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The Cahn-Hilliard equation

− ε∆u = ε−1(u − u3)− `ε in Ω (1)

is the Euler equation of the Ginzburg-Landau energy

Eε(u,Ω) :=

∫
Ω

(
ε

2
|∇u|2 +

(1− u2)2

4ε

)
dx

under the constraint

1

|Ω|

∫
Ω

udx = m, m ∈ (−1, 1) (2)



The mean curvature

Given an N-dimensional manifold M and an (N−1)-dimensional submani-
fold Σ ⊂ M, the principal curvature kj(p) of Σ at p ∈ Σ are the eigenvalues
of the second fundamental form AΣ. The mean curvature is by de�nition

HΣ(p) := k1(p) + · · ·+ kN−1(p). (3)

I We say that Σ is a minimal submanifold if HΣ = 0.

I We say that Σ is a constant mean curvature submanifold if HΣ is
constant.
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Variational characterisation

Let X : D → Σ be a parametrisation. Let N : D → R be the external unit
normal and let h : D → R be a smooth function. For t ∈ (−δ, δ), we set

Xt(u, v) := X (u, v) + th(u, v)N(u, v).

Then

A(t, h) =

∫
D

√
EtGt − F 2

t dudv

represents the area of the surface Xt(D).

Since

A′[h] =
d

dt
A(t, h)|t=0 = −2

∫
D

hHΣ

√
EtGt − F 2

t dudv ∀h ∈ C∞c (D),

we can see that Σ is a minimal surface if and only if A′[h] = 0 for any
h ∈ C∞c (D).
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The nodal set of the critical points of the Ginzburg-Landau energy

and minimal surfaces.

Theorem 1 (Modica).
Let

I Ω ⊂ RN be a bounded domain.

I εk > 0 be such that εk → 0.

I uk be minimisers of the Ginzburg-Landau energy Eεk under the
constraint (2) such that uk → u0 in L1(Ω).

Then u0(x) ∈ {±1} for almost every x ∈ Ω, and the boundary in Ω of
the set E := {x ∈ Ω : u0(x) = 1} has minimal perimeter among all
subsets F ⊂ Ω such that |F | = |E |, where |· | denotes the N-dimensional
Lebesgue measure.
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Conversely, given a suitable minimal submanifold Σ in a compact Riema-
niann manifold M, it is possible to construct a family uε of solutions to
the Allen-Cahn equation

−ε∆uε = ε−1(uε − u3ε) in M (4)

such that uε → ±1 uniformly on compact subsets of the connected com-
ponents of M\Σ. (Pacard and Ritoré)



What does suitable mean?

It means non degenerate, in the sense that the Jacobi operator

JΣ := ∆Σ + |AΣ|2 + Ricg (νΣ, νΣ) (5)

is invertible with respect to some suitable weighted norms.
The Jabobi operator arises as the second variation of the area functional,
in the sense that

A′′(Σ)[ϕ,ψ] =

∫
Σ

JΣϕψdσ.
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The noncompact case

A graph u : Ω ⊂ RN → R is minimal if and only if

div

(
∇u√

1 + |∇u|2

)
= 0 in Ω. (6)

Conjecture 1 (Bernstein).
Let u : RN → R be a solution to (6) in dimension N ≤ 7. Then u is
a�ne.

In dimension N = 8, there exists a non a�ne minimal graph (Bombieri-De
Giorgi-Giusti).



Conjecture 2 (De Giorgi).
Let u be a solution to the Allen-Cahn equation

−∆u = u − u3

in RN such that ∂xNu > 0. Let N ≤ 8. Then u just depends on one
euclidean variable, that is

u(x) = v?(x · ν + a), ν ∈ SN−1, a ∈ R, v?(t) = tanh(t/
√
2).

I The conjecture is true in dimension N = 2, 3 (Ghoussoub-Gui,
Ambrosio-Cabré, Farina-Sciunzi-Valdinoci).

I In dimension 4 ≤ N ≤ 8 (Savin) it is true under the additional
assumption that

lim
xN→±∞

u(x ′, xN) = ±1.

I In dimension N = 9, Del Pino, Kowalczyk and Wei constructed a
monotone solution which is not 1D.
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Constant mean curvature surfaces

I The only compact embedded constant mean curvature surface is the
round sphere.

I Removing the compactness assumption, the simplest example is the
cylinder.

I Delaunay constructed a family of axially symmetric periodic CMC
surfaces, depending on a parameter τ ∈ (0, 1].



Delaunay surfaces in R3

We rotate the graph of the periodic function ρ(t) around a �xed axes.

X (ϑ, t) = (ρ(t) cosϑ, ρ(t) sinϑ, t), (ϑ, t) ∈ [0, 2π)× R.

We determine ρ in such a way that the mean curvature is constant, that
is

∂2t ρ−
1

ρ
(1 + ∂tρ

2) + (1 + ∂tρ
2)3/2 = 0.

Proposition 1.
For any τ ∈ (0, 1], there exists a periodic solution ρτ of period Tτ such
that

I ρτ (0) = 1−
√
1− τ2,

I ∂tρτ (0) = 0,

I 1−
√
1− τ2 ≤ ρτ (t) ≤ 1 +

√
1− τ2, for any t ∈ [0,Tτ ].
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We are interested in the setMk,g of complete Alexandrov embedded con-
stant mean curvature surfaces of genus g with k ends, that is

Σ ∩ (R3\BR) = ∪kj=1
Ej ,

for some R > 0.

I M0,g consists of the round sphere.

I M1,g is empty.

I M2,g consists of the cylinder and Delaunay surfaces.

Each of the ends is asymptotic to a translated and rotated copy to a
Delaunay surface Dτj , of axes cj ∈ S2.
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The radial case

Let f (u) := u − u3. If u is a solution to (1) in RN , then v(x) := u(εx)
solves

−∆v = f (v)− δ, δ = ε`ε in RN . (7)

If δ > 0 is small enough, then there exist

z−(δ) < −1 < 0 < z0(δ) < z+(δ) < 1

such that f (zi (δ)) = δ, i = 1, 2, 3. It is known (Dancer, Peletier-Serrin)
that, if δ > 0 is small enough, then there exists a unique solution vδ to(7)
in RN such that

I vδ < z+(δ) in RN ,

I vδ(x)→ z+(δ) as |x | → ∞.

Moreover, this solution is radially symmetric.



Theorem 2 (R.).
Let δ ∈ (− 2

3
√
3
, 2

3
√
3

) and let u be a solution to the Cahn-Hilliard equation

−∆u = f (u)− δ

in RN . Then z−(δ) ≤ f (uδ) ≤ z+(δ). If, in addition, u > z0(δ) outside a
ball, then

I for δ ∈ (− 2

3
√
3
, 0], we have u ≡ z+(δ).

I for δ ∈ (0, 2

3
√
3

), we have either u = vδ or u ≡ z+(δ). In particular,

u is radially symmetric.



The periodic case

Let τ ∈ (0, 1) and let Dτ be the corresponding Delaunay surface in R3.
We denote the exterior and the interior of Dτ by D±τ respectively.

Theorem 3 (Hernández, Kowalczyk).
For τ ∈ (0, 1) and ε > 0 small enough, there exists a solution uε to (1) in
R3 such that

I uε is periodic in x3, of period Tτ .

I uε is radially symmetric in x ′ = (x1, x2).

I uε(x
′, x3)→ z+(ε`ε) as |x ′| → ∞, uniformly in x3 and ε.

I uε(x)→ ±1 as ε→ 0 uniformly on compact sets of D±τ .



The Jacobi operator
JDτ

= ∆Dτ
+ |ADτ

|2

of Dτ has 6 linearly independent Jacobi �elds.

I the ones related to translations, denoted by Φ
T ,ej
τ , 1 ≤ j ≤ 3;

I the ones related to rotations about the xj axes, j = 1, 2, denoted by

Φ
R,ej
τ , 1 ≤ j ≤ 2;

I the one related to the Delaunay parameter, denoted by ΦD
τ .

None of these Jacobi �elds is in L2(Dτ ).



Theorem 4 (R.).
Let δ ∈ (0, 2/3

√
3) and let uδ be a non constant solution to

−∆uδ = f (uδ)− δ

in RN such that uδ > z0(δ) outside a cylinder CR(δ), for some R(δ) > 0.
If uδ is periodic in xN , then

I uδ is radially symmetric in x ′, that is, up to a translation,
uδ(x) = wδ(|x ′|, xN).

I uδ is radially increasing, in the sense that (∇uδ(x), (x ′, 0)) > 0, for
any x = (x ′, xN) ∈ RN\{0}.



The k-ended case

We consider surfaces Σ ∈Mk,g , with k ≥ 3, g ≥ 0.

I We say that such a surface is non degenerate if the Jacobi operator

JΣ = ∆Σ + |AΣ|2

has no kernel in L2(Σ).

I Not two of the ends are parallel, in the sense that, if ci = λcj ,
1 ≤ i 6= j ≤ k , then λ = −1.



Theorem 5 (Kowalczyk, R.).
Let g ≥ 0, k ≥ 3. Let Σ ∈Mk,g be such that

I Σ is non degenerate,

I Not two of the ends are parallel.

Let Σ± be the exterior and the interior of Σ respectively. Then, for ε > 0
small enough, there exists a solution uε to (7) such that uε → ±1 as
ε→ 0 on compact subsets of Σ± respectively.



The proof of Theorem 5 We look for a solution of the form u = v + w ,
where v is an approximate solution and w is a correction.

We start from the unique solution to the ODE
−v ′′? = v? − v3?
v?(0) = 0,

limt→±∞ v? = ±1,
(8)

that is v?(t) = tanh(t/
√
2).
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We de�ne the Fermi coordinates (y , z) ∈ Σ× R by the relation

x = y + zνΣ(y),

in a tubular neighbourhood of the curve.
A �rst, rough idea could be to put v(φ)(x) ' v?(z) near Σ.

Then we set z = t + φ(εy), where ε is small and φ : Σ → R is a small
shift function.
The approximate solution is v(φ)(x) ' v?(t). The correction w and the
shift function φ are the unknowns of the problem, and they are determined
by a Lyapunov-Schmidt reduction.
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The Lyapunov-Schmidt reduction

We have to solve a nonlinear equation N(u) = 0. We look for a solution
u = v(φ) + w .
We Taylor-expand

0 = N(v(φ) + w) = N(v(φ)) + N ′(v(φ))[w ] + Qv(φ)(w).

We project along X := ker(N ′(v(φ)))⊥ and X⊥

N ′(v(φ))[w ] = −ΠX

(
N(v(φ)) + Qv(φ)(w)

)
(9)

ΠX⊥(N(v(φ)) + Qv(φ)(w)
)

= 0. (10)



The correction w is determined solving (9) for any �xed φ, exploiting the
coercivity of the quadratic form∫

Σ×R
|∇yw |2 + (∂tw)2 + (3v2? − 1)w2 dydt

on the space of functions satisfying the orthogonality condition∫
R

w(y , t)v ′?(t)dt = 0, ∀y ∈ Σ.

φ is determined solving (10), which is equivalent to a non linear equation
of the form

JΣφ = Fε(y , φ),

which is solvable thanks to non degeneracy.
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Problem

The error obtained by the standard ansatz about the approximate solution
is not decaying along the surface.
Solution:

I along each of the ends we need to add a correction, also determined
by a Lyapunov-Schmidt reduction.

I the decay is guaranteed by the fact that not two of the ends are
parallel.
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