ong-time behavio

Numerical Simulation

Summary 00

Dynamics and control for the "Guidance by repulsion" model

Dongnam Ko

DeustoTech, Universidad de Deusto

Joint work with Enrique Zuazua

VIII Partial differential equations, optimal design and numerics

August 22, 2019

0000000	000000	00000000	000000000	00

1 The guidance-by-repulsion ODE model

- 2 Control of the guidance-by-repulsion model
- **3** Long-time behavior of the model
- 4 Numerical Simulations on optimal control strategies

5 Summary

Guidance by repulsion			
Table of Co	ntents		

1 The guidance-by-repulsion ODE model

- 2 Control of the guidance-by-repulsion model
- 3 Long-time behavior of the model
- 4 Numerical Simulations on optimal control strategies

5 Summary

Guidance by repulsion				
000000	000000	0000000	00000000	00

Motivation: Shepherd dogs and sheep

The number of individuals is small, yet the interaction dynamics and control strategies is complex

We consider the "guidance by repulsion" model based on the two-agents framework: the driver tries to drive the evader.

The drivers want to control the evaders:

- 1 Gathering of the evaders,
- 2 Driving the evaders into a desired area.

Figure: Picture of Border Collie [from Wikipedia] and the diagram of the model

Guidance by repulsion ○○●○○○○ ontrol "guidance-repulsion" 000000 ong-time behavior

Numerical Simulation

Summary 00

Motivation: "Guidance by repulsion" model

R. Escobedo, A. Ibañez and E.Zuazua, Optimal strategies for driving a mobile agent in a "guidance by repulsion" model, Communications in Nonlinear Science and Numerical Simulation, 39 (2016), 58-72.

[R. Escobedo, A. Ibañez, E. Zuazua, 2016] suggested a **guidance by repulsion** model based on the two-agents framework: *the driver*, which tries to drive the *evader*.

- The driver follows the evader but cannot be arbitrarily close to it (because of chemical reactions, animal conflict, etc).
- **2** The evader moves away from the driver but doesn't try to escape beyond a not so large distance.
- **3** The driver is faster than the evader.
- At a critical short distance, the driver can display a **circumvention maneuver** around the evader, forcing it to change the direction of its motion.
- **5** By adjusting the circumvention maneuver, the evader can be driven towards a desired target or along a given trajectory.

Guidance by repulsion		
000000		

One sheep + one dog + Circumvention control

The control k(t) is chosen in feedback form to align the gate, the sheep and the dog.

Inspired by this paper, the guidance-by-repulsion model for $\mathbf{u}_d, \mathbf{u}_e \in \mathbf{R}^2$ can be written with control functions $\kappa^p(t)$ and $\kappa^c(t)$:

$$\begin{cases} \dot{\mathbf{u}}_{d} = \mathbf{v}_{d}, \quad \dot{\mathbf{u}}_{e} = \mathbf{v}_{e}, \quad \mathbf{u} = \mathbf{u}_{d} - \mathbf{u}_{e}, \\ m_{d} \dot{\mathbf{v}}_{d} = -\kappa^{p}(t)\mathbf{u} + \kappa^{c}(t)\mathbf{u}^{\perp} - \nu_{d}\mathbf{v}_{d}, \\ m_{e} \dot{\mathbf{v}}_{e} = -f_{e}(|\mathbf{u}|)\mathbf{u} - \nu_{e}\mathbf{v}_{e}, \\ \mathbf{u}_{d}(0) = \mathbf{u}_{d}^{0}, \quad \mathbf{u}_{e}(0) = \mathbf{u}_{e}^{0}, \quad \mathbf{v}_{d}(0) = 0, \quad \mathbf{v}_{e}(0) = 0, \end{cases}$$
(1)

where $f_e: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is the strength of repulsion, for example, $f_e(r) = r^{-2}$.

Studies on the repulsive interactions

In [R. Escobedo, A. Ibañez, E. Zuazua, 2016], they considered bang-bang type controls with open-loop and feed-back strategies.

Similar consideration have been addressed with repulsive interactions in control theory:

- Defender-intruder strategy : [Wang, Li, 2015],
- Hunting strategy of wolves : [Muro, Escobedo, Spector, Coppinger, 2011 and 2014],
- Sheep-gathering problem : Well-posedness and Maximal principle of optimal control problems [Burger, Pinnau, Roth, Totzeck, Tse, 2016] and its simulations [Pinnau, Totzeck, 2018].

Guidance by repulsion				
0000000	000000	0000000	00000000	00

Guidance-by-repulsion model with many individuals

Let $\mathbf{u}_{dj}, \mathbf{u}_{ei} \in \mathbb{R}^2$ are positions of drivers and evaders for $i = 1, \dots, N$ and $j = 1, \dots, M$. For many evaders, we assume that the drivers follow the barycenter of evaders,

$$\mathbf{u}_{ec} := \frac{1}{N} \sum_{k=1}^{N} \mathbf{u}_{ek},$$

then the dynamics can be described by

$$\begin{cases} \ddot{\mathbf{u}}_{dj} = -\kappa_{j}^{p}(t)(\mathbf{u}_{dj} - \mathbf{u}_{ec}) + \kappa_{j}^{c}(t)(\mathbf{u}_{dj} - \mathbf{u}_{ec})^{\perp} \\ -\frac{1}{M}\sum_{k=1}^{M}\psi_{d}(|\mathbf{u}_{dk} - \mathbf{u}_{dj}|)(\mathbf{u}_{dk} - \mathbf{u}_{dj}) - \nu_{dj}\dot{\mathbf{u}}_{dj}, \\ \ddot{\mathbf{u}}_{ei} = -\frac{1}{M}\sum_{j=1}^{M}f_{e}(|\mathbf{u}_{dj} - \mathbf{u}_{ei}|)(\mathbf{u}_{dj} - \mathbf{u}_{ei}) \\ -\frac{1}{N}\sum_{k=1}^{N}\psi_{e}(|\mathbf{u}_{ek} - \mathbf{u}_{ei}|)(\mathbf{u}_{ek} - \mathbf{u}_{ei}) - \nu_{ei}\dot{\mathbf{u}}_{ei}, \\ \mathbf{u}_{dj}(0) = \mathbf{u}_{dj}^{0}, \ \mathbf{u}_{ei}(0) = \mathbf{u}_{ei}^{0}, \ \dot{\mathbf{u}}_{dj}(0) = \mathbf{v}_{dj}^{0}, \ \dot{\mathbf{u}}_{ei}(0) = \mathbf{v}_{ei}^{0}. \end{cases}$$

Guidance by repulsion		
000000		

A simulation

Figure: Trajectories of 4 drivers and 1024 evaders towards the point (4,4)

Guidance by repulsion	Control "guidance-repulsion"	Long-time behavior	Numerical Simulations	
0000000	●00000	00000000	000000000	

Table of Contents

- 1 The guidance-by-repulsion ODE model
- 2 Control of the guidance-by-repulsion model
- 3 Long-time behavior of the model
- 4 Numerical Simulations on optimal control strategies

5 Summary

Guidance by repulsion 0000000 Control "guidance-repulsion"

Long-time behavio 00000000 Numerical Simulations

Summary 00

One driver and one evader: symmetric dissipation

To analyze the relative position, we assume the symmetric dissipation

$$u_e/m_e = \nu_d/m_d =: \nu > 0,$$

and we first consider constant controls

$$\kappa^{p}(t) \equiv 1, \quad \kappa^{c}(t) \equiv \kappa \in \mathbb{R}.$$

Then, $\mathbf{u} := \mathbf{u}_d - \mathbf{u}_e$ follows

$$\ddot{\mathbf{u}} + f(|\mathbf{u}|)\mathbf{u} + \nu \dot{\mathbf{u}} = \kappa \mathbf{u}^{\perp}.$$

where the interaction force $f(r) = 1 - f_e(r)$ deduces the potential:

$$P(r):=\int_{r_c}^r sf(s)ds, \quad r_c\geq 0.$$

u follows the damped oscillator under a central potential $P(|\mathbf{u}|)$ with control κ . Hence, we assume

$$P\geq 0, \quad P(0)=\infty \quad ext{and} \quad P\sim rac{\gamma_m}{2}|\mathbf{u}|^2 ext{ as } r
ightarrow \infty.$$

Control "guidance-repulsion"		
00000		

Asymptotic motion

For the following cases, periodic (stationary) solutions of \boldsymbol{u} arise:

• Pursuit mode: $\kappa^{p}(t) \equiv 1$ and $\kappa^{c}(t) \equiv 0$:

$$\mathbf{u}(t) = \mathbf{u}_* \in \mathbb{R}^2$$
 and $\mathbf{v}(t) = (0,0)$ with $|\mathbf{u}_*| = r_c,$

where the driver and evader behave uniform linear motions,

$$\mathbf{u}_\ell(t) = -rac{f_d(\mathbf{u}_*)\mathbf{u}_*}{
u}t + \mathbf{u}_\ell(0), \quad \ell=d,e.$$

• Circumvention mode, $\kappa^{p}(t) \equiv 1$ and $\kappa^{c}(t) \equiv \kappa \neq 0$:

$$\mathbf{u}(t) = r_{p}\left(\cos\left(\frac{\kappa}{\nu}t\right), \sin\left(\frac{\kappa}{\nu}t\right)\right),$$

where the driver and evader have rotational motions on circles centered at the same point,

$$\mathbf{u}_{\ell}(t) = r_{\ell}\left(\cos\left(\frac{\kappa}{\nu}t + \phi_{\ell}\right), \sin\left(\frac{\kappa}{\nu}t + \phi_{\ell}\right)\right) + \mathbf{u}^{*}, \quad \mathbf{u}^{*} \in \mathbb{R}^{2}, \ \ell = d, e.$$

Guidance by repulsion 0000000 Control "guidance-repulsion"

Long-time behavior

Numerical Simulatio

Summary 00

Off-Bang-Off control of the evader

Combining these two modes, we can construct an Off-Bang-Off control: choose the direction by rotations in the circumvention mode, and drive the evaders to the target in the pursuit mode.

Theorem [K.-Zuazua (preprint)]

Let f(r) be as before. If $\mathbf{u}(0) \neq (0,0)$, then for any target point $\mathbf{u}_f \in \mathbb{R}^2$, there exist t_1 , t_2 , t_f and κ such that $\kappa^p(t) \equiv 1$ and

$$\kappa^{c}(t) = egin{cases} \kappa & ext{if} \quad t \in [t_1, t_2], \ 0 & ext{if} \quad t \in [0, t_1) \cup (t_2, t_f] \end{cases}$$
 satisfy $\mathbf{u}_{e}(t_f) = \mathbf{u}_f.$

Control "guidance-repulsion"		
000000		

To control the final position of the evader, we need the following lemmas.

Lemma : Well-posedness of the model with unbounded forces

Suppose that $\kappa^{p}(t)$ and $\kappa^{c}(t)$ are bounded and $\limsup_{t\to\infty} |\kappa^{c}(t)| < \nu \sqrt{\gamma_{m}}$. Then, the relative position $\mathbf{u}(t)$ does not hit (0,0) or blow-up in a finite time. Moreover, if controls are constant, then $\mathbf{u}(t)$ is bounded.

Lemma : Global stability to reference states

The positions $\mathbf{u}_{d}(t)$ and $\mathbf{u}_{e}(t)$ converge exponentially if $\kappa^{p}(t) \equiv 1$, $\kappa^{c}(t) \equiv \kappa$ and $\kappa < \nu \sqrt{\gamma_{m}}$:

- If $\kappa = 0$, then $\mathbf{u}_d(t)$ and $\mathbf{u}_e(t)$ tend to linear motions.
- If $|\kappa| > 0$, then $\mathbf{u}_d(t)$ and $\mathbf{u}_e(t)$ tend to rotational motions.

By combining these asymptotic steady states, we may prove the controllability of the evader's position to any desired point.

Control "guidance-repulsion"		
00000		

Since we can apply the Off-Bang-Off controls to any nonsingular initial data, we may use it to pass multiple target points:

Figure: A trajectory of the evader which passes near points (3,3), (4.5,5), (6,1), (9,3), (7.5,5) and (6,7) denoted by black boxes.

This can be done by turning on and off $\kappa^{c}(t)$ using two control modes, where the dynamics converges to the corresponding steady state ('rotational motion' and 'linear motion') in a short time.

		Long-time behavior ●0000000	
Table of Cor	ntents		

- 1 The guidance-by-repulsion ODE model
- 2 Control of the guidance-by-repulsion model
- **3** Long-time behavior of the model
- 4 Numerical Simulations on optimal control strategies
- 5 Summary

Guidance by repulsion 0000000 Control "guidance-repulsion"

Long-time behavior

Numerical Simulations

Summary 00

Long-time behavior of a linear system

We want to see the asymptotic stability along time from the energy method. If the nonlinearity f(r) is a constant, it became a linear model,

$$\ddot{\mathbf{u}} + \mathbf{u} + \nu \dot{\mathbf{u}} = \kappa \mathbf{u}^{\perp}, \quad \mathbf{u} \in \mathbb{R}^2,$$

which is the damped harmonic oscillator with an additional perpendicular (circumvention) interaction. We want to know when \mathbf{u} decays to (0,0).

The standard energy

$$E(t) := rac{1}{2}(|\mathbf{u}|^2 + |\mathbf{v}|^2), \quad \mathbf{v} = \dot{\mathbf{u}},$$

is no more non-increasing from the perpendicular term $\kappa \mathbf{u}^{\perp}$.

$$\dot{E}(t) = -\nu |\mathbf{v}|^2 + \kappa \mathbf{u}^{\perp} \cdot \mathbf{v}.$$

However, we may use hypocoercivity theory¹ to get a proper Lyapunov function. In terms of $\mathbf{x} = (\mathbf{u}, \mathbf{v})$, the equation is represented by a matrix form:

$$\dot{\mathbf{x}} + A\mathbf{x} + B\mathbf{x} = K\mathbf{x},$$

where the matrices are defined by

Then, we have

$$\dot{E}(t) = \mathbf{x} \cdot \dot{\mathbf{x}} = \mathbf{x} \cdot (-A - B + K)\mathbf{x} = -\mathbf{x} \cdot B\mathbf{x} + \mathbf{x} \cdot K\mathbf{x},$$

Then, so that we may add the following components to fix the energy:

$$|B\mathbf{x}|^2 = \nu |\mathbf{v}|^2, \quad B\mathbf{x} \cdot BA\mathbf{x} = \nu \mathbf{u} \cdot \mathbf{v}, \quad \mathbf{x} \cdot K\mathbf{x} = \kappa \mathbf{u}^{\perp} \cdot \mathbf{v} \quad \text{and} \quad K\mathbf{x} \cdot K\mathbf{x} = \kappa^2 |\mathbf{u}|^2.$$

¹[C. Villani, 2009, MEM AMS] and [K. Beauchard, E. Zuazua, 2011, ARMA]

	Long-time behavior	
	0000000	

In short, a perturbed energy $F_+(t)$,

$$F_{+}(t) = E(t) + \frac{\nu}{2} \left(\frac{\nu}{2} |\mathbf{u}|^{2} + \mathbf{u} \cdot \dot{\mathbf{u}}\right),$$

does not increase along time,

$$egin{aligned} &rac{d}{dt} F_+(t) = -rac{
u}{2} |\mathbf{v}|^2 - rac{
u}{2} |\mathbf{u}|^2 + \kappa (\mathbf{u}^\perp \cdot \mathbf{v}) \ &\leq -rac{1}{2} (
u - \kappa) (|\mathbf{u}|^2 + |\mathbf{v}|^2) = -(
u - \kappa) E(t). \end{aligned}$$

Decaying property for small κ

 $\mathbf{u}(t)$ decays exponentially if $|\kappa| < \nu$.

For the critical case, $|\kappa| = \nu$, we have another function:

$$F_{\kappa}(t) = E(t) - rac{\kappa}{
u} \mathbf{u}^{\perp} \cdot \mathbf{v} \quad ext{and} \quad \dot{F}_{\kappa}(t) = -
u \left| \mathbf{v} - rac{\kappa}{
u} \mathbf{u}^{\perp}
ight|^2 \leq 0,$$

Periodic motion for critical κ

When $\kappa = \pm \nu$, $\mathbf{u}(t) = a(\cos \pm t, \sin \pm t)$, is a periodic solution.

	Long-time behavior	

The observed dynamics

From the relative position \mathbf{u} , we can recover partial information for the positions \mathbf{u}_d and \mathbf{u}_e .

Figure: The trajectory of the driver and evader with $\kappa = 1$ and various ν : $\nu = 1$ (left), 2 (middle), and 3 (right).

This analysis can be used for our nonlinear guidance-repulsion model in order to see the long-time behavior.

	Long-time behavior	
	00000000	

Long-time behavior of the nonlinear model

Now, we get back to the guidance-by-repulsion model.

The equation of the relative position **u** with constant control $\kappa^{p}(t) \equiv 1$ and $\kappa^{c}(t) \equiv \kappa$,

$$\ddot{\mathbf{u}} + f(|\mathbf{u}|)\mathbf{u} + \nu \dot{\mathbf{u}} = \kappa \mathbf{u}^{\perp}, \quad \mathbf{u} \in \mathbf{R}^2,$$

is the damped oscillator with nonlinear potential and an external force.

Here, the standard energy,

$$\mathsf{E}(t):=rac{1}{2}|\mathbf{v}|^2+\mathsf{P}(|\mathbf{u}|),$$

may increase due to the perpendicular term $\kappa \mathbf{u}^{\perp}$.

$$\begin{split} \dot{E}(t) &= \mathbf{v} \cdot \dot{\mathbf{v}} + f(|\mathbf{u}|)\mathbf{u} \cdot \dot{\mathbf{u}} \\ &= \mathbf{v} \cdot (-f(|\mathbf{u}|)\mathbf{u} - \nu \mathbf{v} + \kappa \mathbf{u}^{\perp}) + f(|\mathbf{u}|)\mathbf{u} \cdot \mathbf{v} \\ &= -\nu |\mathbf{v}|^2 + \kappa \mathbf{u}^{\perp} \cdot \mathbf{v}. \end{split}$$

	Long-time behavior	
	00000000	

We use the same function as for the linear model:

$$L_{\pm}(t) = E(t) \pm \frac{\nu}{2} (\frac{\nu}{2} |\mathbf{u}|^2 + \mathbf{u} \cdot \mathbf{v}).$$

Then, for example, the time derivative of $L_{-}(t)$ is

$$\dot{L}_{-}(t)\leq -rac{
u}{2}|\mathbf{v}|^2+rac{
u}{2}\left(f(|\mathbf{u}|)+rac{\kappa^2}{
u^2}
ight)|\mathbf{u}|^2,$$

which is nonpositive if $|\mathbf{u}|$ is close to 0.

On the other hand, the boundedness of \mathbf{u} can also be derived from

$$L_{\kappa}(t) = E(t) - rac{\kappa}{
u} \mathbf{u}^{\perp} \cdot \mathbf{v} \quad ext{and} \quad \dot{L}_{\kappa}(t) = -
u \left| \mathbf{v} - rac{\kappa}{
u} \mathbf{u}^{\perp} \right|^2 \leq 0,$$

which is always nonpositive.

	Long-time behavior	
	0000000	

To control the final position of the evader, we need the following lemmas.

Lemma : Well-posedness of the model with unbounded forces

Suppose that $\kappa^{p}(t)$ and $\kappa^{c}(t)$ are bounded and $\limsup_{t\to\infty} |\kappa(t)| < \nu \sqrt{\gamma_{m}}$. Then, the relative position $\mathbf{u}(t)$ does not hit (0,0) or blow-up in a finite time. Moreover, if controls are constant, then $\mathbf{u}(t)$ is bounded.

Lemma : Global stability to reference states

The positions $\mathbf{u}_d(t)$ and $\mathbf{u}_e(t)$ converge to the steady states asymptotically if $\kappa^p(t) \equiv 1$, $\kappa^c(t) \equiv \kappa$ and $\kappa < \nu \sqrt{\gamma_m}$:

- If $\kappa = 0$, then $\mathbf{u}_d(t)$ and $\mathbf{u}_e(t)$ tend to linear motions.
- If $0 < |\kappa| < \nu \sqrt{\gamma_m}$, then $\mathbf{u}_d(t)$ and $\mathbf{u}_e(t)$ tend to rotational motions.

By combining these asymptotic steady states, we may prove the controllability of the evader's position to any desired point.

		Numerical Simulations	
Table of Co	ntonto		

- 1 The guidance-by-repulsion ODE model
- 2 Control of the guidance-by-repulsion model
- **3** Long-time behavior of the model
- 4 Numerical Simulations on optimal control strategies

5 Summary

au

Optimal control strategies

The off-bang-off controls can drive the evaders. How about optimal controls?

For the cost function, we suggest to minimize the final position error with the circumvention cost and the final time:

$$J(\kappa^{p}(\cdot),\kappa^{c}(\cdot)) = \frac{1}{N}\sum_{i=1}^{N}|\mathbf{u}_{ei}(t_{f})-\mathbf{u}_{f}|^{2}dt + \frac{\delta_{1}}{M}\sum_{j=1}^{M}\int_{0}^{t_{f}}|\kappa_{j}^{c}(t)|^{2}dt + \delta_{2}t_{f},$$

where \mathbf{u}_{ei} , i = 1, ..., N is the positions of the evaders, $\kappa_j^c(t)$ is the circumvention controls for j = 1, ..., M, \mathbf{u}_f is the target point and t_f is the final time.

iuidance by repulsion

ontrol "guidance-repulsion

Long-time behavio

Numerical Simulations

Summary 00

Optimal control minimizing running cost

This is an Off-Bang-Off control with $t_1 = 0$ and $t_2 = t_f$, the constant control:

Figure: Diagrams for the constant control leading to $\mathbf{u}_e(t_f) \simeq (-1, 1)$ when initially $\mathbf{u}_e^0 = (0, 0)$, $\mathbf{u}_d^0 = (-3, 0)$ and zero velocities.

Guidance by repulsion 0000000 ontrol "guidance-repulsion

ong-time behavio

Numerical Simulations

Summary 00

Optimal control minimizing running cost

When we consider the circumvention cost only, then

Figure: Diagrams for the control minimizing circumvention leading to $\mathbf{u}_e(t_f) \simeq (-1, 1)$ when initially $\mathbf{u}_e^0 = (0, 0)$, $\mathbf{u}_d^0 = (-3, 0)$ and zero velocities.

Guidance by repulsion 0000000 Control "guidance-repulsion

Long-time behavio 00000000 Numerical Simulations

Summary 00

Optimal control minimizing driving time

If we minimize the final time, then we need stronger circumvention, but it shares the main idea: 'rotate and then drive'.

Figure: Diagrams for the control minimizing driving time leading to $\mathbf{u}_e(t_f) \simeq (-1, 1)$ when initially $\mathbf{u}_e^0 = (0, 0)$, $\mathbf{u}_d^0 = (-3, 0)$ and zero velocities.

	Numerical Simulations	
	000000000	

Feedback control mimicking the optimal control

From this idea, we may construct feedback control:

$$\kappa_j^c(t) = -\overline{\kappa}^c \frac{(\mathbf{u}_f - \mathbf{u}_{ec}) \cdot (\mathbf{u}_{dj} - \mathbf{u}_{ec})^{\perp}}{|\mathbf{u}_f - \mathbf{u}_{ec}| \cdot |\mathbf{u}_{dj} - \mathbf{u}_{ec}|}, \quad \overline{\kappa}^c = 3, \quad j = 1, 2, \cdots.$$

Figure: Diagrams for the feedback control leading to $\mathbf{u}_e(t_f) \simeq (-1, 1)$ when initially $\mathbf{u}_e^0 = (0, 0)$, $\mathbf{u}_d^0 = (-3, 0)$ and zero velocities.

 Guidance by repulsion
 Control "guidance-repulsion"
 Long-time behavior
 Numerical Simulations
 Summar

 0000000
 0000000
 0000000
 0000000
 000
 000

The effect of the number of evaders

If the evaders are gathered initially, the dynamics are similar to the one evader case, as we have one fat evader.

Figure: Trajectories of five evaders with a bang-off control $\kappa(t)$.

$$f_e(r) = rac{1}{r^2}, \quad \psi_d(r) = -rac{1}{2r^4} \quad ext{and} \quad \psi_e(r) = 10\left(rac{(0.1)^2}{r^2} - rac{(0.1)^4}{r^4}
ight).$$

	Numerical Simulations	
	000000000	

Feedback for many drivers and evaders

Figure: Trajectories, diameter, distance and control for the feedback control functions.

	Numerical Simulations	
	00000000	

Trapping problem?

Figure: Optimal control leading to (1,1) which traps the evaders at the final time.

		Summary
		0

Table of Contents

- 1 The guidance-by-repulsion ODE model
- 2 Control of the guidance-by-repulsion model
- 3 Long-time behavior of the model
- 4 Numerical Simulations on optimal control strategies

5 Summary

		Summary
		00
_		
\mathbf{C}		

Summary

The guidance-by-repulsion problem is a bi-linear second-hand control on partial states. (Null-controllability is trivially false)

In summary, one-driver and one-evader model with good assumptions (symmetric dissipation, constant control, potential condition) leads to the controllability of the evader's position.

THANK YOU FOR YOUR ATTENTION!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 694126-DYCON).

