Large-time dynamics of the particle and kinetic Kuramoto models with frustration

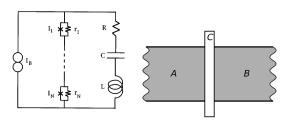
Dongnam Ko

Seoul National University

KSIAM 2018 Spring Conference

May 26, 2018

Array of Josephson junctions



Josephson junctions shunted in parallel by an inductor-capacitor-resistor load

Equation of currents

$$\begin{split} \frac{\hbar}{2er_j}\dot{\phi}_j + I_j\sin\phi_j + \dot{Q} &= I_B, \quad j = 1,\cdots,N \\ L\ddot{Q} + R\dot{Q} + C^{-1}Q &= \frac{\hbar}{2e}\sum_{k=1}^N\dot{\phi}_k. \end{split}$$

Kuramoto model with frustration

Averaging on $I_j = \bar{I}(1 + \varepsilon \eta_j)$, $r_j = \bar{r}(1 + \varepsilon \mu_j)$ leads to the following equations up to first order of ε .

$$\dot{\theta}_j = \Omega_j + \frac{K}{N} \sum_{k=1}^N \sin(\theta_k - \theta_j + \alpha), \quad t > 0,$$

where

$$K = \frac{N\bar{r}\bar{\omega}(\frac{2e}{\hbar}\bar{r}I_B - \bar{\omega})}{[(L\bar{\omega}^2 - C^{-1})^2 + \bar{\omega}^2(R + N\bar{r})^2]^{1/2}},$$

$$\cos \alpha = \frac{L\bar{\omega}^2 - C^{-1}}{[(L\bar{\omega}^2 - C^{-1})^2 + \bar{\omega}^2(R + N\bar{r})^2]^{1/2}}.$$

This equation is known as the Kuramoto model [Wiesenfeld, Colet, Strogatz (1998)].

Goal of this talk

Today, I would like to address emergent dynamics of the Kuramoto model with frustrations via analysis and numerics.

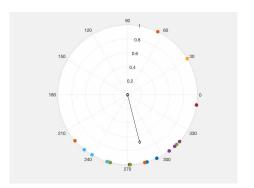
- Synchronization on small frustration ($|\alpha| \ll 1$)
- **2** Simulations for subcritical frustrations ($|\alpha| < \pi/2$)
- Solitary waves under critical frustration ($\alpha = \pi/2$)

Kuramoto model with frustration

Let $\theta_i(t) \in \mathbb{T}$ be the phase of the *j*-th Kuramoto oscillator, then

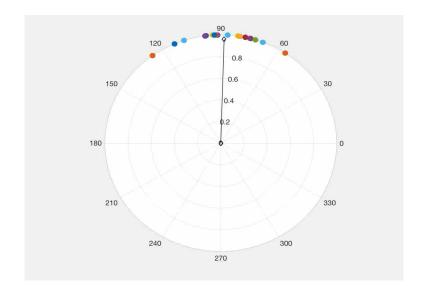
$$\dot{\theta}_j = \Omega_j + \frac{K}{N} \sum_{k=1}^N \sin(\theta_k - \theta_j + \alpha), \quad t > 0.$$

We may define the real order parameter R to see the synchronization.



$$R = \frac{1}{N} \Big| \sum_{j=1}^{N} e^{\theta_j \sqrt{-1}} \Big|$$

Kuramoto model with frustration ($|\alpha| < \pi/2$)



Synchronization result ($\alpha = 0$)

Synchronization Theorem [Ha, Kim, Ryoo (2016)]

Suppose that natural frequencies are distributed and initial configuration satisfy

$$R^0 = \frac{1}{N} \Big| \sum_k e^{\mathrm{i} \theta_k^0} \Big| > 0, \quad \theta_j^0 \neq \theta_k^0, \quad 1 \leq j \neq k \leq N.$$

Then there exists a phase-locked state Θ^{∞} and a constant $K_{\infty} > 0$ such that if $K \geq K_{\infty}$, then the solution goes to Θ^{∞} ,

$$\lim_{t\to\infty}||\Theta(t)-\Theta^{\infty}||_{\ell^{\infty}}=0.$$

Main idea : The model is a gradient flow on \mathbb{R}^N .

- 1) Monotonicity of R,
- 2) Existence of positively invariant domain,
- 3) Linearization near equilibrium.

Synchronization on small frustration $(\alpha \ll 1)$

Synchronization Theorem [Ha, K., Zhang (2018) SIAM J Appl Dyn Syst.]

Let Θ be a solution with initial data Θ^0 satisfying conditions:

$$|\alpha| < \arctan\left(\frac{1}{2\sqrt{N}}\right), \quad R^0 > \frac{1}{N} + \frac{\cos\alpha + \sin|\alpha|}{1 + \cos\alpha}, \quad \theta_j^0 \neq \theta_k^0 \text{ for all } j \neq k.$$

Then there exists a phase-locked state Θ^{∞} such that the solution goes to Θ^{∞} ,

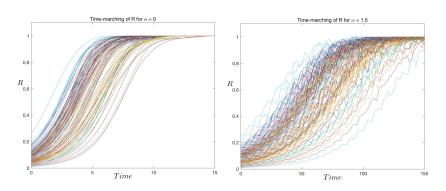
$$\lim_{t\to\infty}||\Theta(t)-\Theta^{\infty}||_{\ell^{\infty}}=0.$$

Main idea: This model is no longer a gradient flow.

- 1) Existence of lower bounds of R,
- 2) Existence of positively invariant domain for large R,
- 3) Linearization near equilibrium.

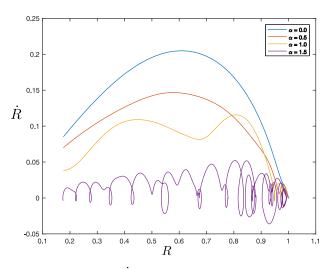
Simulations along frustration

Dynamics of R for $\alpha = 0, 1.5$



Monotonicity breaks for $\alpha \neq 0$.

Simulations along frustration



Phase diagram $R-\dot{R}$ graph for each $\alpha=0,0.5,1.0,1.5$

Sketch of proof ($\alpha \ll 1$)

Existence of lower bound of *R*

For any positive odd k < N, we have

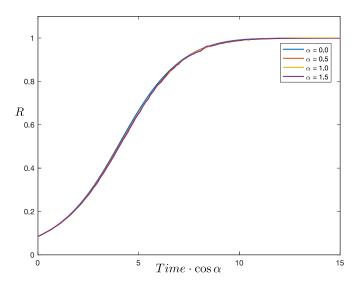
$$\left.\dot{R}\right|_{R=1-k/N}>0.$$

Sketch of proof

Equation can be described as

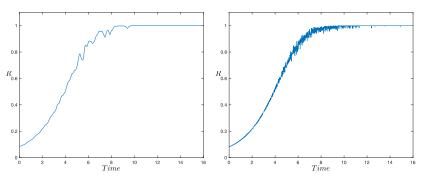
$$\dot{\theta}_{j} = K\cos\alpha \underbrace{\frac{1}{N} \sum_{k=1}^{N} \sin(\theta_{k} - \theta_{j})}_{\text{Synchronization term}} + K\sin\alpha \underbrace{\frac{1}{N} \sum_{k=1}^{N} \cos(\theta_{k} - \theta_{j})}_{\text{Wave-generating term}}.$$

Simulations along frustration



Averages of order parameter R on $\alpha = 0.0, 0.5, 1.0, 1.5$.

Simulations near critical points



Order parameter R for $\alpha = \pi/2 - 1, \ \pi/2 - 0.001$

Summary for subcritical frustration ($|\alpha| < \pi/2$)

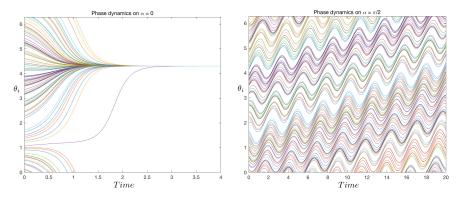
Remarks

- Synchronization can be proved similarly on small frustration.
- Synchronization is observed for generic initial data.

Difficulties

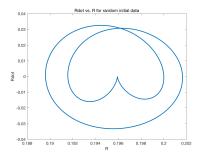
- Simulation near $\alpha=\pi/2$ needs smaller time steps and large final time.
- ullet Computational costs depend on N^2 from nonlocal interactions.

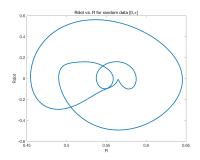
Kuramoto model with frustration ($|\alpha| = \pi/2$)



Phases along time, left : $\alpha = 0$, right : $\alpha = \pi/2$.

Simulations along frustration





Phase diagram $R - \dot{R}$ graph for $\alpha = \pi/2$

Questions

- Are there nontrivial periodic solutions?
- Is every nontrivial solution periodic? Numerics says "Yes", but...

Integrability of the system for identical oscillators

At $\alpha = \pi/2$, the model reduces to,

$$\dot{\theta}_j = \frac{1}{N} \sum_{k=1}^N \cos(\theta_k - \theta_j).$$

Integrability at $(\alpha = \pi/2)$ [Watanabe, Strogatz (1993)]

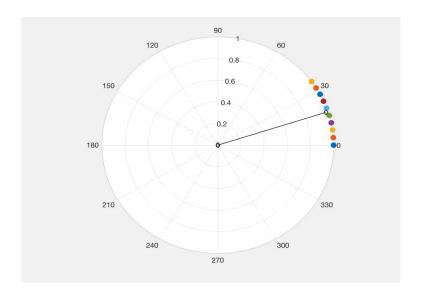
Let $S_{i,j} := \sin[(\theta_i - \theta_j)/2]$ and

$$J = S_{1,2}S_{2,3}\cdots S_{N-1,N}S_{N,1}$$
 is a constant of motion.

Precisely, N-2 constant of motions are functionally independent.

2 degrees of freedom: every solution is periodic, up to rotational symmetries of S^1 . (quasiperiodic)

Particle simulation



Kinetic Kuramoto model

When we apply mean-field limit $(N \to \infty)$ on the Kuramoto particle model, we have the equation of a distribution function $f = f(\theta, \Omega, t)$;

$$\begin{split} &\partial_t f + \partial_\theta \cdot (\mathcal{V}(f)f) = 0, \\ &\mathcal{V}(f)(\theta, \Omega, t) = \Omega - K \int_{\mathbb{R}} \int_0^{2\pi} \sin(\psi - \theta + \alpha) f(\psi, \Omega_*, t) d\psi d\Omega_*, \\ &f(\theta, \Omega, 0) = f_0(\theta, \Omega), \quad \int_0^{2\pi} f(\theta, \Omega, 0) d\theta = g(\Omega), \\ &\rho(\theta, t) := \int_{\mathbb{R}} f(\theta, \Omega, t) d\Omega. \end{split}$$

This limit process let us know the motion of density function $\rho(\theta, t)$, which doesn't distinguish individuals.

Kinetic Kuramoto model

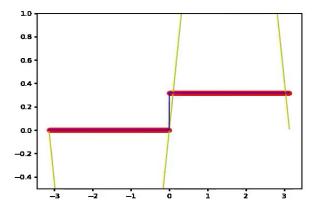
The existence and uniqueness of measure-valued (or classical) solutions can be treated by Neunzert's theory since velocity field $\mathcal{V}(f)$ is bounded and Lipshitz on θ, Ω, f . [Lancelloti 2005]

$$egin{aligned} \partial_t f + \partial_{ heta} \cdot (\mathcal{V}(f)f) &= 0, \ &\mathcal{V}(f)(heta, \Omega, t) &= \Omega - \mathcal{K} \int_{\mathbb{R}} \int_0^{2\pi} \sin(\psi - \theta + lpha) f(\psi, \Omega_*, t) d\psi d\Omega_*. \end{aligned}$$

If it has a smoothing heat kernal, incoherent solutions are stable for large conductivity. [Qinghua, Ha 2016] for $\alpha=$ 0, [Ha, Kim, Lee, Zhang 2018] for $\alpha\neq 0$.

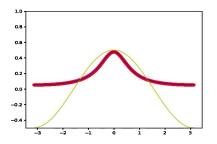
$$egin{aligned} \partial_t f + \partial_{ heta} \cdot (\mathcal{V}(f)f) &= \sigma \partial_{ heta}^2 f, \ \mathcal{V}(f)(heta, \Omega, t) &= \Omega - \mathcal{K} \int_{\mathbb{R}} \int_0^{2\pi} \sin(\psi - \theta + \alpha) f(\psi, \Omega_*, t) d\psi d\Omega_*. \end{aligned}$$

Kinetic simulations



Spacial discretize : ENO 3rd upwind scheme. Temporal derivative : RK 3rd, Positivity guaranteed for cfl < 1. 1000 mesh points.

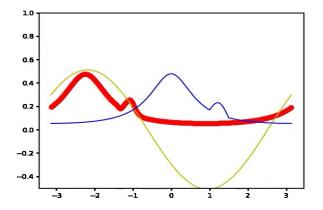
Kinetic simulations



$$\rho(\theta, t) = \frac{1}{2\pi} \frac{V}{U - A\cos(\theta - Ut)}, \quad V(\rho) = A\cos(\theta - Ut),$$

are known periodic solutions for $U=\frac{1+A^2}{2},\,V=\frac{1-A^2}{2},$ and $A\in[0,1].$

Kinetic simulations



Every solution seems to be quasi-periodic.

Summary for the critical frustration

Observations on critical frustration

- Nonlinear waves are generated.
- There exists 1-parameter family of solitary waves.
- No proper schemes for nonlocal kinetic equations in literature.

Remarks on the critical frustration

- **1** Numerically $R^0 \neq 0$ and $\alpha \neq \pi/2$ lead to the synchronization.
- Periodicity (Quasi-periodicity) in kinetic model is still open.
- Main difficulty is that it is not a gradient flow.

Thank you