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Abstract

We present an algorithm for the time-inversion of diffusion–advection
equations, based on the adjoint methodology. Given a final state distri-
bution our main aim is to recover sparse initial conditions, constituted by
a finite combination of Dirac deltas, identifying their location and mass.
We discuss the strengths of the adjoint machinery and the difficulties that
are to be faced, in particular when the diffusivity coefficient or the time
horizon are large.
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1 Introduction

Inverse problems are widely found in many applications in science and engineer-
ing: in acoustics [13, 27], medical imaging [4], geophysics [26], oceanography [28],
machine learning [25], nondestructive testing [10], and many other fields.

The identification of moving pollution sources in either compressible or in-
compressible fluids is a prototypical and relevant example, [16]. In that frame-
work it is natural to assume that the initial condition to be found is a linear
combination of Dirac deltas, whose locations and their corresponding weights
or intensities are to be identified.
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Some work has already been done in this direction. A straight forward idea
is to exploit the sparse nature of the initial condition. In [19], an heuristic
algorithm is introduced to identify the initial sources of the diffusion-advection-
reaction equation. The algorithm is mainly based on a smart area search through
two different procedures: refinement of the mesh in the areas where sources have
been located, while discarding the areas where sources are likely not to exist.
A different approach is taken in [18] where the sparsity of the initial sources
is exploited by performing a `1 minimization through the classical Bregman
iteration. This technique was taken from image restoration where noisy and
blurry images are cleaned up [23]. Another result in this direction can be found
in [5] where the recovery of the initial measures is achieved by minimizing the
Tikhonov regularization with a total variation penalty.

A different approach is presented in [14] where the state constraints and the
optimal control problem are decoupled and optimized separately. In order to
coordinate the two components of the problem, splitting methods are used. In
[15], the efficiency of the alternating direction method of multipliers (ADMM)
is tested for some control problems in two dimensions. Furthermore, in [3] and
alternating optimization using proximal algorithms is presented and in [20] a
parallel forward-backward splitting is used.

The aim of this work is to show that sparse source identification can be also
achieved by means of the optimal control and adjoint methods. We shall discuss
both the strengths of the approach and also its limitations, arising mainly when
the diffusivity is large or in long time horizons.

Optimal control problems with sparsity properties have been widely dis-
cussed earlier. In [6] for elliptic problems and in [7] for parabolic problems, con-
trols with strong sparsity properties are obtained by considering optimal control
problems in spaces of measures. Moreover, in [9] and in the latter version us-
ing finite elements [8], the adjoint methodology for inverse source identification
of problems governed by parabolic equations was introduced. As a novelty,
he optimal control viewpoint was taken and the initial condition considered to
play the role of a control term. In this manner it was proved that the initial
condition can be reached by minimizing a suitable functional that contains the
difference between the solution of the forward problem and the given target.
This methodology was later developed numerically in [24]. Later on, the effi-
ciency of the numerical method was tested for the inverse design of the Burgers
equation in [1]. Furthermore, the method was applied to the sonic-boom mini-
mization problem [2] and to Doswell frontogenesis governed by linear hyperbolic
transport equations in heterogeneous media [22].

The algorithm to be presented in this work for the sparse source identifica-
tion of the linear diffusion-advection equation based on the adjoint methodology
consists of two steps. Firstly, we use the adjoint methodology to identify the
locations of the sources. Secondly, a least squares fitting is applied to find the
corresponding intensities of the sources. In the numerical results section, we
show several test cases, both in 1D and 2D, where the algorithm allows iden-
tifying the sparse initial sources very successfully, even for some heterogeneous
materials or coupled models.

2



An outline of the paper now follows. In section 2, we describe the model
problem and its discretization. The adjoint methodology for identification of
the source locations is presented in section 3 together with its difficulties to find
the corresponding source intensities. In section 4, the least squares fitting to
get the source weights is explained and the complete algorithm is illustrated.
Numerical results both in 1D and 2D are included in section 5 and conclusions
can be found in the last section.

2 Model problem

We consider the numerical approximation of the inverse problem for the linear
advection-diffusion equation,

∂tu− d∆u+ v · ∇u = 0, x ∈ Ω, t ∈ [0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(1)

d > 0 being the diffusivity of the material and v the direction of the advection.
We consider d and v to be constant for simplicity in the coming numerical
simulations. But similar techniques can be applied for variable diffusivity and
velocity fields.

Given a final time T > 0 and a target function u∗ the aim is to identify the
initial condition u0 such that the solution, at time t = T , reaches the target
u∗. Of course, due to the smoothing effect of parabolic equations, this cannot
be done for irregular targets u∗. But whenever u∗ is reachable, by backward
uniqueness we know that the corresponding initial source u∗ is unique (see [11],
[12]).

In order to approximate a reachable target it is sufficient to consider initial
c u0 characterized as a combined set of sparse sources. This means that u0 is a
linear combination of unitary deltas with certain and possibly different weights,
i.e:

u0 =

l∑
i=1

αiδ(xi). (2)

We formulate the inverse problem using optimal control techniques. In par-
ticular, we consider the minimization of the following functional:

J(u0) := J(u(·, 0)) =
1

2

∫
Ω

(u(·, T )− u∗)2dΩ + τ

∫
Ω

|u(·, 0)|dΩ

=
1

2

∫
Ω

(u(·, T )− u∗)2dΩ + τ

l∑
i=1

|αi|. (3)

Note that the first term of the functional J(u0) in (3) is seeking for a initial
condition u0 such that its corresponding u(T ), according to the dynamics de-
scribed by (1), is as close as possible to the target u∗. Additionally, the second
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term of the functional to be minimized (3) ensures that the initial condition u0

that one is looking for, is a L1 function, of minimal norm. More specifically,
this second term of the functional filters out possible regular solutions that can
be given by the first term of the function. It allows solutions including corner
non smooth points.

2.1 Space and time discretization

We now describe a rather general space discretization of the model problem (1).
Letting u : [0, T ]→ Rs where s is the number of grid points on Ω, we can write
a general discretization of the diffusion–advection equation in (1) in a compact
form as:

Mu̇(t) + dAu(t) + vVu(t) = 0. (4)

In order to get a time discretized version of (4), we apply the implicit Euler
method with stepsize ∆t := T/N where N is the total number of time steps.
The numerical approximations to the solution are given by the vectors un ≈
u(tn) ∈ Rs with respect to the index n = i∆t for i = 1, 2, .., N . Therefore, the
fully discrete version of (1) is as follows,

(M + d∆tA + v∆tV)un+1 = Mun. (5)

Note that the general compact from in (5) will hold for any choice of the
spatial discretization method (finite differences - FD, finite elements - FE or
finite volumes - FD). The discretization scheme chosen will only change the
specific entries of the matrices M, A and V. Algorithm 1 summarizes the
numerical solution of the forward diffusion-advection equation.

Algorithm 1 Solution of the forward diffusion-advection equation.

1: procedure ForwardSolution(u, N)
2: for n = 1, 2, .., N do
3: u← (M + d∆tA + v∆tV)\Mu

return u

3 Adjoint methodology

In this section, the classical adjoint methodology that minimizes (3) subject to
the diffusion–advection equation (1) using the gradient descent method is going
to be explained.

First of all, we reformulate the constrained optimization problem (3) sub-
ject to (1) into an unconstrained optimization problem using the Lagrangian
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formulation:

L(u, ψ) =
1

2

∫
Ω

(u(·, T )− u∗)2dΩ + τ

∫
Ω

|u(·, 0)|dΩ

+

∫ T

0

∫
Ω

ψ(−∂tu+ d∆u− v∇ · u)dΩdt,

(6)

with {
u(x, t) = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) on Ω.
(7)

In order to obtain the iterative scheme of the gradient descent method, we
need to calculate the directional derivative δL(u, ψ):

δL(u, ψ) =

∫
Ω

(u(·, T )− u∗)δu(·, T )dΩ + τ

∫
Ω

sign(u(·, 0))u(·, 0)δu(·, 0)dΩ

+

∫ T

0

∫
Ω

ψ(−∂tδu+ d∆δu− v∇ · δu)dΩdt,

(8)

with {
δu = 0 on ∂Ω× [0, T ]

u(·, 0) = δu0 on Ω
(9)

We now integrate by parts the last term in (8), but first of all, let’s split it:∫ T

0

∫
Ω

ψ(−∂tδu+ d∆δu− v∇ · δu)dΩdt

= −
∫ T

0

∫
Ω

ψ∂tδudΩdt+ d

∫ T

0

∫
Ω

ψ∆δudΩdt− v
∫ T

0

∫
Ω

ψ∇ · δudΩdt

(10)

In the first place, we now integrate by parts in time the first term in (10):

−
∫ T

0

∫
Ω

ψ∂tδudΩdt = −
∫

Ω

ψ(·, T )δu(·, T )dΩ +

∫
Ω

ψ(·, 0)δu(·, 0)dΩ

+

∫ T

0

∫
Ω

∂tψδudΩdt.

(11)

In the second place, we now integrate by parts in space twice the second
term in (10):∫ T

0

∫
Ω

ψ∆δudΩdt =

∫ T

0

∫
Ω

ψ(∇ · ∇δu)dΩdt

=

∫ T

0

∫
∂Ω

ψ
∂δu

∂n
dΩdt−

∫ T

0

∫
Ω

∇δu · ∇ψdΩdt

=

∫ T

0

∫
∂Ω

ψ
∂δu

∂n
dΩdt−

∫ T

0

∫
∂Ω

δu
∂ψ

∂n
dΩdt+

∫ T

0

∫
Ω

δu∆ψdΩdt

=

∫ T

0

∫
Ω

δu∆ψdΩdt.

(12)
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where the last equality holds because δu = 0 as stated in (9).
Finally, we now integrate by parts in space once the third term in (10):

−v
∫ T

0

∫
Ω

ψ∇ · δudΩdt = −v
∫ T

0

∫
Ω

ψδudΩdt+ v

∫ T

0

∫
Ω

δu∇ψdΩdt =

∫
Ω

δu∇ψdΩdt,

(13)

where the last equality holds because δu = 0 as stated in (9).
Hence, inserting (11), (12) and (13) into (8) we get

δL(u, ψ) =

∫
Ω

(ψ(·, 0) + τsign(u(·, 0))u(·, 0))δu(·, 0)dΩ

+

∫ T

0

∫
Ω

(∂tψ + d∆ψ + v∇ψ)δudΩdt+

∫
Ω

(u(·, T )− u∗ − ψ(·, T ))δu(·, T )dΩ.

(14)

Finally, (14) can be written in the constrained optimization form with re-
spect to the adjoint variable ψ:

δL(u, ψ) =

∫
Ω

(ψ(·, 0) + τsign(u(·, 0)))δu(·, 0)dΩ, (15)

subject to 
−∂tψ − d∆ψ + v∇ · ψ = 0 on Ω× [0, T ]

ψ = 0 on ∂Ω× [0, T ]

ψ(·, T ) = u(·, T )− u∗ on Ω

(16)

Thus, the adjoint diffusion-advection equation (16) can be discretized using
implicit Euler in the same way as the forward diffusion-advection was discretized
in section 2.1. as summarized in algorithm 2.

Algorithm 2 Solution of the adjoint diffusion-advection equation.

1: procedure AdjointSolution(u, N)
2: for n = 1, 2, .., N do
3: u← (M + d∆tA− v∆tV)\Mu

return u

Now, if we take δu0 = −(ψ0 + τsign(u0)u0) we get the following iterative
scheme:

uk+1
0 = uk0 − ε(ψk

0 + τsign(uk0)uk0) (17)

where ε is the step size of the gradient descent method. The complete gradient
descent procedure using adjoint methodology is presented in algorithm 3.

Figure 1 shows the numerical output of algorithm 3 for a two-dimensional
example. Classical linear finite elements on an structured triangular mesh have
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Algorithm 3 Gradient descent by adjoint methodology

1: procedure GradientDescent(u0, ψ, u∗, TOL, N)
2: while ‖ForwardSolution(u0, N)− u∗‖2 > TOL do
3: u← ForwardSolution(u0, N)
4: ψ ← AdjointSolution(u− u∗, N)
5: u0 ← u0 − ε(ψ + τsign(u0))

return u0

been used to produce these results. The left plots in Figure 1 correspond to the
reference results (given target) and the right plots to the output of algorithm
3. One can rapidly observe that the recovered initial state is far from the
given target. First of all, the gradient descent using the adjoint methodology
does not recover the sparse character of the initial solution. Furthermore, the
recovered maxima are far below from the actual maxima. It is not surprising
that algorithm 3 does not find an sparse initial condition because it comes from
solving the adjoint equation which is basically a diffusive process that smoothes
out its state. Therefore, the adjoint methodology summarized in algorithm 3
finds an initial condition u0 that is outside the sparse ansatz (2). Consequently,
a second procedure is needed to project the obtained non sparse initial condition
into the set of admissible sparse solutions.

In conclusion, algorithm 3 is not a suitable option when searching for linear
combinations of locations and intensities. Nevertheless, one can observe that the
local maxima of the resulting initial condition using algorithm 3 (see Figures 1b
and 1d) fall into the exact locations where the actual initial sources are placed
(see Figures 1a and 1c). Therefore, we can keep those locations and post-process
them to find the corresponding intensities of the initial sources.

4 Source intensities identification

In this section we explain how to find the intensities of the initial sources once
we have identified their locations using the descent gradient by the adjoint
methodology procedure presented in the previous section. Once we have fixed
the locations using algorithm 3, we can solve a least squares problem to get the
corresponding intensities.

In particular, we have to assemble a matrix L ∈ Rs×l where at each column
we have the forward solution obtained using algorithm 1 for a single unitary
delta placed at each of the locations identified by the adjoint algorithm 3. We
then solve the following linear system of equations for the vector of unknowns
α = (α1, α2, ..., αl)

T :

Lα = u∗. (18)

As the matrix L is not square, we solve the corresponding normal equations:

LTLα = LTu∗, (19)
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(a) Reference initial state (front view). (b) Recovered initial state (front view).

(c) Reference initial state (above view). (d) Recovered initial state (above view).

(e) Given target u∗. (f) Recovered final state.

Figure 1: Sources identification using gradient descent by adjoint methodology
in algorithm 3. Left plots correspond to the reference solution (Figures 1a and
1c) and the given target (Figure 1e) and right plots to the output of algorithm
3. Observe that the obtained initial data does not recover the sparse nature
of the reference solution. A second procedure is needed for that. Parameters:
d = 0.05, v = (1, 2), T = 0.1, N = 10, ∆x = 0.0385, τ = ∆x4 and ε = 0.1.
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to find the vector of intensities α.
The complete numerical method for sparse source identification of the linear

diffusion-advection equation under consideration, including the least squares
fitting to find the intensities is summarized in algorithm 4.

Algorithm 4 Adjoint algorithm for sparse source identification

1: procedure SparseIdentification(u∗, TOL, N)
2: u0 = 0, ψ = 0
3: while ‖Su0 − u∗‖2 > TOL do
4: u0 ← GradientDescent(u0, ψ, u

∗, TOL,N)
5: x← LocalMaxima(u0)
6: for i = 1, 2, .., l do
7: L(:, i)← ForwardSolution(δ(xi), N)

8: α = (LTL)\LTu∗

9: u0 ←
∑l

i=1 αiδ(xi)

return u0

5 Numerical results

In this section we present several numerical examples of the sparse source identi-
fication algorithm 4 for the linear diffusion-advection equation introduced in the
previous section. All the numerical results in this work have been produced by
implementing the aforementioned method in MATLAB R2018b on equidistant
structured meshes and using finite elements (FE) and the implicit Euler method
for the space and time discretizations respectively. For the FE discretization,
we use triangular elements distributed as sketched in Figure 2 and the following
pyramidal test functions (for details regarding the FE discretization matrices
check [21])

φk(x, y) =



x+y
∆x − 1, if x = (x, y) ∈ Region 1,

y
∆x , if x ∈ Region 2,

∆x−x
∆x , if x ∈ Region 3,

1− x+y
∆x , if x ∈ Region 4,

∆x−y
∆x , if x ∈ Region 5,
x

∆x , if x ∈ Region 6,
0, otherwise.

(20)

Figure 3 shows a one-dimensional example with three heat sources to be
identified. Left plot shows a comparison between the reference and the recovered
initial condition using algorithm 4. The right plot shows the heat distribution at
the final time T both using the reference and the recovered initial heat sources
shown in the left plot. One can observe that both the locations and intensities
of the heat sources are computed very successfully.
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Figure 2: Sketch of the regions for the pyramidal test functions defined in (20).
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(a) Initial heat sources identification.
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(b) Heat distribution at the final time T .

Figure 3: Sources identification using algorithm 4. Left plot shows a comparison
between the reference and the recovered initial conditions and then right plot a
comparison between the target function and the distribution generated by the
recovered initial heat sources. Parameters: d = 1, v = 0, T = 2, N = 30,
∆x = 12/51, τ = ∆x4 and ε = 0.1.

Figure 4 shows a two-dimensional example with several sources to be iden-
tified. Plots on the left side show the reference initial solution (Figures 4a and
4c) and the given target (Figure 4e). Similarly, plots on the right side show the
recovered initial condition (Figures 4b and 4d) and the distribution at the final
time T produced by the recovered initial sources (Figure 4f). Wind, produced
by the advection term, is moving the initial sources from the bottom left corner
to the upper right corner. By comparing the plots on the right side to the plots
on the left side one can observe that both the locations and the intensities of
the sparse sources are recovered very accurately. However, as usual in inverse
problems, when either the diffusivity d is high or the time window is large the
recovery is way harder and the algorithm fails. Therefore, algorithm 4 applies
for reasonable small diffusivities and time intervals. This is definitely an open
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(a) Reference initial state (front view). (b) Recovered initial state (front view).

(c) Reference initial state (above view). (d) Recovered initial state (above view).

(e) Given target u∗. (f) Recovered final state.

Figure 4: Sources identification using gradient descent by adjoint methodology
in algorithm 4. Left plots correspond to the reference solution (Figures 4a and
4c) and the given target (Figure 4e) and right plots to the output of algorithm 4.
One can observe how the plots on the right side behave as the reference plots on
the left side. Parameters: d = 0.05, v = (3, 3), T = 0.1, N = 10, ∆x = 0.0385,
τ = ∆x4 and ε = 0.1.
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question for future research. The problem is that when the time interval is large
or the diffusivity is high, the solution decays rapidly and the adjoint is not able
to recover that behavior. One option to solve this problem could be to split the
large time interval into smaller subintervals (possibly time adaptive) and apply
the algorithm to each of them. This strategy has two main advantages: the
successful application of the adjoint algorithm in each subinterval and a huge
memory saving as both the solution of the forward and the adjoint problem will
be saved only during the simulation of each subinterval.

Figure 5 shows the evolution of the norm of the functional ‖J(u0)‖2 in (3)
with respect to ∆x for both the 1D and 2D cases shown above in Figures 3 and 4
respectively. One can observe how the iterative algorithm 4 gets a more accurate
numerical approximation when the mesh resolution ∆x decreases. However, the
error evolution is quite slow which tells us that acceleration techniques like
relaxation or preconditioning could be introduced in future research to achieve
a faster iterative behavior. Another option would be to find an alternative to
the gradient descent method like for instance faster gradient descent methods.
In [17], the faster gradient descent method shown advantages with respect to the
classical gradient descent method in the context of inverse problems for image
deblurring and denoising tasks.
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(a) 1D case.
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(b) 2D case.

Figure 5: Norm of the functional ‖J(u0)‖2 in (3) as a function of the mesh
resolution ∆x. Left plot corresponds to the one-dimensional case shown in
figure 3. There ∆x = 1/100, 1/70, 1/50, 1/40, 1/30, 1/20, 1/10, and the total
number of iterations is 5000. Right plot corresponds to the two-dimensional
case shown in figure 4. There ∆x = 1/50, 1/40, 1/30, 1/20, 1/10, and the total
number of iterations is 1000.

We now show in Figure 6 a two-dimensional example with several sources
to be identified in an heterogeneous media. The left half (Ω1 = [0, 1] × [0, 1])
and the right half (Ω2 = [1, 2]× [0, 1]) subdomains are constituted by materials
with different diffusivity constants. Consequently, the dynamics of the problem
behaves differently in each of them. By comparing the plots on the right side
to the plots on the left side one can observe that both the locations and the
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(a) Reference initial state (front view). (b) Recovered initial state (front view).

(c) Reference initial state (above view). (d) Recovered initial state (above view).

(e) Given target u∗. (f) Recovered final state.

Figure 6: Sources identification using gradient descent by adjoint methodology
in algorithm 4 where left half and right half have different material coefficients.
Left plots correspond to the reference solution (Figures 6a and 6c) and the given
target (Figure 6e) and right plots to the output of algorithm 4. Parameters:
d = 0.08 on Ω1 = [0, 1] × [0, 1] and d = 0.05 on Ω2 = [1, 2] × [0, 1], v = (1, 2),
T = 0.1, N = 10, ∆x = 0.0385, τ = ∆x4 and ε = 1.
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(a) Reference initial state (front view). (b) Recovered initial state (front view).

(c) Reference initial state (above view). (d) Recovered initial state (above view).

(e) Given target u∗. (f) Recovered final state.

Figure 7: Sources identification by algorithm 4 where left half is governed by the
heat equation and right half is modelled by the diffusion–advection equation.
Left plots correspond to the reference solution (Figures 7a and 7c) and the given
target (Figure 7e) and right plots to the output of algorithm 4. Parameters:
v = (0, 0) on [0, 1] × [0, 1] and v = (0,−3) on [1, 2] × [0, 1], d = 0.05, T = 0.1,
N = 10, ∆x = 0.0385, τ = ∆x4 and ε = 0.1.
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intensities of the sparse sources are recovered very accurately. However in this
example the difference between the two diffusivities is not very strong. In case of
strong jumps between the subdomains the algorithm (4) will have to be modified
adding a splitting or a domain decomposition method to handle the interaction
between the heterogeneous areas.

Finally, Figure 7 shows a two-dimensional example with several sources to
be identified in a multi-model environment. This means that the left half (Ω1 =
[0, 1]× [0, 1]) and the right half (Ω2 = [1, 2]× [0, 1]) of the domain are modelled
with different equations. In particular, the heat equation is used on Ω1 and
the diffusion–advection equation is used on Ω2. One can observe this difference
between the two model equations in Figures 7e and 7f where the initial sources
on Ω2 move downwards at the same time as they dissipate while the initial
sources on Ω1 only dissipate without displacement. Even in this multi-model
environment, the algorithm 4 is able to recover very accurately the locations
and intensities of the initial sources.

6 Summary and conclusions

We have introduced an algorithm to recover the initial data of the linear diffusion-
advection equation given a certain final target distribution. Our main interest is
to identify moving pollution sources traveling in either a compressible or incom-
pressible fluid and, as a consequence, we assumed that the initial condition is a
linear combination of unitary deltas indicating the location of the sources, with
their weights representing the intensity of the sources. In that context, we have
presented an algorithm in two steps. Firstly, we use the adjoint methodology to
identify the locations of the sources. Secondly, a least squares fitting is applied
to find the corresponding intensities of the sources.

We have shown several test cases both in 1D and 2D where the algorithm
identifies the initial sources very successfully even in heterogeneous media. How-
ever, a wide range of future directions are to be investigated. For instance, more
research needs to be done in the case of strong jumps in the material coefficients.
When the diffusivities of the coupled materials are very different from each other,
the method presented fails. A possibility would be to combine it with splitting
methods in order to parallelize the computations at each of the subdomains. An-
other future direction is would be to find out the maximum final time at which
the recovery is still feasible. This is highly related to the diffusivity parameter
as high diffusivities allow for a shorter final time that low diffusivities. Finally,
it would be of interest to use the algorithm for more complicated geometries or
nonlinear models.
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