ2
...
...
...

ẋN


+



1 −1 0 . . . . . . 0
−1 2 −1 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . −1 2 −1
0 . . . . . . . . . −1 1


︸ ︷︷ ︸

L



x1
x2
...
...
...

xN


=



0
0
...
...
...
0


.
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Link with semi-discrete PDEs
Rescaled version of the finite difference semi-discretization of the one-dimensional
heat equation with homogeneous Neumann boundary conditions on [0, 1].



ẋ1
ẋ2
...
...
...

ẋN


+ N2



1 −1 0 . . . . . . 0
−1 2 −1 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . −1 2 −1
0 . . . . . . . . . −1 1


︸ ︷︷ ︸

D



x1
x2
...
...
...

xN


=



0
0
...
...
...
0


.

Our system corresponds to the finite-difference discretization of

ut − N−2uxx = 0, t ∈ [0,T ]

or, alternatively, to the finite-difference discretization of

ut − uxx = 0, t ∈ [0,T/N2].
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Control cost

Applying known results of semi-discretized heat equations we deduce that the
cost of controlling the sparse network of N agents to consensus in finite time T
is of the order of

C ∼ exp(cN2/T ).

Control of sparse networked system

• If T ∼ N2, ‖uN(t)‖L2(0,T ) ≤ C.

• If T is independent of N, then ‖uN(t)‖L2(0,T ) ∼ C1 exp(C2N2).

The 1− d sparse network exhibits a slow diffusion rate. Controlling the system
through the action on a % of individuals of the network requires a time of the
order of T ∼ N2 or controls of exponential size, so to steer the system to
consensus.
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Spectral analysis

The control properties of an infinite-dimensional symmetric system rely heavily
on these two properties of its spectrum {λk}k ≥1:

• λk+1 − λk ≥ γ > 0, for all k ≥ 1.

•
∑

k≥1 λ
−1
k < +∞.

These conditions are satisfied uniformly in N by the eigenvalues of the
semi-discrete heat equation, which essentially behave like those of the actual
heat equation (λk ∼ k2), but not by the ones of the consensus model

Link with Müntz theorem
We are considering dynamical systems generated by real exponential
exp(−λk t) that, under the change of variables z = exp(t) take the poly-
nomial form zλk .

22 / 38



Introduction
Two limit models

Controllability of linear model

2D sparse networked model

Similar results can be achieved for more general networks related to the finite-difference
semi-discretization of the heat equation in R2.

Model on a 2D graph

ẋi,j (t) =
N∑

k,l=1

a(i,j),(k,l)(xk,l (t)− xi,j (t)), i, j = 1, . . . ,N,

a(i,j),(k,l) = 1, if (k , l) = (i ± 1, j) or (i, j ± 1)

a(i,j),(k,l) = 0, otherwise.
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This model corresponds to the control problem on the semi-discretized
two-dimensional heat equation with scaling N−2:

ẋ + N−2Qx = Bu

B = [I, 0, . . . , 0]T .

Analogously to the one-dimensional case, we have a control cost exponentially
large in N.

Control of the 2D sparse networked system

The control cost behaves C ∼ exp(N2/T ) as in the one-dimensional case.
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Example of the graph limit

For examples with dense interactions, we may scale the model with a periodic
dense network presented before:

Model with a periodic dense network

ẋ + Lr x = 0, Lr =
1
N

(li,j )N
i,j=1, r ∈ (0, 1/2]

li,j =


2, if i = j
−1/`, if j − i ∈ [−`, `] \ {0} (modN)

0, otherwise

` = [rN], the closest integer to rN.

This leads to the non-local diffusion equation with

W (θ, θ∗) =
1

2πr
χ[−2πr,2πr ](θ∗ − θ), θ, θ∗ ∈ S1.
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We may expect that a dense graph with many interactions among the agents
improves the control properties. Spectral analysis shows that this is not the
case.

The eigenvalues λ`k and eigenvectors ψ`k can be calculated explicitly since the
matrix Lr is Toeplitz:

Spectrum

λ`k =
4
`

∑̀
j=1

sin2
(

kπj
N

)
,

ψ`k =

(
sin

(
2kπj

N

)
+ cos

(
2kπj

N

))N

j=1
, k = 1, . . . ,N.

Also for this model we have a bad spectral behavior from the controllability
point of view.
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The case r = 1/N

• For r = 1/N, corresponding to ` = 1, we can quantify explicitly the
spectral properties.

• Notice that, in this case, the graph is not really dense, since each agent is
communicating only with the left and right neighbors.

λ1
k = 4 sin2

(
kπ
N

)
, k = 1, . . . ,N

λ1
N−k = λ1

k .

We have eigenvalues with multiplicity 2.
This is consequence of the periodicity of
the network.

Distribution of the eigenvalues
for r = 1/N ⇒ ` = 1.
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• This case corresponds to a rescaled
semi-discrete heat equation with periodic
boundary conditions.

• It is enough to take

B = (1, 0, . . . , 0, 1)T

that is, controlling only two agents (black
box in the figure).

Then, as for our first example, the controllability cost is of the order of

C ∼ exp(N2/T ).

• When the time of control is T ∼ N2, controllability to consensus is
achievable with a control of size uniformly bounded on N.

• When we need a control time T independent of N , it requires controls
exponentially large.
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The case r = 1/2

• Also for r = 1/2, corresponding to ` = N/2, we can easily analyze the
spectrum.

• In this case, all the agents are in communication with each other.

λN
k = 2, k = 1, . . . ,N − 1, λN

N = 0.

We have eigenvalues with multiplicity N − 1.

Eigenvalues (left) and spectral gap (right) for r = 1/2⇒ ` = N/2.
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The intermediate cases

• For r ∈ (1/N, 1/2), it is difficult to study the spectral properties analytically.

λ`k =
1
`

[
2`+ 1− csc

(
kπ
N

)
sin

(
kπ(2`+ 1)

N

)]
, k = 1, . . . ,N

Eigenvalues (left) and spectral gap (right) with N = 45 and various r .

• Simulations show that the spectral properties deteriorate as r increases.
• We have many repeated eigenvalues, but it is not easy to explicitly track their

distribution.
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Conclusions

Our analysis shows that dense graphs have worse controllability
properties than the sparse ones (first example).

• ` = 1: with B = (1,0, . . . ,0,1)T we recover the same
controllability time and cost as our first example.

• ` > 2: the controllability properties of the system deteriorate as r
increases.
. Our previous discussion suggests that we may recover better

controllability properties by increasing the number of controlled
agents

B = [I`, 0, . . . , 0, I`]T .

WORK IN PROGRESS
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The fractional heat equation

Model on a weighted graph

ẋ + Lfracx = Bu, Lfrac = (ai,j )
N
i,j=1, B = [0, . . . , 0, IN , 0, . . . , 0]T .

ai,j =


− c(α)

|i − j|1+2α , if j 6= i,∑
j 6=i

ai,j , if i = j.
, α ∈ (0, 1)

In contrast with the previous example, the communication rate among different
agents is weighted as a function of the distance |i − j|. Hence, the interactions
among close agents have a higher impact on the dynamics.
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Lfrac describes a dense network inspired on the fractional Laplacian.

Dfrac := N2αLfrac

is the finite difference discretization of the fractional Laplace operator.

Fractional Laplacian

(−d2
x )αu(x) := cαP.V .

∫
R

u(x)− u(y)

|x − y |1+2α dy .

ẋ + Dfracx = Bu

is the semi-discretized control problem for the fractional heat equation

∂tu + (−d2
x )αu = fχω, t ≥ 0.

It corresponds the graph limit non-local diffusive model with

W (x , y) = |x − y |−1−2α,
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The fractional heat equation is null-controllable in time T > 0⇔ α > 1/2.3,4

The eigenvalues of Dfrac behave as λD
k ∼ k2α, k ≥ 1.

Spectral behavior

α ≤ 1/2⇒
N∑

k=1

(
λD

k

)−1
≥ N, α > 1/2⇒

N∑
k=1

(
λD

k

)−1
≤ C < +∞

inf
k=1,...,N−1

(
λD

k+1 − λD
k

)
=


λD

N − λD
N−1 = O(N2α−1), α < 1/2

λD
2 − λD

1 = O(1), α ≥ 1/2.

For α ≤ 1/2, the control cost is not bounded in N. In particular, for α < 1/2 it
blows-up exponentially as exp(N1−2α).
3Micu and Zuazua SIAM J. Cont. Optim., 2006
4Biccari and Hernández-Santamaría, IMA J. Math. Control. Inf., 2018
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What about ẋ + Lfracx = Bu?

• This time, even in the case α > 1/2, the controllability properties are not
uniform in N due to the scaling of the matrix Lfrac .

• The eigenvalues of Lfrac behave as

λL
k = N−2αλD

k ∼
(

k
N

)2α

.

Consequently, the spectral gap is very small even for α > 1/2.

• The two systems are equivalent up to time-scaling t 7→ N−2αt :

ẋ + Dfracx = 0, t ∈ [0,T/N2α].

Hence, the cost of controlling ẋ + Lfracx = Bu is of the order of
exp(CN2α/T ).
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Conclusions

• We considered finite-dimensional collective behavior models and we
discussed their infinite-agents limits.

• The nature of the interactions among the individuals determines the limit
approach one should use. Networked systems require the employment of
a graph limit, while for aligned ones it is possible to rely on the classical
mean-field theory.

• These two limit approaches lead to substantially different kinds of
equations, a diffusion and a transport one, respectively. We showed that
the diffusion equation is subordinated to the transport one through an
averaging process.

• We analyzed controllability properties of linear networked models by
linking them to the finite difference semi-discretization of heat-like
equations.

• This allows to get to some conclusions learning from the existing theory
of control of parabolic PDEs and their numerical counterparts, and to get
some estimates on the cost of controlling systems as N → +∞.
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