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The Cahn-Hilliard equation
—eAu=ecY(u—1)— L in Q

is the Euler equation of the Ginzburg-Landau energy

E(u,Q) = /Q <;|Vu2 + (14;’2)2> dx

under the constraint

ﬁ/udx:m7 me (—1,1)
Q



The mean curvature

Given an N-dimensional manifold M and an (N — 1)-dimensional submani-
fold ¥ C M, the principal curvature kj(p) of X at p € X are the eigenvalues
of the second fundamental form As. The mean curvature is by definition

Hs(p) := ki(p) + -+ + kn-1(p). 3)
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Given an N-dimensional manifold M and an (N — 1)-dimensional submani-
fold ¥ C M, the principal curvature kj(p) of X at p € X are the eigenvalues
of the second fundamental form As. The mean curvature is by definition

Hs(p) := ki(p) + -+ + kn-1(p). 3)

» We say that ¥ is a minimal submanifold if Hs = 0.

» We say that X is a constant mean curvature submanifold if Hy is
constant.



Variational characterisation
Let X : D — ¥ be a parametrisation. Let N : D — R be the external unit
normal and let h: D — R be a smooth function. For t € (=4, ), we set

Xe(u,v) = X(u,v) + th(u, v)N(u, v).

A(t, h) = / \/ Et G — F2dudv
D

represents the area of the surface X;(D).

Then



Variational characterisation
Let X : D — ¥ be a parametrisation. Let N : D — R be the external unit
normal and let h: D — R be a smooth function. For t € (=4, ), we set

Xe(u,v) = X(u,v) + th(u, v)N(u, v).

A(t, h) = / \/ Et G — F2dudv
D

represents the area of the surface X;(D).
Since

Al = Z At h)]e—o 772/ hHs\/ E;G. — F2dudv ~ Yhe C(D),

we can see that X is a minimal surface if and only if A'[h] = 0 for any
he C2(D).

Then



The nodal set of the critical points of the Ginzburg-Landau energy
and minimal surfaces.



The nodal set of the critical points of the Ginzburg-Landau energy
and minimal surfaces.

Theorem 1 (Modica).

Let
» Q C RN be a bounded domain.
» ¢, > 0 be such that ¢, — 0.

> uy be minimisers of the Ginzburg-Landau energy E., under the
constraint (2) such that uy — ug in L*().

Then ug(x) € {£1} for almost every x € Q, and the boundary in Q2 of
the set E := {x € Q: up(x) = 1} has minimal perimeter among all
subsets F C Q such that |F| = |E|, where |-| denotes the N-dimensional
Lebesgue measure.




Conversely, given a suitable minimal submanifold ¥ in a compact Riema-
niann manifold M, it is possible to construct a family u. of solutions to
the Allen-Cahn equation

—eAu, = e Hu. — 2) in M (4)

such that u. — +1 uniformly on compact subsets of the connected com-
ponents of M\X. (Pacard and Ritoré)



What does suitable mean?
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is invertible with respect to some suitable weighted norms.



What does suitable mean?
It means non degenerate, in the sense that the Jacobi operator

Js = Ay + |Az|2 + Rng(l/):, Vz) (5)

is invertible with respect to some suitable weighted norms.
The Jabobi operator arises as the second variation of the area functional,
in the sense that

WﬁWM=LkWM



The noncompact case
A graph u: Q ¢ RN — R is minimal if and only if

div(ﬂfrw) 0 inQ. (6)

Conjecture 1 (Bernstein).

Let u: RN — R be a solution to (6) in dimension N < 7. Then u is
affine.

In dimension N = 8, there exists a non affine minimal graph (Bombieri-De
Giorgi-Giusti).



Conjecture 2 (De Giorgi).

Let u be a solution to the Allen-Cahn equation

—Au=u—1°

in RN such that Oxyu > 0. Let N < 8. Then u just depends on one
euclidean variable, that is

u(x) = vi(x-v + a), ve SVl aeR, v,(t) = tanh(t/V2).



Conjecture 2 (De Giorgi).

Let u be a solution to the Allen-Cahn equation

—Au=u—1?
in RN such that Oxyu > 0. Let N < 8. Then u just depends on one
euclidean variable, that is

u(x) = vi(x-v + a), ve SVl aeR, v,(t) = tanh(t/V2).

» The conjecture is true in dimension N = 2,3 (Ghoussoub-Gui,
Ambrosio-Cabré, Farina-Sciunzi-Valdinoci).

> In dimension 4 < N < 8 (Savin) it is true under the additional
assumption that
lim  u(x',xy) = £1.
xy—> oo ( ’ N)
» In dimension N =9, Del Pino, Kowalczyk and Wei constructed a
monotone solution which is not 1D.



Constant mean curvature surfaces

» The only compact embedded constant mean curvature surface is the
round sphere.

» Removing the compactness assumption, the simplest example is the
cylinder.

» Delaunay constructed a family of axially symmetric periodic CMC
surfaces, depending on a parameter 7 € (0, 1].



Delaunay surfaces in R3
We rotate the graph of the periodic function p(t) around a fixed axes.

X9, t) = (p(t) cos 9, p(t)sin ¥, t), (¥,t) € [0,27) x R.
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We determine p in such a way that the mean curvature is constant, that
is

1
2p — ;(1 + 0:p?) + (14 0:p?)%/2 = 0.



Delaunay surfaces in R3
We rotate the graph of the periodic function p(t) around a fixed axes.

X9, t) = (p(t) cos 9, p(t)sin ¥, t), (¥,t) € [0,27) x R.

We determine p in such a way that the mean curvature is constant, that
is

1
92p— ;(1 +9:p%) + (1 + 0ep?)*/2 = 0.

Proposition 1.

For any 7 € (0, 1], there exists a periodic solution p, of period T, such
that

> p-(0)=1—+1-72
> atPT(O)ZO,
> 1—-V1-72<p.(t)<1+V1—72 foranyte|0, T,].



We are interested in the set M, , of complete Alexandrov embedded con-
stant mean curvature surfaces of genus g with k ends, that is

£ (R\Br) = U,

for some R > 0.



We are interested in the set M, , of complete Alexandrov embedded con-
stant mean curvature surfaces of genus g with k ends, that is

£ (R\Br) = U,

for some R > 0.
> My g consists of the round sphere.
> Mg is empty.
> M, . consists of the cylinder and Delaunay surfaces.

Each of the ends is asymptotic to a translated and rotated copy to a
Delaunay surface D, of axes ¢; € 52.



The radial case
Let f(u) := u— u® If uis a solution to (1) in RY, then v(x) := u(ex)
solves

—Av = f(v) =4, 0= el in R, (7)

If 6 > 0 is small enough, then there exist
z (0)<-1<0<z(d) <z (d) <1

such that f(z(d)) =6, i = 1,2,3. It is known (Dancer, Peletier-Serrin)
that, if § > 0 is small enough, then there exists a unique solution vs to(7)
in RN such that

> vs < z.(8) in RV,
> vs(x) = z(9) as |x| — oc.
Moreover, this solution is radially symmetric.



Theorem 2 (R.).

Let§ € (*v, 7) and let u be a solution to the Cahn-Hilliard equation

—Au="f(u)—

in RN, Then z_(0) < f(us) < z,(8). If, in addition, u > zy(6) outside a
ball, then

» ford € (—%,0], we have u = z, (9).

» for § € (0, 2 EWA
u is radially symmetric.

), we have either u = v5 or u = z,(9). In particular,



The periodic case

Let 7 € (0,1) and let D, be the corresponding Delaunay surface in R3.
We denote the exterior and the interior of D™ by D respectively.
Theorem 3 (Hernandez, Kowalczyk).

For 7 € (0,1) and € > 0 small enough, there exists a solution u. to (1) in
R3 such that

u. is periodic in x3, of period T..

>

> u. is radially symmetric in x' = (x1, x2).

> u(x',x3) = z(ele) as |x'| — oo, uniformly in x3 and e.
>

u-(x) — £1 as € — 0 uniformly on compact sets of D*.



The Jacobi operator
Jp, = Dp, +|Ap, [

of D, has 6 linearly independent Jacobi fields.

> the ones related to translations, denoted by ¢TT’ej, 1<5<3;

> the ones related to rotations about the x; axes, j = 1,2, denoted by

OFY 1</ <2

> the one related to the Delaunay parameter, denoted by ®P.

None of these Jacobi fields is in L?(D.).



Theorem 4 (R.).
Let § € (0,2/3v/3) and let us be a non constant solution to

—AU5 = f(U5) — (5

in RN such that us > zo(0) outside a cylinder Cg(s), for some R(5) > 0.
If us is periodic in xy, then
» us is radially symmetric in x', that is, up to a translation,
us(x) = ws(|x'], xn)-
> us is radially increasing, in the sense that (Vus(x), (x’,0)) > 0, for
any x = (x',xy) € RV\{0}.



The k-ended case
We consider surfaces >~ € My ., with k >3, g > 0.

» We say that such a surface is non degenerate if the Jacobi operator
Jsr = As + |As?

has no kernel in L?(X).

> Not two of the ends are parallel, in the sense that, if ¢; = Ac;,
1<iz#j<k, then A\ =—1.



Theorem 5 (Kowalczyk, R.).

Let g >0, k> 3. Let ¥ € My, be such that
» Y is non degenerate,
» Not two of the ends are parallel.

Let ¥* be the exterior and the interior of ¥ respectively. Then, for e > 0
small enough, there exists a solution u. to (7) such that u. — £1 as
¢ — 0 on compact subsets of ¥+ respectively.



The proof of Theorem 5 We look for a solution of the form u = v + w,
where v is an approximate solution and w is a correction.



The proof of Theorem 5 We look for a solution of the form u = v + w,

where v is an approximate solution and w is a correction.

We start from the unique solution to the ODE
—v =v, -3

v,(0) =0,

lime st v = £1,

that is v, (t) = tanh(t/v/2).



We define the Fermi coordinates (y,z) € ¥ x R by the relation

x=y+zvs(y),

in a tubular neighbourhood of the curve.
A first, rough idea could be to put v(#)(x) ~ v.(z) near X.



We define the Fermi coordinates (y,z) € ¥ x R by the relation

x=y+zvs(y),

in a tubular neighbourhood of the curve.

A first, rough idea could be to put v(#)(x) ~ v.(z) near X.

Then we set z = t + ¢(ey), where ¢ is small and ¢ : ¥ — R is a small
shift function.

The approximate solution is v(¢)(x) =~ v,(t). The correction w and the
shift function ¢ are the unknowns of the problem, and they are determined
by a Lyapunov-Schmidt reduction.



The Lyapunov-Schmidt reduction
We have to solve a nonlinear equation N(u) = 0. We look for a solution

u=v(p)+ w.
We Taylor-expand

= N(U(9) + w) = N(v(6)) + N (v(6))[w] + Quii(w).

We project along X := ker(N'(v(¢)))* and X+
N (v(6))[w] = ~Mx (N(v(9)) + Quep (W) (9)
My (N(V(6)) + Quiop(w)) = 0. (10)



The correction w is determined solving (9) for any fixed ¢, exploiting the
coercivity of the quadratic form

/ IV, w|? + (0:w)? + (3v2 — 1)w? dydt
X xR
on the space of functions satisfying the orthogonality condition

/ wiy, OV (DdE =0,  Vyex.
R



The correction w is determined solving (9) for any fixed ¢, exploiting the
coercivity of the quadratic form

/ IV, w|? + (0:w)? + (3v2 — 1)w? dydt
¥ xR
on the space of functions satisfying the orthogonality condition
/ wiy, OV (DdE =0,  Vyex.
R

¢ is determined solving (10), which is equivalent to a non linear equation
of the form

Jro = Fe(y, 9),

which is solvable thanks to non degeneracy.



Problem

The error obtained by the standard ansatz about the approximate solution
is not decaying along the surface.

Solution:

» along each of the ends we need to add a correction, also determined
by a Lyapunov-Schmidt reduction.

» the decay is guaranteed by the fact that not two of the ends are
parallel.
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