Existence and classification of solutions to the Cahn-Hilliard equation

Matteo Rizzi, CMM, Santiago de Chile

July 12th, 2019

The Cahn-Hilliard equation

$$-\varepsilon\Delta u = \varepsilon^{-1}(u - u^3) - \ell_{\varepsilon} \quad \text{in } \Omega$$
 (1)

is the Euler equation of the Ginzburg-Landau energy

$$E_{\varepsilon}(u,\Omega) := \int_{\Omega} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{(1-u^2)^2}{4\varepsilon} \right) dx$$

under the constraint

$$\frac{1}{|\Omega|} \int_{\Omega} u dx = m, \qquad m \in (-1,1)$$
 (2)

The mean curvature

Given an N-dimensional manifold M and an (N-1)-dimensional submanifold $\Sigma \subset M$, the principal curvature $k_j(p)$ of Σ at $p \in \Sigma$ are the eigenvalues of the second fundamental form A_{Σ} . The mean curvature is by definition

$$H_{\Sigma}(p) := k_1(p) + \cdots + k_{N-1}(p).$$
 (3)

The mean curvature

Given an N-dimensional manifold M and an (N-1)-dimensional submanifold $\Sigma \subset M$, the principal curvature $k_j(p)$ of Σ at $p \in \Sigma$ are the eigenvalues of the second fundamental form A_{Σ} . The mean curvature is by definition

$$H_{\Sigma}(p) := k_1(p) + \cdots + k_{N-1}(p).$$
 (3)

- We say that Σ is a minimal submanifold if $H_{\Sigma}=0$.
- We say that Σ is a constant mean curvature submanifold if H_Σ is constant.

Variational characterisation

Let $X:D\to \Sigma$ be a parametrisation. Let $N:D\to \mathbf{R}$ be the external unit normal and let $h:D\to \mathbf{R}$ be a smooth function. For $t\in (-\delta,\delta)$, we set

$$X_t(u,v) := X(u,v) + th(u,v)N(u,v).$$

Then

$$A(t,h) = \int_{D} \sqrt{E_t G_t - F_t^2} du dv$$

represents the area of the surface $X_t(D)$.

Variational characterisation

Let $X:D\to \Sigma$ be a parametrisation. Let $N:D\to \mathbf{R}$ be the external unit normal and let $h:D\to \mathbf{R}$ be a smooth function. For $t\in (-\delta,\delta)$, we set

$$X_t(u,v) := X(u,v) + th(u,v)N(u,v).$$

Then

$$A(t,h) = \int_{D} \sqrt{E_t G_t - F_t^2} du dv$$

represents the area of the surface $X_t(D)$. Since

$$A'[h] = \frac{d}{dt}A(t,h)|_{t=0} = -2\int_{D}hH_{\Sigma}\sqrt{E_{t}G_{t} - F_{t}^{2}}dudv \qquad \forall h \in C_{c}^{\infty}(D),$$

we can see that Σ is a *minimal surface* if and only if A'[h] = 0 for any $h \in C_c^{\infty}(D)$.

The nodal set of the critical points of the Ginzburg-Landau energy and minimal surfaces.

The nodal set of the critical points of the Ginzburg-Landau energy and minimal surfaces.

Theorem 1 (Modica).

Let

- $ightharpoonup \Omega \subset \mathbf{R}^N$ be a bounded domain.
- $\varepsilon_k > 0$ be such that $\varepsilon_k \to 0$.
- ▶ u_k be minimisers of the Ginzburg-Landau energy E_{ε_k} under the constraint (2) such that $u_k \to u_0$ in $L^1(\Omega)$.

Then $u_0(x) \in \{\pm 1\}$ for almost every $x \in \Omega$, and the boundary in Ω of the set $E := \{x \in \Omega : u_0(x) = 1\}$ has minimal perimeter among all subsets $F \subset \Omega$ such that |F| = |E|, where $|\cdot|$ denotes the N-dimensional Lebesgue measure.

Conversely, given a suitable minimal submanifold Σ in a compact Riemaniann manifold M, it is possible to construct a family u_{ε} of solutions to the Allen-Cahn equation

$$-\varepsilon \Delta u_{\varepsilon} = \varepsilon^{-1} (u_{\varepsilon} - u_{\varepsilon}^{3}) \quad \text{in } M$$
 (4)

such that $u_{\varepsilon} \to \pm 1$ uniformly on compact subsets of the connected components of $M \setminus \Sigma$. (Pacard and Ritoré)

What does suitable mean?

What does *suitable* mean? It means **non degenerate**, in the sense that the Jacobi operator

$$J_{\Sigma} := \Delta_{\Sigma} + |A_{\Sigma}|^2 + Ric_g(\nu_{\Sigma}, \nu_{\Sigma})$$
 (5)

is invertible with respect to some suitable weighted norms.

What does *suitable* mean? It means **non degenerate**, in the sense that the Jacobi operator

$$J_{\Sigma} := \Delta_{\Sigma} + |A_{\Sigma}|^2 + Ric_g(\nu_{\Sigma}, \nu_{\Sigma})$$
 (5)

is invertible with respect to some suitable weighted norms.

The Jabobi operator arises as the second variation of the area functional, in the sense that

$$A''(\Sigma)[\varphi,\psi] = \int_{\Sigma} \mathcal{J}_{\Sigma} \varphi \psi d\sigma.$$

The noncompact case

A graph $u:\Omega\subset\mathbf{R}^N\to\mathbf{R}$ is minimal if and only if

$$div\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad \text{in } \Omega.$$
 (6)

Conjecture 1 (Bernstein).

Let $u : \mathbb{R}^N \to \mathbb{R}$ be a solution to (6) in dimension $N \leq 7$. Then u is affine.

In dimension N=8, there exists a non affine minimal graph (Bombieri-De Giorgi-Giusti).

Conjecture 2 (De Giorgi).

Let u be a solution to the Allen-Cahn equation

$$-\Delta u = u - u^3$$

in \mathbf{R}^N such that $\partial_{x_N} u > 0$. Let $N \leq 8$. Then u just depends on one euclidean variable, that is

$$u(x) = v_{\star}(x \cdot \nu + a), \qquad \nu \in S^{N-1}, \ a \in \mathbf{R}, \ v_{\star}(t) = \tanh(t/\sqrt{2}).$$

Conjecture 2 (De Giorgi).

Let u be a solution to the Allen-Cahn equation

$$-\Delta u = u - u^3$$

in \mathbf{R}^N such that $\partial_{x_N} u > 0$. Let $N \leq 8$. Then u just depends on one euclidean variable, that is

$$u(x) = v_{\star}(x \cdot \nu + a), \qquad \nu \in S^{N-1}, \ a \in \mathbb{R}, \ v_{\star}(t) = \tanh(t/\sqrt{2}).$$

- ▶ The conjecture is true in dimension N = 2,3 (Ghoussoub-Gui, Ambrosio-Cabré, Farina-Sciunzi-Valdinoci).
- ▶ In dimension $4 \le N \le 8$ (Savin) it is true under the additional assumption that

$$\lim_{x_N\to\pm\infty}u(x',x_N)=\pm1.$$

In dimension N = 9, Del Pino, Kowalczyk and Wei constructed a monotone solution which is not 1D.

Constant mean curvature surfaces

- ► The only compact embedded constant mean curvature surface is the round sphere.
- ► Removing the compactness assumption, the simplest example is the cylinder.
- ▶ Delaunay constructed a family of axially symmetric periodic CMC surfaces, depending on a parameter $\tau \in (0,1]$.

Delaunay surfaces in R³

We rotate the graph of the periodic function $\rho(t)$ around a fixed axes.

$$X(\vartheta, t) = (\rho(t)\cos\vartheta, \rho(t)\sin\vartheta, t), \qquad (\vartheta, t) \in [0, 2\pi) \times \mathbf{R}.$$

Delaunay surfaces in R³

We rotate the graph of the periodic function $\rho(t)$ around a fixed axes.

$$X(\vartheta,t) = (\rho(t)\cos\vartheta, \rho(t)\sin\vartheta, t), \qquad (\vartheta,t) \in [0,2\pi) \times \mathbf{R}.$$

We determine $\boldsymbol{\rho}$ in such a way that the mean curvature is constant, that is

$$\partial_t^2 \rho - \frac{1}{\rho} (1 + \partial_t \rho^2) + (1 + \partial_t \rho^2)^{3/2} = 0.$$

Delaunay surfaces in R³

We rotate the graph of the periodic function $\rho(t)$ around a fixed axes.

$$X(\vartheta,t) = (\rho(t)\cos\vartheta, \rho(t)\sin\vartheta, t), \qquad (\vartheta,t) \in [0,2\pi) \times \mathbf{R}.$$

We determine ρ in such a way that the mean curvature is constant, that is

$$\partial_t^2 \rho - \frac{1}{\rho} (1 + \partial_t \rho^2) + (1 + \partial_t \rho^2)^{3/2} = 0.$$

Proposition 1.

For any $\tau \in (0,1]$, there exists a periodic solution ρ_{τ} of period T_{τ} such that

- $\rho_{\tau}(0) = 1 \sqrt{1 \tau^2}$
- $1 \sqrt{1 \tau^2} \le \rho_{\tau}(t) \le 1 + \sqrt{1 \tau^2}$, for any $t \in [0, T_{\tau}]$.

We are interested in the set $\mathcal{M}_{k,g}$ of complete Alexandrov embedded constant mean curvature surfaces of genus g with k ends, that is

$$\Sigma \cap (\mathbf{R}^3 \backslash B_R) = \cup_{j=1}^k E_j,$$

for some R > 0.

We are interested in the set $\mathcal{M}_{k,g}$ of complete Alexandrov embedded constant mean curvature surfaces of genus g with k ends, that is

$$\Sigma \cap (\mathbf{R}^3 \backslash B_R) = \cup_{j=1}^k E_j,$$

for some R > 0.

- $ightharpoonup \mathcal{M}_{0,g}$ consists of the round sphere.
- $\triangleright \mathcal{M}_{1,g}$ is empty.
- $ightharpoonup \mathcal{M}_{2,g}$ consists of the cylinder and Delaunay surfaces.

Each of the ends is asymptotic to a translated and rotated copy to a Delaunay surface D_{τ_i} , of axes $\mathbf{c}_i \in S^2$.

The radial case

Let $f(u) := u - u^3$. If u is a solution to (1) in \mathbb{R}^N , then $v(x) := u(\varepsilon x)$ solves

$$-\Delta v = f(v) - \delta, \qquad \delta = \varepsilon \ell_{\varepsilon} \qquad \text{in } \mathbf{R}^{N}. \tag{7}$$

If $\delta > 0$ is small enough, then there exist

$$z_{-}(\delta) < -1 < 0 < z_{0}(\delta) < z_{+}(\delta) < 1$$

such that $f(z_i(\delta)) = \delta$, i = 1, 2, 3. It is known (Dancer, Peletier-Serrin) that, if $\delta > 0$ is small enough, then there exists a unique solution v_δ to(7) in \mathbf{R}^N such that

- $ightharpoonup v_{\delta} < z_{+}(\delta) \text{ in } \mathbf{R}^{N},$
- $ightharpoonup v_{\delta}(x)
 ightarrow z_{+}(\delta) \text{ as } |x|
 ightarrow \infty.$

Moreover, this solution is radially symmetric.

Theorem 2 (R.).

Let $\delta \in \left(-\frac{2}{3\sqrt{3}}, \frac{2}{3\sqrt{3}}\right)$ and let u be a solution to the Cahn-Hilliard equation

$$-\Delta u = f(u) - \delta$$

in \mathbb{R}^N . Then $z_-(\delta) \le f(u_\delta) \le z_+(\delta)$. If, in addition, $u > z_0(\delta)$ outside a ball, then

- for $\delta \in \left(-\frac{2}{3\sqrt{3}}, 0\right]$, we have $u \equiv z_{+}(\delta)$.
- ▶ for $\delta \in (0, \frac{2}{3\sqrt{3}})$, we have either $u = v_{\delta}$ or $u \equiv z_{+}(\delta)$. In particular, u is radially symmetric.

The periodic case

Let $\tau \in (0,1)$ and let D_{τ} be the corresponding Delaunay surface in \mathbf{R}^3 . We denote the exterior and the interior of D^{τ} by D_{τ}^{\pm} respectively.

Theorem 3 (Hernández, Kowalczyk).

For $\tau \in (0,1)$ and $\varepsilon > 0$ small enough, there exists a solution u_{ε} to (1) in \mathbf{R}^3 such that

- u_{ε} is periodic in x_3 , of period T_{τ} .
- u_{ε} is radially symmetric in $x' = (x_1, x_2)$.
- $u_{\varepsilon}(x',x_3) \to z_+(\varepsilon \ell_{\varepsilon})$ as $|x'| \to \infty$, uniformly in x_3 and ε .
- $u_{\varepsilon}(x) o \pm 1$ as $\varepsilon o 0$ uniformly on compact sets of $D_{ au}^{\pm}$.

The Jacobi operator

$$J_{D_{\tau}} = \Delta_{D_{\tau}} + |A_{D_{\tau}}|^2$$

of D_{τ} has 6 linearly independent Jacobi fields.

- ▶ the ones related to translations, denoted by Φ_{τ}^{T,e_j} , $1 \leq j \leq 3$;
- ▶ the ones related to rotations about the x_j axes, j = 1, 2, denoted by Φ_{τ}^{R,e_j} , 1 < j < 2;
- lacktriangle the one related to the Delaunay parameter, denoted by $\Phi^D_ au$.

None of these Jacobi fields is in $L^2(D_\tau)$.

Theorem 4 (R.).

Let $\delta \in (0, 2/3\sqrt{3})$ and let u_{δ} be a non constant solution to

$$-\Delta u_{\delta} = f(u_{\delta}) - \delta$$

in \mathbf{R}^N such that $u_\delta>z_0(\delta)$ outside a cylinder $C_{R(\delta)}$, for some $R(\delta)>0$. If u_δ is periodic in x_N , then

- u_{δ} is radially symmetric in x', that is, up to a translation, $u_{\delta}(x) = w_{\delta}(|x'|, x_N)$.
- ▶ u_{δ} is radially increasing, in the sense that $(\nabla u_{\delta}(x), (x', 0)) > 0$, for any $x = (x', x_N) \in \mathbb{R}^N \setminus \{0\}$.

The k-ended case

We consider surfaces $\Sigma \in \mathcal{M}_{k,g}$, with $k \geq 3$, $g \geq 0$.

We say that such a surface is non degenerate if the Jacobi operator

$$J_{\Sigma} = \Delta_{\Sigma} + |A_{\Sigma}|^2$$

has no kernel in $L^2(\Sigma)$.

Not two of the ends are parallel, in the sense that, if $\mathbf{c}_i = \lambda \mathbf{c}_j$, $1 \le i \ne j \le k$, then $\lambda = -1$.

Theorem 5 (Kowalczyk, R.).

Let $g \geq 0$, $k \geq 3$. Let $\Sigma \in \mathcal{M}_{k,g}$ be such that

- Σ is non degenerate,
- Not two of the ends are parallel.

Let Σ^{\pm} be the exterior and the interior of Σ respectively. Then, for $\varepsilon>0$ small enough, there exists a solution u_{ε} to (7) such that $u_{\varepsilon}\to\pm 1$ as $\varepsilon\to 0$ on compact subsets of Σ^{\pm} respectively.

The proof of Theorem 5 We look for a solution of the form u = v + w, where v is an approximate solution and w is a correction.

The proof of Theorem 5 We look for a solution of the form u = v + w, where v is an approximate solution and w is a correction.

We start from the unique solution to the ODE

$$\begin{cases} -v_{\star}'' = v_{\star} - v_{\star}^{3} \\ v_{\star}(0) = 0, \\ \lim_{t \to \pm \infty} v_{\star} = \pm 1, \end{cases}$$
 (8)

that is $v_{\star}(t) = \tanh(t/\sqrt{2})$.

We define the Fermi coordinates $(y,z) \in \Sigma \times \mathbf{R}$ by the relation

$$x = y + z\nu_{\Sigma}(y),$$

in a tubular neighbourhood of the curve.

A first, rough idea could be to put $v(\phi)(x) \simeq v_{\star}(z)$ near Σ .

We define the Fermi coordinates $(y,z) \in \Sigma \times \mathbf{R}$ by the relation

$$x = y + z\nu_{\Sigma}(y),$$

in a tubular neighbourhood of the curve.

A first, rough idea could be to put $v(\phi)(x) \simeq v_{\star}(z)$ near Σ .

Then we set $z=t+\phi(\varepsilon y)$, where ε is small and $\phi:\Sigma\to\mathbf{R}$ is a small shift function.

The approximate solution is $v(\phi)(x) \simeq v_{\star}(t)$. The correction w and the shift function ϕ are the unknowns of the problem, and they are determined by a Lyapunov-Schmidt reduction.

The Lyapunov-Schmidt reduction

We have to solve a nonlinear equation $\mathit{N}(u) = 0$. We look for a solution $u = \mathit{v}(\phi) + \mathit{w}$.

We Taylor-expand

$$0 = N(v(\phi) + w) = N(v(\phi)) + N'(v(\phi))[w] + Q_{v(\phi)}(w).$$

We project along $X:=\ker(N'(v(\phi)))^{\perp}$ and X^{\perp}

$$N'(\nu(\phi))[w] = -\Pi_X \big(N(\nu(\phi)) + Q_{\nu(\phi)}(w) \big)$$
 (9)

$$\Pi_{X^{\perp}}(N(\nu(\phi)) + Q_{\nu(\phi)}(w)) = 0. \tag{10}$$

The correction w is determined solving (9) for any fixed ϕ , exploiting the coercivity of the quadratic form

$$\int_{\Sigma \times \mathbf{R}} |\nabla_y w|^2 + (\partial_t w)^2 + (3v_\star^2 - 1)w^2 \, dy dt$$

on the space of functions satisfying the orthogonality condition

$$\int_{\mathbb{R}} w(y,t)v_{\star}'(t)dt = 0, \qquad \forall y \in \Sigma.$$

The correction w is determined solving (9) for any fixed ϕ , exploiting the coercivity of the quadratic form

$$\int_{\Sigma \times \mathbf{R}} |\nabla_y w|^2 + (\partial_t w)^2 + (3v_\star^2 - 1)w^2 \, dy dt$$

on the space of functions satisfying the orthogonality condition

$$\int_{\mathbb{R}} w(y,t)v'_{\star}(t)dt = 0, \qquad \forall y \in \Sigma.$$

 ϕ is determined solving (10), which is equivalent to a non linear equation of the form

$$J_{\Sigma}\phi = \mathcal{F}_{\varepsilon}(y,\phi),$$

which is solvable thanks to non degeneracy.

Problem

The error obtained by the standard ansatz about the approximate solution is not decaying along the surface.

Solution:

- ▶ along each of the ends we need to add a correction, also determined by a Lyapunov-Schmidt reduction.
- ▶ the decay is guaranteed by the fact that not two of the ends are parallel.

Kowalczyk, M., Rizzi, M. Multiple Delaunay ends solutions of the Cahn-Hilliard equation, accepted by *Communications in Partial differential equa*tions

Rizzi, M. Radial and cylindrical symmetry of solutions to the Cahn-Hilliard equation, submitted to *Calculus of variations and PDEs*.