Existence and classification of solutions to the Cahn-Hilliard equation

Matteo Rizzi, CMM, Santiago de Chile

July $12^{\text {th }}, 2019$

The Cahn-Hilliard equation

$$
\begin{equation*}
-\varepsilon \Delta u=\varepsilon^{-1}\left(u-u^{3}\right)-\ell_{\varepsilon} \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

is the Euler equation of the Ginzburg-Landau energy

$$
E_{\varepsilon}(u, \Omega):=\int_{\Omega}\left(\frac{\varepsilon}{2}|\nabla u|^{2}+\frac{\left(1-u^{2}\right)^{2}}{4 \varepsilon}\right) d x
$$

under the constraint

$$
\begin{equation*}
\frac{1}{|\Omega|} \int_{\Omega} u d x=m, \quad m \in(-1,1) \tag{2}
\end{equation*}
$$

The mean curvature

Given an N-dimensional manifold M and an ($N-1$)-dimensional submanifold $\Sigma \subset M$, the principal curvature $k_{j}(p)$ of Σ at $p \in \Sigma$ are the eigenvalues of the second fundamental form A_{Σ}. The mean curvature is by definition

$$
\begin{equation*}
H_{\Sigma}(p):=k_{1}(p)+\cdots+k_{N-1}(p) . \tag{3}
\end{equation*}
$$

The mean curvature

Given an N-dimensional manifold M and an ($N-1$)-dimensional submanifold $\Sigma \subset M$, the principal curvature $k_{j}(p)$ of Σ at $p \in \Sigma$ are the eigenvalues of the second fundamental form A_{Σ}. The mean curvature is by definition

$$
\begin{equation*}
H_{\Sigma}(p):=k_{1}(p)+\cdots+k_{N-1}(p) . \tag{3}
\end{equation*}
$$

- We say that Σ is a minimal submanifold if $H_{\Sigma}=0$.
- We say that Σ is a constant mean curvature submanifold if H_{Σ} is constant.

Variational characterisation

Let $X: D \rightarrow \Sigma$ be a parametrisation. Let $N: D \rightarrow \mathbf{R}$ be the external unit normal and let $h: D \rightarrow \mathbf{R}$ be a smooth function. For $t \in(-\delta, \delta)$, we set

$$
X_{t}(u, v):=X(u, v)+\operatorname{th}(u, v) N(u, v) .
$$

Then

$$
A(t, h)=\int_{D} \sqrt{E_{t} G_{t}-F_{t}^{2}} d u d v
$$

represents the area of the surface $X_{t}(D)$.

Variational characterisation

Let $X: D \rightarrow \Sigma$ be a parametrisation. Let $N: D \rightarrow \mathbf{R}$ be the external unit normal and let $h: D \rightarrow \mathbf{R}$ be a smooth function. For $t \in(-\delta, \delta)$, we set

$$
X_{t}(u, v):=X(u, v)+\operatorname{th}(u, v) N(u, v) .
$$

Then

$$
A(t, h)=\int_{D} \sqrt{E_{t} G_{t}-F_{t}^{2}} d u d v
$$

represents the area of the surface $X_{t}(D)$.
Since

$$
A^{\prime}[h]=\left.\frac{d}{d t} A(t, h)\right|_{t=0}=-2 \int_{D} h H_{\Sigma} \sqrt{E_{t} G_{t}-F_{t}^{2}} d u d v \quad \forall h \in C_{c}^{\infty}(D)
$$

we can see that Σ is a minimal surface if and only if $A^{\prime}[h]=0$ for any $h \in C_{c}^{\infty}(D)$.

The nodal set of the critical points of the Ginzburg-Landau energy and minimal surfaces.

The nodal set of the critical points of the Ginzburg-Landau energy and minimal surfaces.

Theorem 1 (Modica).

Let

- $\Omega \subset \mathbf{R}^{N}$ be a bounded domain.
- $\varepsilon_{k}>0$ be such that $\varepsilon_{k} \rightarrow 0$.
- u_{k} be minimisers of the Ginzburg-Landau energy $E_{\varepsilon_{k}}$ under the constraint (2) such that $u_{k} \rightarrow u_{0}$ in $L^{1}(\Omega)$.
Then $u_{0}(x) \in\{ \pm 1\}$ for almost every $x \in \Omega$, and the boundary in Ω of the set $E:=\left\{x \in \Omega: u_{0}(x)=1\right\}$ has minimal perimeter among all subsets $F \subset \Omega$ such that $|F|=|E|$, where $|\cdot|$ denotes the N-dimensional Lebesgue measure.

Conversely, given a suitable minimal submanifold Σ in a compact Riemaniann manifold M, it is possible to construct a family u_{ε} of solutions to the Allen-Cahn equation

$$
\begin{equation*}
-\varepsilon \Delta u_{\varepsilon}=\varepsilon^{-1}\left(u_{\varepsilon}-u_{\varepsilon}^{3}\right) \quad \text { in } M \tag{4}
\end{equation*}
$$

such that $u_{\varepsilon} \rightarrow \pm 1$ uniformly on compact subsets of the connected components of $M \backslash \Sigma$. (Pacard and Ritoré)

What does suitable mean?

What does suitable mean?
It means non degenerate, in the sense that the Jacobi operator

$$
\begin{equation*}
J_{\Sigma}:=\Delta_{\Sigma}+\left|A_{\Sigma}\right|^{2}+\operatorname{Ric}\left(\nu_{\Sigma}, \nu_{\Sigma}\right) \tag{5}
\end{equation*}
$$

is invertible with respect to some suitable weighted norms.

What does suitable mean?
It means non degenerate, in the sense that the Jacobi operator

$$
\begin{equation*}
J_{\Sigma}:=\Delta_{\Sigma}+\left|A_{\Sigma}\right|^{2}+\operatorname{Ric} c_{g}\left(\nu_{\Sigma}, \nu_{\Sigma}\right) \tag{5}
\end{equation*}
$$

is invertible with respect to some suitable weighted norms.
The Jabobi operator arises as the second variation of the area functional, in the sense that

$$
A^{\prime \prime}(\Sigma)[\varphi, \psi]=\int_{\Sigma} \mathcal{J}_{\Sigma} \varphi \psi d \sigma .
$$

The noncompact case

A graph $u: \Omega \subset \mathbf{R}^{N} \rightarrow \mathbf{R}$ is minimal if and only if

$$
\begin{equation*}
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \quad \text { in } \Omega . \tag{6}
\end{equation*}
$$

Conjecture 1 (Bernstein).

Let $u: \mathbf{R}^{N} \rightarrow \mathbf{R}$ be a solution to (6) in dimension $N \leq 7$. Then u is affine.
In dimension $N=8$, there exists a non affine minimal graph (Bombieri-De Giorgi-Giusti).

Conjecture 2 (De Giorgi).

Let u be a solution to the Allen-Cahn equation

$$
-\Delta u=u-u^{3}
$$

in \mathbf{R}^{N} such that $\partial_{x_{N}} u>0$. Let $N \leq 8$. Then u just depends on one euclidean variable, that is

$$
u(x)=v_{\star}(x \cdot \nu+a), \quad \nu \in S^{N-1}, a \in \mathbf{R}, v_{\star}(t)=\tanh (t / \sqrt{2})
$$

Conjecture 2 (De Giorgi).

Let u be a solution to the Allen-Cahn equation

$$
-\Delta u=u-u^{3}
$$

in \mathbf{R}^{N} such that $\partial_{x_{N}} u>0$. Let $N \leq 8$. Then u just depends on one euclidean variable, that is

$$
u(x)=v_{\star}(x \cdot \nu+a), \quad \nu \in S^{N-1}, a \in \mathbf{R}, v_{\star}(t)=\tanh (t / \sqrt{2}) .
$$

- The conjecture is true in dimension $N=2,3$ (Ghoussoub-Gui, Ambrosio-Cabré, Farina-Sciunzi-Valdinoci).
- In dimension $4 \leq N \leq 8$ (Savin) it is true under the additional assumption that

$$
\lim _{x_{N} \rightarrow \pm \infty} u\left(x^{\prime}, x_{N}\right)= \pm 1
$$

- In dimension $N=9$, Del Pino, Kowalczyk and Wei constructed a monotone solution which is not 1D.

Constant mean curvature surfaces

- The only compact embedded constant mean curvature surface is the round sphere.
- Removing the compactness assumption, the simplest example is the cylinder.
- Delaunay constructed a family of axially symmetric periodic CMC surfaces, depending on a parameter $\tau \in(0,1]$.

Delaunay surfaces in \mathbf{R}^{3}
We rotate the graph of the periodic function $\rho(t)$ around a fixed axes.

$$
X(\vartheta, t)=(\rho(t) \cos \vartheta, \rho(t) \sin \vartheta, t), \quad(\vartheta, t) \in[0,2 \pi) \times \mathbf{R}
$$

Delaunay surfaces in \mathbf{R}^{3}
We rotate the graph of the periodic function $\rho(t)$ around a fixed axes.

$$
X(\vartheta, t)=(\rho(t) \cos \vartheta, \rho(t) \sin \vartheta, t), \quad(\vartheta, t) \in[0,2 \pi) \times \mathbf{R}
$$

We determine ρ in such a way that the mean curvature is constant, that is

$$
\partial_{t}^{2} \rho-\frac{1}{\rho}\left(1+\partial_{t} \rho^{2}\right)+\left(1+\partial_{t} \rho^{2}\right)^{3 / 2}=0 .
$$

Delaunay surfaces in \mathbf{R}^{3}
We rotate the graph of the periodic function $\rho(t)$ around a fixed axes.

$$
X(\vartheta, t)=(\rho(t) \cos \vartheta, \rho(t) \sin \vartheta, t), \quad(\vartheta, t) \in[0,2 \pi) \times \mathbf{R}
$$

We determine ρ in such a way that the mean curvature is constant, that is

$$
\partial_{t}^{2} \rho-\frac{1}{\rho}\left(1+\partial_{t} \rho^{2}\right)+\left(1+\partial_{t} \rho^{2}\right)^{3 / 2}=0 .
$$

Proposition 1.

For any $\tau \in(0,1]$, there exists a periodic solution ρ_{τ} of period T_{τ} such that

- $\rho_{\tau}(0)=1-\sqrt{1-\tau^{2}}$,
- $\partial_{t} \rho_{\tau}(0)=0$,
- $1-\sqrt{1-\tau^{2}} \leq \rho_{\tau}(t) \leq 1+\sqrt{1-\tau^{2}}$, for any $t \in\left[0, T_{\tau}\right]$.

We are interested in the set $\mathcal{M}_{k, g}$ of complete Alexandrov embedded constant mean curvature surfaces of genus g with k ends, that is

$$
\Sigma \cap\left(\mathbf{R}^{3} \backslash B_{R}\right)=\cup_{j=1}^{k} E_{j},
$$

for some $R>0$.

We are interested in the set $\mathcal{M}_{k, g}$ of complete Alexandrov embedded constant mean curvature surfaces of genus g with k ends, that is

$$
\Sigma \cap\left(\mathbf{R}^{3} \backslash B_{R}\right)=\cup_{j=1}^{k} E_{j},
$$

for some $R>0$.

- $\mathcal{M}_{0, g}$ consists of the round sphere.
- $\mathcal{M}_{1, g}$ is empty.
- $\mathcal{M}_{2, g}$ consists of the cylinder and Delaunay surfaces.

Each of the ends is asymptotic to a translated and rotated copy to a Delaunay surface $D_{\tau_{j}}$, of axes $\mathbf{c}_{j} \in S^{2}$.

The radial case

Let $f(u):=u-u^{3}$. If u is a solution to (1) in \mathbf{R}^{N}, then $v(x):=u(\varepsilon x)$ solves

$$
\begin{equation*}
-\Delta v=f(v)-\delta, \quad \delta=\varepsilon \ell_{\varepsilon} \quad \text { in } \mathbf{R}^{N} \tag{7}
\end{equation*}
$$

If $\delta>0$ is small enough, then there exist

$$
z_{-}(\delta)<-1<0<z_{0}(\delta)<z_{+}(\delta)<1
$$

such that $f\left(z_{i}(\delta)\right)=\delta, i=1,2,3$. It is known (Dancer, Peletier-Serrin) that, if $\delta>0$ is small enough, then there exists a unique solution v_{δ} to(7) in \mathbf{R}^{N} such that

- $v_{\delta}<z_{+}(\delta)$ in \mathbf{R}^{N},
- $v_{\delta}(x) \rightarrow z_{+}(\delta)$ as $|x| \rightarrow \infty$.

Moreover, this solution is radially symmetric.

Theorem 2 (R.).
Let $\delta \in\left(-\frac{2}{3 \sqrt{3}}, \frac{2}{3 \sqrt{3}}\right)$ and let u be a solution to the Cahn-Hilliard equation

$$
-\Delta u=f(u)-\delta
$$

in \mathbf{R}^{N}. Then $z_{-}(\delta) \leq f\left(u_{\delta}\right) \leq z_{+}(\delta)$. If, in addition, $u>z_{0}(\delta)$ outside a ball, then

- for $\delta \in\left(-\frac{2}{3 \sqrt{3}}, 0\right]$, we have $u \equiv z_{+}(\delta)$.
- for $\delta \in\left(0, \frac{2}{3 \sqrt{3}}\right)$, we have either $u=v_{\delta}$ or $u \equiv z_{+}(\delta)$. In particular, u is radially symmetric.

The periodic case

Let $\tau \in(0,1)$ and let D_{τ} be the corresponding Delaunay surface in \mathbf{R}^{3}. We denote the exterior and the interior of D^{τ} by $D_{\tau}^{ \pm}$respectively.
Theorem 3 (Hernández, Kowalczyk).
For $\tau \in(0,1)$ and $\varepsilon>0$ small enough, there exists a solution u_{ε} to (1) in \mathbf{R}^{3} such that

- u_{ε} is periodic in x_{3}, of period T_{τ}.
- u_{ε} is radially symmetric in $x^{\prime}=\left(x_{1}, x_{2}\right)$.
- $u_{\varepsilon}\left(x^{\prime}, x_{3}\right) \rightarrow z_{+}\left(\varepsilon \ell_{\varepsilon}\right)$ as $\left|x^{\prime}\right| \rightarrow \infty$, uniformly in x_{3} and ε.
- $u_{\varepsilon}(x) \rightarrow \pm 1$ as $\varepsilon \rightarrow 0$ uniformly on compact sets of $D_{\tau}^{ \pm}$.

The Jacobi operator

$$
J_{D_{\tau}}=\Delta_{D_{\tau}}+\left|A_{D_{\tau}}\right|^{2}
$$

of D_{τ} has 6 linearly independent Jacobi fields.

- the ones related to translations, denoted by $\Phi_{\tau}^{T, e_{j}}, 1 \leq j \leq 3$;
- the ones related to rotations about the x_{j} axes, $j=1,2$, denoted by $\Phi_{\tau}^{R, e_{j}}, 1 \leq j \leq 2 ;$
- the one related to the Delaunay parameter, denoted by Φ_{τ}^{D}.

None of these Jacobi fields is in $L^{2}\left(D_{\tau}\right)$.

Theorem 4 (R.).
Let $\delta \in(0,2 / 3 \sqrt{3})$ and let u_{δ} be a non constant solution to

$$
-\Delta u_{\delta}=f\left(u_{\delta}\right)-\delta
$$

in \mathbf{R}^{N} such that $u_{\delta}>z_{0}(\delta)$ outside a cylinder $C_{R(\delta)}$, for some $R(\delta)>0$. If u_{δ} is periodic in x_{N}, then

- u_{δ} is radially symmetric in x^{\prime}, that is, up to a translation, $u_{\delta}(x)=w_{\delta}\left(\left|x^{\prime}\right|, x_{N}\right)$.
- u_{δ} is radially increasing, in the sense that $\left(\nabla u_{\delta}(x),\left(x^{\prime}, 0\right)\right)>0$, for any $x=\left(x^{\prime}, x_{N}\right) \in \mathbf{R}^{N} \backslash\{0\}$.

The k-ended case

We consider surfaces $\Sigma \in \mathcal{M}_{k, g}$, with $k \geq 3, g \geq 0$.

- We say that such a surface is non degenerate if the Jacobi operator

$$
J_{\Sigma}=\Delta_{\Sigma}+\left|A_{\Sigma}\right|^{2}
$$

has no kernel in $L^{2}(\Sigma)$.

- Not two of the ends are parallel, in the sense that, if $\mathbf{c}_{i}=\lambda \mathbf{c}_{j}$, $1 \leq i \neq j \leq k$, then $\lambda=-1$.

Theorem 5 (Kowalczyk, R.).
Let $g \geq 0, k \geq 3$. Let $\Sigma \in \mathcal{M}_{k, g}$ be such that

- Σ is non degenerate,
- Not two of the ends are parallel.

Let $\Sigma^{ \pm}$be the exterior and the interior of Σ respectively. Then, for $\varepsilon>0$ small enough, there exists a solution u_{ε} to (7) such that $u_{\varepsilon} \rightarrow \pm 1$ as $\varepsilon \rightarrow 0$ on compact subsets of $\Sigma^{ \pm}$respectively.

The proof of Theorem 5 We look for a solution of the form $u=v+w$, where v is an approximate solution and w is a correction.

The proof of Theorem 5 We look for a solution of the form $u=v+w$, where v is an approximate solution and w is a correction.
We start from the unique solution to the ODE

$$
\left\{\begin{array}{l}
-v_{\star}^{\prime \prime}=v_{\star}-v_{\star}^{3} \tag{8}\\
v_{\star}(0)=0 \\
\lim _{t \rightarrow \pm \infty} v_{\star}= \pm 1,
\end{array}\right.
$$

that is $v_{\star}(t)=\tanh (t / \sqrt{2})$.

We define the Fermi coordinates $(y, z) \in \Sigma \times \mathbf{R}$ by the relation

$$
x=y+z \nu_{\Sigma}(y),
$$

in a tubular neighbourhood of the curve.
A first, rough idea could be to put $v(\phi)(x) \simeq v_{\star}(z)$ near Σ.

We define the Fermi coordinates $(y, z) \in \Sigma \times \mathbf{R}$ by the relation

$$
x=y+z \nu_{\Sigma}(y)
$$

in a tubular neighbourhood of the curve.
A first, rough idea could be to put $v(\phi)(x) \simeq v_{\star}(z)$ near Σ.
Then we set $z=t+\phi(\varepsilon y)$, where ε is small and $\phi: \Sigma \rightarrow \mathbf{R}$ is a small shift function.
The approximate solution is $v(\phi)(x) \simeq v_{\star}(t)$. The correction w and the shift function ϕ are the unknowns of the problem, and they are determined by a Lyapunov-Schmidt reduction.

The Lyapunov-Schmidt reduction

We have to solve a nonlinear equation $N(u)=0$. We look for a solution $u=v(\phi)+w$.
We Taylor-expand

$$
0=N(v(\phi)+w)=N(v(\phi))+N^{\prime}(v(\phi))[w]+Q_{v(\phi)}(w) .
$$

We project along $X:=k e r\left(N^{\prime}(v(\phi))\right)^{\perp}$ and X^{\perp}

$$
\begin{gather*}
N^{\prime}(v(\phi))[w]=-\Pi_{X}\left(N(v(\phi))+Q_{v(\phi)}(w)\right) \tag{9}\\
\Pi_{X \perp}\left(N(v(\phi))+Q_{v(\phi)}(w)\right)=0 . \tag{10}
\end{gather*}
$$

The correction w is determined solving (9) for any fixed ϕ, exploiting the coercivity of the quadratic form

$$
\int_{\Sigma \times \mathbf{R}}\left|\nabla_{y} w\right|^{2}+\left(\partial_{t} w\right)^{2}+\left(3 v_{\star}^{2}-1\right) w^{2} d y d t
$$

on the space of functions satisfying the orthogonality condition

$$
\int_{\mathbf{R}} w(y, t) v_{\star}^{\prime}(t) d t=0, \quad \forall y \in \Sigma
$$

The correction w is determined solving (9) for any fixed ϕ, exploiting the coercivity of the quadratic form

$$
\int_{\Sigma \times \mathbf{R}}\left|\nabla_{y} w\right|^{2}+\left(\partial_{t} w\right)^{2}+\left(3 v_{\star}^{2}-1\right) w^{2} d y d t
$$

on the space of functions satisfying the orthogonality condition

$$
\int_{\mathbf{R}} w(y, t) v_{\star}^{\prime}(t) d t=0, \quad \forall y \in \Sigma
$$

ϕ is determined solving (10), which is equivalent to a non linear equation of the form

$$
J_{\Sigma} \phi=\mathcal{F}_{\varepsilon}(y, \phi),
$$

which is solvable thanks to non degeneracy.

Problem

The error obtained by the standard ansatz about the approximate solution is not decaying along the surface.
Solution:

- along each of the ends we need to add a correction, also determined by a Lyapunov-Schmidt reduction.
- the decay is guaranteed by the fact that not two of the ends are parallel.

Kowalczyk, M., Rizzi, M. Multiple Delaunay ends solutions of the CahnHilliard equation, accepted by Communications in Partial differential equations.
Rizzi, M. Radial and cylindrical symmetry of solutions to the Cahn-Hilliard equation, submitted to Calculus of variations and PDEs.

