Control of linearized porous medium flow

Borjan Geshkovski

Homogenization, Spectral problems and other topics in PDEs ICMAT, 6-7 May, 2019

Scope of the talk

Given T > 0, our interest is the *controllability problem*: for any y_0 , find u = u(t, x) such that the solution y to

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = u \mathbb{1}_{\omega} + f[y] & \text{ in } (0,T) \times (-1,1) \\ (\rho^{\sigma+1} \partial_x y)(t,\pm 1) = 0 & \text{ in } (0,T) \\ y(0,\cdot) = y_0(\cdot) & \text{ in } (-1,1) \end{cases}$$
(1)

satisfies

$$y(T, \cdot) = 0$$
 in $(-1, 1)$.

- Here $\sigma > 0, \rho(x) = \frac{1}{2}(1 x^2), \omega = (a, b) \subset (-1, 1)$ and f is an explicit, nonlinear term (given below).
- In this talk, we will only consider the linearized problem, replacing f[y] by a source term f.

Motivation

For m > 1,

$$\partial_t h = \partial_z^2(h^m) \quad \text{ in } \{h > 0\},$$

 $h\geq 0$ is a gas density or height of thin film.

• Nonlinear, degenerate diffusion:

$$h = 0 \implies \partial_z (h^{m-1} \partial_z h) = 0.$$

- Free boundary $\partial \{h(t) > 0\}$ is liquid-solid interface. Darcy's law $V = -\partial_z h^{m-1}$ gives the normal velocity V.
- Controllability: may we steer the film's height to a parabolic shape in finite time T > 0?

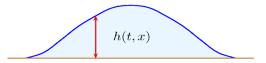


Figure: A two-dimensional thin fluid film.

Target is the Barenblatt self-similar solution

$$h_*(t,z) = \frac{1}{t^{\alpha}} \left(1 - \frac{\alpha(m-1)}{2m} \frac{|z|^2}{t^{2\alpha}} \right)_+^{\frac{1}{m-1}} \quad z \in \mathbb{R}.$$

It is convenient to consider the problem in

• Self-similar coordinates

$$z = \beta t^{\alpha} \hat{z}, \quad t = \exp(\alpha^{-1} \hat{t})$$

and

$$h(t,z) = \frac{1}{t^{\alpha}} (\alpha \beta^2)^{\frac{1}{m-1}} \hat{h}(\hat{t},\hat{z})$$

where $\beta = \sqrt{\frac{2m}{\alpha(m-1)}}$.

• Pressure variable: $v = \frac{m}{m-1}\hat{h}^{m-1}$.

• Barenblatt is now the parabola $\rho(\hat{z}) = \frac{1}{2}(1 - \hat{z}^2)_+$.

Pressure equation in self-similar coordinates:

$$\partial_t v - v \partial_z^2 v - (\sigma + 1)((\partial_z v)^2 + z \partial_z v) - v = 0 \quad \text{ in } \{v > 0\}$$

where $\sigma(m) > 0$. We seek to linearize around $\rho(z) = \frac{1}{2}(1-z^2)_+$.

• Lagrangian-like change of variable (H. Koch '99, C. Seis '15):

$$x = \frac{z}{\sqrt{2v(t,z) + z^2}}, \quad y(t,x) = \sqrt{2v(t,z) + z^2} - 1.$$

In the new variable x, Barenblatt is the constant 1.

• Yields perturbation equation (recall Problem (1))

$$\begin{split} \partial_t y &- \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = \rho F[y] - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} x F[y]) \quad \text{ in } (-1,1) \\ \text{ where } F[y] &= \frac{(\partial_x y)^2}{1 + y + x \partial_x y}. \end{split}$$

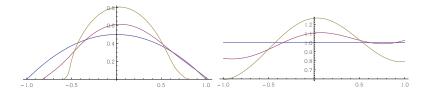


Figure: Barenblatt pressure (blue) and two perturbations in (z, v) coordinates versus corresponding graphs in (x, 1 + y) coordinates.

A null-controllability result $(y(T, \cdot) = 0)$ of perturbation equation (1) would yield a controllability of the pressure equation to the parabolc shape $(v(T, \cdot) = \rho(\cdot))$.

Functional setting

For T > 0, consider the linear degenerate-parabolic equation

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = f & \text{ in } (0,T) \times (-1,1) \\ (\rho^{\sigma+1} \partial_x y)(t,\pm 1) = 0 & \text{ in } (0,T) \\ y(0,\cdot) = y_0 & \text{ in } (-1,1). \end{cases}$$
(2)

• For $k \ge 0$, the weighted Sobolev space \mathcal{H}_{σ}^k consists of all f satisfying

$$\|f\|_{\mathcal{H}^k_{\sigma}}^2 = \sum_{j=0}^k \int_{-1}^1 \rho^{\sigma+j} (\partial_x^j f)^2 dx < \infty,$$

and denote $\mathcal{H}^0_\sigma = L^2_\sigma = L^2((-1,1), \rho^\sigma dx).$

• Spaces can be realized as closure of $C^\infty([-1,1])$ w.r.t. the above norm.

The linear differential operator

Well-posedness of the linearized problem will follow from semigroup theory after analysis of the operator $\mathcal{A} = -\rho^{-\sigma}\partial_x(\rho^{\sigma+1}\partial_x)$.

Lemma

Let $k \ge 1$, $\ell \ge 0$ and $\alpha \ge \frac{\sigma+1+\ell-k}{2}$ with $\alpha > 0$. There exists $C(k, \alpha) > 0$ such that

$$\|(1-x^2)^{lpha}\partial_x^\ell f\|_{C^0([-1,1])} \le C\|f\|_{\mathcal{H}^{k+\ell}_{\sigma}} \quad \text{ for all } f \in C^{\infty}([-1,1]).$$

True for $\alpha = \sigma + 1$, $\ell = 1$ and k = 1 in particular, whence any $f \in \mathcal{H}^2_{\sigma}$ satisfies $(\rho^{\sigma+1}\partial_x y)(\pm 1) = 0$.

Lemma

The operator $\mathcal{A}: \mathcal{H}^2_{\sigma} \to L^2_{\sigma}$ is self-adjoint, nonnegative, and has compact resolvents.

Well-posedness

In view of what precedes, $\mathcal{A}:\mathcal{H}^2_\sigma\to L^2_\sigma$ generates an analytic semigroup on L^2_σ , and thus

Corollary

For every $y_0\in L^2_\sigma$ and $f\in L^2(0,T;L^2_\sigma),$ there exists a unique weak solution

$$y \in C^0([0,T]; L^2_{\sigma}) \cap L^2(0,T; \mathcal{H}^1_{\sigma})$$

to Problem (2). If moreover $y_0 \in \mathcal{H}^1_{\sigma}$, the unique solution y is a strong solution and enjoys maximal regularity

 $y \in L^2(0,T;\mathcal{H}^2_{\sigma}) \cap H^1(0,T;L^2_{\sigma}) \cap C^0([0,T];\mathcal{H}^1_{\sigma}).$

The porous medium equation The control problem

Controllability of linear equations

Let X, U be two Hilbert spaces, $A : \mathcal{D}(A) \to X$ generates a strongly continuous semigroup $\{e^{tA}\}_{t \geq 0}$ on X and $B \in \mathcal{L}(U, X)$. Consider

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \text{ in } (0,T) \\ y(0) = y_0 \in X. \end{cases}$$

Definition (Null-controllability)

We say that (A, B) is null-controllable at time T > 0 if for every $y_0 \in X$, there exists $u \in L^2(0, T; U)$ such that the solution $y \in C^0([0, T]; X)$ satisfies

$$y(0) = y_0 \quad \text{ and } \quad y(T) = 0.$$

For null-controllable (A, B), we call *control cost* the quantity

$$\kappa(T) = \sup_{\|y_0\|_X = 1} \inf_u \|u\|_{L^2(0,T;U)}.$$

Controllability of linear equations

Lemma

Assume A non-positive operator, with an ONB of eigenfunctions $\{\varphi_k\}_{k=0}^{\infty}$ and decreasing sequence of eigenvalues $\{-\lambda_k\}_{k=0}^{\infty}$ satisfying

$$\inf_{k \ge 0} (\lambda_{k+1} - \lambda_k) > 0$$
$$\lambda_k = rk^2 + O(k)$$

for some r>0 as $k\to\infty.$ Assume U separable Hilbert space and there exists m>0 such that

$||B^*\varphi_k||_U \ge m$

for all $k \in \mathbb{N}$. Then (A, B) is null-controllable in any time T > 0.

Key idea. Null-controllability \iff observability inequality:

$$\|e^{tA^*}y_0\|_X^2 \leq \mathcal{C}(T)^2 \int_0^T \|B^*e^{tA^*}y_0\|_U^2 dt.$$

Recall that we are interested in proving the null-controllability of the problem

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = u \mathbb{1}_{\omega} + f & \text{ in } (0,T) \times (-1,1) \\ (\rho^{\sigma+1} \partial_x y)(t,\pm 1) = 0 & \text{ in } (0,T) \\ y(0,\cdot) = y_0(\cdot) & \text{ in } (-1,1). \end{cases}$$
(3)

Let us first assume $f \equiv 0$.

Theorem

For any $y_0 \in L^2_{\sigma}$, Problem (3) with $f \equiv 0$ is null-controllable. That is to say, there exists $u \in L^2((0,T) \times \omega)$ such that $y \in C^0([0,T]; L^2_{\sigma})$ satisfies

 $y(0,\cdot) = y_0$ and $y(T,\cdot) = 0.$

Sketch of proof. Seis ('15, preprint) computes the spectrum of A:

$$\lambda_k = \begin{cases} 2k^2 + k(1+2\sigma) & \text{if } k \text{ is even} \\ 2k^2 + k(1+2\sigma) + (\sigma+2k+1) & \text{if } k \text{ is odd} \end{cases}$$

and

$$\varphi_k(x) = c_k \begin{cases} P_k^{(-\frac{1}{2},\sigma)}(1-2x^2) & \text{ if } k \text{ is even} \\ x P_k^{(\frac{1}{2},\sigma)}(1-2x^2) & \text{ if } k \text{ is odd} \end{cases}$$

for $k \ge 0$, where

$$c_k^2 = \begin{cases} \frac{2^{\sigma}k!(2k+\sigma+\frac{1}{2})\Gamma(k+\sigma+\frac{1}{2})}{\Gamma(k+\frac{1}{2})\Gamma(k+\sigma+1)} & \text{ if } k \text{ is even} \\ \frac{2^{\sigma}k!(2k+\sigma+\frac{3}{2})\Gamma(k+\sigma+\frac{3}{2})}{\Gamma(k+\frac{3}{2})\Gamma(k+\sigma+1)} & \text{ if } k \text{ is odd.} \end{cases}$$

 $P_k^{(\pm\frac{1}{2},\sigma)}$ are Jacobi polynomials, in this instance polynomials of order 2k and 2k+1 respectively.

The eigenvalues satisfy both conditions from the previous Lemma.

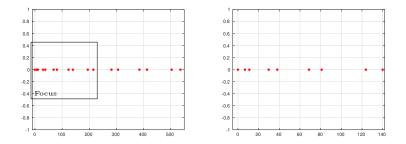


Figure: The gap between consecutive eigenvalues is $\geq 2+\sigma$ and increases as k grows.

Here $Bu = u\mathbbm{1}_{\omega}$, hence $B^*\varphi = \varphi|_{\omega}$, where $\omega = (a,b) \subset (-1,1)$. It remains to be seen whether

$$\int_{a}^{b} \varphi_{k}^{2} dx \geq m$$

for some $m = m(a, b, \sigma) > 0$ independent of k.

 As φ_k are polynomials, the lower bound holds for some m = m(a, b, σ, k) > 0.

٠

e We study the behavior of this quantity as k → ∞. Using the asymptotic formula

$$P_{k}^{(\pm\frac{1}{2},\sigma)}(\cos\theta) = \frac{1}{\sqrt{k}} \Big[\frac{1}{\sqrt{\pi}} \sin^{\pm\frac{1}{2}-\frac{1}{2}}(\frac{\theta}{2}) \cos^{-\sigma-\frac{1}{2}}(\frac{\theta}{2}) \cos(\theta\gamma(k)) + O(k^{-\frac{3}{2}}),$$

with $\gamma(k) = k + \frac{1}{2}(\sigma + 1 \pm \frac{1}{2})$, properties of $\Gamma(z)$ and weak-* L^{∞} convergence of $\{\cos(n \cdot)\}_{n \in \mathbb{N}}$ to 0, we are able to conclude.

The porous medium equation The control problem Analysis of the linearized problem Controllability of the linearized equation

Controllability in spite of the source term

Now consider the linearized problem

$$\begin{cases} \partial_t y - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} \partial_x y) = u \mathbb{1}_{\omega} + f & \text{ in } (0, T) \times (-1, 1) \\ (\rho^{\sigma+1} \partial_x y)(t, \pm 1) = 0 & \text{ in } (0, T) \\ y(0, \cdot) = y_0(\cdot) & \text{ in } (-1, 1) \end{cases}$$
(4)

for non-zero source terms f.

- To keep the controllability result from the homogeneous problem, we will need f to decay sufficiently fast w.r.t. the control cost κ near the final time T.
- Let $\rho_{\mathcal{F}}, \rho_0 : [0,T] \to [0,\infty)$ be two continuous, non-increasing functions satisfying $\rho_{\mathcal{F}}(T) = \rho_0(T) = 0$, constructed from the control cost $\kappa(t)$.
- Consider

4

$$\mathcal{F} = \left\{ f \in L^2(0,T; (\mathcal{H}^1_{\sigma})^*) \colon \frac{f}{\rho_{\mathcal{F}}} \in L^2(0,T; (\mathcal{H}^1_{\sigma})^*) \right\}$$
$$\mathcal{U} = \left\{ u \in L^2((0,T) \times \omega) \colon \frac{u}{\rho_0} \in L^2((0,T) \times \omega) \right\}.$$

Adapted from Liu et al. (ESIAM COCV '13):

Theorem

There exists C = C(T) > 0 and a continuous linear map $\mathfrak{L}: L^2_{\sigma} \times \mathcal{F} \to \mathcal{U}$ such that for any $y_0 \in L^2_{\sigma}$ and $f \in \mathcal{F}$, the solution y of (4) with control $u = \mathfrak{L}(y_0, f)$ satisfies

$$\left\|\frac{y}{\rho_0}\right\|_{C^0([0,T];L^2_{\sigma})} + \|u\|_{\mathcal{U}} \le C(\|f\|_{\mathcal{F}} + \|y_0\|_{L^2_{\sigma}}).$$

In particular, since ρ_0 is continuous and $\rho_0(T) = 0$, the above yields $y(T, \cdot) = 0$.

Idea of proof.

- Time splitting: $T_k = T \frac{T}{q^k}$ for fixed q > 1.
- Consider equation on (T_k, T_{k+1}) and split $y = y_1 + y_2$ where
 - y_1 solves uncontrolled problem with zero initial data and the source f
 - y_2 solves the controlled problem without f (use previous Theorem).
- The control $u = \sum_{k=0}^{\infty} u_k \mathbb{1}_{[T_k, T_{k+1})}$ is shown to suffice.

The nonlinear problem

Recall that the nonlinear term is of the form

$$f[y] = \rho F[y] - \rho^{-\sigma} \partial_x (\rho^{\sigma+1} x F[y])$$

where $F[y] = \frac{(\partial_x y)^2}{1+y+x\partial_x y}$.

- Let $\eta: [0,\infty) \to [0,1]$ be a smooth cut-off function, supported on [0,2) with $\eta(x) \equiv 1$ on [0,1].
- Fix $0<\varepsilon,\delta<1$ and for $p,q\in\mathbb{R}$ set

$$\eta_{\varepsilon,\delta}(p,q) = \eta \Big(\frac{p^2}{\delta^2}\Big) \eta \Big(\frac{p^2}{\varepsilon^2}\Big),$$

and plug $F_{\varepsilon,\delta} = \eta_{\varepsilon,\delta}F$ in the nonlinear term. The cut-off is inactive whenever y is small enough in $C^{0,1}([0,T] \times [-1,1])$, and allows for contraction estimates.

• Expected result: local null-controllability (small initial data) of the truncated nonlinear problem.

Thank you for your invitation and attention.