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The porous medium equation
The control problem

Scope of the talk

Given T > 0, our interest is the controllability problem: for any y0, find
u = u(t, x) such that the solution y to

∂ty − ρ−σ∂x(ρσ+1∂xy) = u1ω + f [y] in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0(·) in (−1, 1)

(1)

satisfies
y(T, ·) = 0 in (−1, 1).

Here σ > 0, ρ(x) = 1
2 (1− x2), ω = (a, b) ⊂ (−1, 1) and f is an

explicit, nonlinear term (given below).
In this talk, we will only consider the linearized problem, replacing
f [y] by a source term f .
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The porous medium equation
The control problem

Self-similar coordinates
Transformation

Motivation

For m > 1,
∂th = ∂2z (hm) in {h > 0},

h ≥ 0 is a gas density or height of thin film.
Nonlinear, degenerate diffusion:

h = 0 =⇒ ∂z(h
m−1∂zh) = 0.

Free boundary ∂{h(t) > 0} is liquid-solid interface. Darcy’s law
V = −∂zhm−1 gives the normal velocity V .
Controllability: may we steer the film’s height to a parabolic shape
in finite time T > 0?

Figure: A two-dimensional thin fluid film.

Borjan Geshkovski (UAM) Control of linearized porous medium flow 3 / 19



The porous medium equation
The control problem

Self-similar coordinates
Transformation

Target is the Barenblatt self-similar solution

h∗(t, z) =
1

tα

(
1− α(m− 1)

2m

|z|2

t2α

) 1
m−1

+
z ∈ R.

It is convenient to consider the problem in
Self-similar coordinates

z = βtαẑ, t = exp(α−1t̂ )

and
h(t, z) =

1

tα
(αβ2)

1
m−1 ĥ(t̂, ẑ)

where β =
√

2m
α(m−1) .

Pressure variable: v = m
m−1 ĥ

m−1.

Barenblatt is now the parabola ρ(ẑ) = 1
2 (1− ẑ2)+.
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The porous medium equation
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Self-similar coordinates
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Pressure equation in self-similar coordinates:

∂tv − v∂2zv − (σ + 1)((∂zv)2 + z∂zv)− v = 0 in {v > 0}

where σ(m) > 0. We seek to linearize around ρ(z) = 1
2 (1− z2)+.

Lagrangian-like change of variable (H. Koch ’99, C. Seis ’15):

x =
z√

2v(t, z) + z2
, y(t, x) =

√
2v(t, z) + z2 − 1.

In the new variable x, Barenblatt is the constant 1.
Yields perturbation equation (recall Problem (1))

∂ty − ρ−σ∂x(ρσ+1∂xy) = ρF [y]− ρ−σ∂x(ρσ+1xF [y]) in (−1, 1)

where F [y] = (∂xy)
2

1+y+x∂xy
.
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Figure: Barenblatt pressure (blue) and two perturbations in (z, v) coordinates
versus corresponding graphs in (x, 1 + y) coordinates.

A null-controllability result (y(T, ·) = 0) of perturbation equation (1)
would yield a controllability of the pressure equation to the parabolc
shape (v(T, ·) = ρ(·)).
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The porous medium equation
The control problem

Analysis of the linearized problem
Controllability of the linearized equation

Functional setting

For T > 0, consider the linear degenerate-parabolic equation
∂ty − ρ−σ∂x(ρσ+1∂xy) = f in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0 in (−1, 1).

(2)

For k ≥ 0, the weighted Sobolev space Hkσ consists of all f satisfying

‖f‖2Hkσ =

k∑
j=0

∫ 1

−1
ρσ+j(∂jxf)2dx <∞,

and denote H0
σ = L2

σ = L2((−1, 1), ρσdx).
Spaces can be realized as closure of C∞([−1, 1]) w.r.t. the above
norm.
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The linear differential operator

Well-posedness of the linearized problem will follow from semigroup
theory after analysis of the operator A = −ρ−σ∂x(ρσ+1∂x).

Lemma

Let k ≥ 1, ` ≥ 0 and α ≥ σ+1+`−k
2 with α > 0. There exists

C(k, α) > 0 such that

‖(1− x2)α∂`xf‖C0([−1,1]) ≤ C‖f‖Hk+`σ
for all f ∈ C∞([−1, 1]).

True for α = σ + 1, ` = 1 and k = 1 in particular, whence any f ∈ H2
σ

satisfies (ρσ+1∂xy)(±1) = 0.

Lemma

The operator A : H2
σ → L2

σ is self-adjoint, nonnegative, and has compact
resolvents.
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Well-posedness

In view of what precedes, A : H2
σ → L2

σ generates an analytic semigroup
on L2

σ, and thus

Corollary

For every y0 ∈ L2
σ and f ∈ L2(0, T ;L2

σ), there exists a unique weak
solution

y ∈ C0([0, T ];L2
σ) ∩ L2(0, T ;H1

σ)

to Problem (2). If moreover y0 ∈ H1
σ, the unique solution y is a strong

solution and enjoys maximal regularity

y ∈ L2(0, T ;H2
σ) ∩H1(0, T ;L2

σ) ∩ C0([0, T ];H1
σ).
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Controllability of linear equations

Let X,U be two Hilbert spaces, A : D(A)→ X generates a strongly
continuous semigroup {etA}t≥0 on X and B ∈ L(U,X). Consider{

ẏ(t) = Ay(t) +Bu(t) in (0, T )

y(0) = y0 ∈ X.

Definition (Null-controllability)

We say that (A,B) is null-controllable at time T > 0 if for every y0 ∈ X,
there exists u ∈ L2(0, T ;U) such that the solution y ∈ C0([0, T ];X)
satisfies

y(0) = y0 and y(T ) = 0.

For null-controllable (A,B), we call control cost the quantity

κ(T ) = sup
‖y0‖X=1

inf
u
‖u‖L2(0,T ;U).
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Controllability of linear equations

Lemma
Assume A non-positive operator, with an ONB of eigenfunctions
{ϕk}∞k=0 and decreasing sequence of eigenvalues {−λk}∞k=0 satisfying

inf
k≥0

(λk+1 − λk) > 0

λk = rk2 +O(k)

for some r > 0 as k →∞. Assume U separable Hilbert space and there
exists m > 0 such that

‖B∗ϕk‖U ≥ m

for all k ∈ N. Then (A,B) is null-controllable in any time T > 0.

Key idea. Null-controllability ⇐⇒ observability inequality:

‖etA
∗
y0‖2X ≤ C(T )2

∫ T

0

‖B∗etA
∗
y0‖2Udt.
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The porous medium equation
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Recall that we are interested in proving the null-controllability of the
problem

∂ty − ρ−σ∂x(ρσ+1∂xy) = u1ω + f in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0(·) in (−1, 1).

(3)

Let us first assume f ≡ 0.

Theorem

For any y0 ∈ L2
σ, Problem (3) with f ≡ 0 is null-controllable. That is to

say, there exists u ∈ L2((0, T )× ω) such that y ∈ C0([0, T ];L2
σ) satisfies

y(0, ·) = y0 and y(T, ·) = 0.
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The porous medium equation
The control problem

Analysis of the linearized problem
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Sketch of proof. Seis (’15, preprint) computes the spectrum of A:

λk =

{
2k2 + k(1 + 2σ) if k is even
2k2 + k(1 + 2σ) + (σ + 2k + 1) if k is odd

and

ϕk(x) = ck

P
(− 1

2 ,σ)

k (1− 2x2) if k is even

xP
( 1
2 ,σ)

k (1− 2x2) if k is odd

for k ≥ 0, where

c2k =


2σk!(2k + σ + 1

2 )Γ(k + σ + 1
2 )

Γ(k + 1
2 )Γ(k + σ + 1)

if k is even

2σk!(2k + σ + 3
2 )Γ(k + σ + 3

2 )

Γ(k + 3
2 )Γ(k + σ + 1)

if k is odd.

P
(± 1

2 ,σ)

k are Jacobi polynomials, in this instance polynomials of order 2k
and 2k + 1 respectively.
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The eigenvalues satisfy both conditions from the previous Lemma.
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Figure: The gap between consecutive eigenvalues is ≥ 2 + σ and increases as k
grows.
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Here Bu = u1ω, hence B∗ϕ = ϕ|ω, where ω = (a, b) ⊂ (−1, 1). It
remains to be seen whether ∫ b

a

ϕ2
kdx ≥ m

for some m = m(a, b, σ) > 0 independent of k.
1 As ϕk are polynomials, the lower bound holds for some
m = m(a, b, σ, k) > 0.

2 We study the behavior of this quantity as k →∞. Using the
asymptotic formula

P
(± 1

2 ,σ)

k (cos θ) =
1√
k

[ 1√
π

sin∓
1
2−

1
2 (
θ

2
) cos−σ−

1
2 (
θ

2
) cos(θγ(k))

+O(k−
3
2 ),

with γ(k) = k + 1
2 (σ + 1± 1

2 ), properties of Γ(z) and weak-* L∞

convergence of {cos(n·)}n∈N to 0, we are able to conclude.
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Controllability in spite of the source term

Now consider the linearized problem
∂ty − ρ−σ∂x(ρσ+1∂xy) = u1ω + f in (0, T )× (−1, 1)

(ρσ+1∂xy)(t,±1) = 0 in (0, T )

y(0, ·) = y0(·) in (−1, 1)

(4)

for non-zero source terms f .
To keep the controllability result from the homogeneous problem, we
will need f to decay sufficiently fast w.r.t. the control cost κ near
the final time T .
Let ρF , ρ0 : [0, T ]→ [0,∞) be two continuous, non-increasing
functions satisfying ρF (T ) = ρ0(T ) = 0, constructed from the
control cost κ(t).
Consider

F =
{
f ∈ L2(0, T ; (H1

σ)∗) :
f

ρF
∈ L2(0, T ; (H1

σ)∗)
}

U =
{
u ∈ L2((0, T )× ω) :

u

ρ0
∈ L2((0, T )× ω)

}
.
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Adapted from Liu et al. (ESIAM COCV ’13):

Theorem

There exists C = C(T ) > 0 and a continuous linear map
L : L2

σ ×F → U such that for any y0 ∈ L2
σ and f ∈ F , the solution y of

(4) with control u = L(y0, f) satisfies∥∥∥ y
ρ0

∥∥∥
C0([0,T ];L2

σ)
+ ‖u‖U ≤ C(‖f‖F + ‖y0‖L2

σ
).

In particular, since ρ0 is continuous and ρ0(T ) = 0, the above yields
y(T, ·) = 0.

Idea of proof.
Time splitting: Tk = T − T

qk
for fixed q > 1.

Consider equation on (Tk, Tk+1) and split y = y1 + y2 where
y1 solves uncontrolled problem with zero initial data and the source f
y2 solves the controlled problem without f (use previous Theorem).

The control u =
∑∞
k=0 uk1[Tk,Tk+1) is shown to suffice.
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The nonlinear problem

Recall that the nonlinear term is of the form

f [y] = ρF [y]− ρ−σ∂x(ρσ+1xF [y])

where F [y] = (∂xy)
2

1+y+x∂xy
.

Let η : [0,∞)→ [0, 1] be a smooth cut-off function, supported on
[0, 2) with η(x) ≡ 1 on [0, 1].
Fix 0 < ε, δ < 1 and for p, q ∈ R set

ηε,δ(p, q) = η
(p2
δ2
)
η
(p2
ε2
)
,

and plug Fε,δ = ηε,δF in the nonlinear term. The cut-off is inactive
whenever y is small enough in C0,1([0, T ]× [−1, 1]), and allows for
contraction estimates.
Expected result: local null-controllability (small initial data) of the
truncated nonlinear problem.
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Thank you for your invitation and attention.
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