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Flocking Rules by Craig Raynolds (1987)

Separation: steer to
avoid crowding local
flockmates

Alignment: steer
towards the average
heading of local
flockmates

Cohesion: steer to
move toward the
average position of
local flockmates

4 / 62



Dynamics of Cucker-Smale model

Phase space : R2dN , Configuration C := {(x i , v i )}Ni=1

(x i , v i ) 2 R2d be i-th Cucker-Smale (C-S) flocking agent.
The dynamics of Cucker-Smale model (2007) :

ẋ i = v i , t > 0, i = 1, · · · ,N,

v̇ i =
K

N

NX

j=1

 (kx j � x ik)(v j � v i ),

(x i , v i )(0) = (x i0, v i0),

where K is the positive coupling strength, and
the communication weight  : R+ ! R is usually considered as a
nonincreasing nonnegative analytic function.
For simpliticy, we set

 (s) =
1

(1 + s2)�/2
, for � > 1.
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Kinetic description of Cucker-Smale model

When we apply mean-field limit (N ! 1) on the Cucker-Smale particle
model, we have the following equation of distribution function
f = f (x , v , t);

@t f + v ·rx f +rv · (⇠(f )f ) = 0,

⇠(f )(x , v , t) =

Z

Rd⇥Rd

 (|x � y |)(w � v)f (y ,w)dydw ,

f (x , v , 0) = f0(x , v).

This limit process is rigorously presented in [Ha, Tadmor (2008)].
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Hydrodynamic description of Cucker-Smale model

Let ⇢ = ⇢(x , t) and u = u(x , t) be the mass density and bulk velocity of
the C-S ensemble at position x and time t, then the temporal-spatial
evolution of (⇢, u) is governed by

@t⇢+r · (⇢u) = 0, x 2 Rd , t > 0,

⇢@tu + ⇢u ·ru = �K⇢

Z

R
 (|y � x |)(u(x)� u(y))⇢(y)dy ,

(⇢, u)(x , 0) = (⇢0, u0),

where K is the coupling strength and  is the communication weight.

This equation comes from the mono-kinetic ansatz
f (x , v , t) = ⇢(x , t)�v=u(x ,t)(x , v , t).
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Definition of flocking

Suppose that C := {(x i , v i )}Ni=1
is an interaction particle system.

Definition
1 C tends to a mono-cluster flocking state if and only if

sup
t�0

kx i (t)� x j(t)k < 1, lim
t!1

kv i (t)� v j(t)k = 0.

2 C tends to a multi-cluster flocking state if and only if there exist
G↵ = {(x↵i , v↵i )}N↵i=1

for ↵ = 1, · · · ,m such that tm

↵=1G↵ = C,

(i) Each G↵ tends to a flocking state,
sup
t�0

kx↵i � x↵jk < 1, lim
t!1

kv↵i � v↵jk = 0, for all i , j ,↵.

(ii) All G↵ are separating each other,
sup
t�0

kx↵i � x�jk = 1, for all i , j ,↵ 6= �.

We call it bi-cluster flocking if m = 2.
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Comparison with other models

1 Heat equation : consider 1D space discretize xj = jh for some h > 0.

ut = uxx )
duj(t)

dt
=

1

h

✓
uj+1 � uj

h
+

uj�1 � uj

h

◆
.

Velocities in Cucker-Smale model follows basic rules of heat
dissipation on velocities.

2 Coulomb force : Force = �K
q1q2

r2
r̂ ,

v̇j = K
qj

mj

NX

k=1

1

kxk � xjk
2

(xk � xj)

kxk � xjk
.

Interactions are related to the relative positions, then it becomes the
Hamiltonian system.
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Basic properties of Cucker-Smale model

all velocities of particles are attracted to the mean value.
The mono-cluster flocking state is the equilibrium state.

The multi-cluster flocking state is not an equilibrium.
It only exists as an asymptotic behavior as t ! 1.

The interaction between two particles is always attractive:
The second momentum is not increasing.
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Global flocking condition

Flocking condition was first suggested by Cucker and Smale.

Define a functional kxk =

 
1

N

NX

i=1

(x i � xc)
2

! 1

2

where xc =
1

N

NX

i=1

x i .

Theorem (Ha-Liu, 2009)

Let (x , v) be a solution with initial data (x0, v0) satisfying the following

condition:

kv0k < 2K

Z 1

kx 0k
 (2

p

Nr)dr .

Then there exists a positive number xM such that

sup
t�0

kx(t)k  xM , kv(t)k  kv0ke
� (2xM)t , t � 0.

Note that if
R1
0
 (r)dr = 1, then mono-cluster flocking always hold.
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Two particle result

Initial condition for global flocking

Let (x , v) 2 R2 be the relative position and velocity between two particles,
with initial data (x0, v0) satisfying v0 > 0 and

v0 < K

Z 1

x0

 (|y |)dy .

Then there it tends to the global flocking state. Converse is also true.
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Two particle result; proof

Let x := x1 � x2 and v := v1 � v2 in R1. We assume v0 > 0.
Then the di↵erences of x and v satisfy

ẋ = v , v̇ = �K (|x |)v ,

or equivalently,
dv = �K (|x |)dx .

Integrating the above relation yields

v(t) = v0 � K

Z
x(t)

x0

 (|y |)dy .

Suppose

v0 � K

Z 1

x0

 (|y |)dy .

Then, it follows that v(t) � K
R1
x(t)

 (|y |)dy > 0 for all t.
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Proof on global flocking [Ha, Liu (2009)]

Lemma : di↵erential inequalities
����
dkxk
dt

����  kvk,
dkvk
dt

 �2K (2
p

Nkxk)kvk.

proof of Lemma

dkxk2

dt
=

2

N

NX

j=1

hx j , v ji,

����
dkxk2

dt

����  2

0

@ 1

N

NX

j=1

|x j |
2

1

A

1

2

0

@ 1

N

NX

j=1

|v j |
2

1

A

1

2

= 2kxkkvk.
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Proof on global flocking

proof of Lemma (Continued)

dkvk2

dt
=

2

N

NX

j=1

hv j , v̇ ji,

=
2

N

NX

j=1

*
v j ,

K

N

NX

k=1

 (|xk � x j |)(vk � v j)

+
,

=
2K

N2

NX

j ,k=1

hv j , vk � v ji (|xk � x j |),

= �
K

N2

NX

j ,k=1

 (|xk � x j |)|vk � v j |
2,

since  is symmetric to the pair {k , j}.
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Proof on global flocking

proof of Lemma (Continued)

On each term of x and v ,

|xk � x j |  2kxk1  2
p

Nkxk,
X

j ,k

|vk � v j |
2 =

X

j ,k

�
|vk |

2 + |v j |
2
� 2hvk , v ji

�

= 2
X

j ,k

|v j |
2
� 2

*
X

j ,k

vk ,
X

j ,k

v j

+
= 2

X

j ,k

|v j |
2,

since we assumed zero mean velocity.
Therefore,

dkvk
dt

 �2K (2
p

Nkxk)kvk.
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Proof on global flocking

proof of Theorem (Ha, Liu)

Define a Lyapunov functional,

L(t) = kv(t)k+ 2K

Z kx (t)k

0

 (2
p

Ns)ds, )
dL(t)

dt
 0.

L(t)  L(0) ) kv(t)k+ 2K

Z kx (t)k

kx (0)k
 (2

p

Ns)ds  kv(0)k.

Under the condition of

kv(0)k  2K

Z 1

kx (0)k
 (2

p

Ns)ds,

there should be xM > 0 such that kx(t)k < xM .
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Proof on global flocking

Hence
dkvk
dt

 �2K (2
p

NxM)kvk,

and we get result from Gronwall’s lemma.

kv(t)k  kv(0)k exp
⇣
�2K (2

p

NxM)
⌘
.

Remark

kxk1 plays a key role to set a lower bound of  term.

We first should get a bound for kx(t)k to use Gronwall-type
inequalities.
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Global flocking condition

Remark

- If K > K0(initial data), than it flocks.

- This result shows a su�cient condition for flocking.

Question

What can we say if there is no global flocking.

Goal of this talk

- Construct su�cient conditions on configurations, which tend to the
multi-cluster flocking.
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Three particle case

The three particles, however, we cannot expect simple conditions.
In R1, let (xi , vi ) for i = 1, 2, 3 represents three particles. In this dynamics,
we consider the initial conditions

x1(0) = x0 > 0, x2(0) = �x0, x3(0) = X 2 [0, x0],

v1(0) = v0 > 0, v2(0) = �v0, v3(0) = V 2 [0, v0].

The di�culty comes from the flocking condition of 1 and 3. The dynamics
of (v1 � v3) contains the interaction with particle 2,

d(v1 � v3)

dt
= �(flocking term) +

K

3
( (x2 � x3)�  (x1 � x2))(v1 � v2),

but it is not negative. Hence, for the dynamics between particles 1 and 3,
the particle 2 want to make them separated.
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Three particle case; simulation
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Two time-position graph with x0 = 1, v0 = 0.8,X = 0.005, and V = 0.004.
Time from 0 to 20 and 0 to 2000, respectively.
Left : 2 particles, x1 and x3, they get really closer in a short time. (Scale : 20)
Right: 3 particles, which tend to the global flocking eventually. (Scale : 2000)
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Local flocking results

1 Existence of bi-cluster flocking
(with J. Choi, S.-Y. Ha, F. Huang, C. Jin)

2 Multi-cluster flocking in terms of coupling strength
(with S.-Y. Ha, Y. Zhang)

3 Bi-cluster flocking on hydrodynamic C-S model
(with S.-Y. Ha, X. Zhang, Y. Zhang)
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Existence of bi-cluster flocking

To measure the asymptotic state of local flocking, it is convenient to use
variations with respect to each group’s central value.

X :=
2X

↵=1

kx̂↵k :=
2X

↵=1

 
N↵X

i=1

kx↵i � xc

↵k
2

!1/2

, V :=
2X

↵=1

kv̂↵k,

where ||x̂↵||, ||v̂↵|| are the spatial and velocity L
2-norms with respect to

the mean values xc
↵, v c

↵ of group ↵.

To see the separation of two groups, let �x and �v be the average
velocity di↵erence between the two local groups. For some reference unit
direction e 2 Rd , we consider

�x · e := (xc

2 � xc

1) · e, �v · e := (v c

2 � v c

1) · e.
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In terms of Lyapunov L2 - functionals...

Goal : Existence of bi-cluster flocking

Definition of bi-cluster flocking needs two conditions;

1 Local flocking of each group,

2 Separation between two groups.

Hence we get bi-cluster flocking configurations if

1 X < 1, V ! 0

2 �v · e > c > 0, for some c .

If (1) is satisfied, then (2) is similar to the two particle result.
If (2) is true, we can estimate (1) using Gronwall type inequalities.
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Existence of bi-cluster flocking

Theorem 1; [Choi-Ha-Huang-Jin-K. 2016]

A well-prepared initial data which satisfies the following conditions
(C00)� (C02) tends to a bi-cluster flocking.

(C00) (Parameters): For some fixed unit vector e,

N � 3, 2�0 := �v (0) · e, V0 := V(0),
X0 := X (0), r0 := min

i ,j
{(x1i (0)� x2j(0)) · e} .
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Existence of bi-cluster flocking

(C01) (Small perturbations):

V0 <
K min{N1,N2}

2N

Z 1

X0

 (
p

2x)dx .

(C02) (Close to bi-cluster): For the vector e from (C00),

�0 > 4
p

2V0,

Z 1

r0

 (x)dx <
�0V0

2
p
2K

p
M2(0)

,

where M2(t) is the second momentum,

M2(t) :=
NX

i=1

kv ik
2.
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Sketch of proof

Lemma 0; Statistical inequlities

Let {(x i , v i )}Ni=1
be the solution to the C-S model with V(0) > 0.

Then the functionals (X ,V,�v ) satisfy the following coupled system of
dissipative di↵erential inequalities (SDDI):

(i) |Ẋ |  V,

(ii) V̇  �
K min{N1,N2}

N
 (

p

2X )V + 2
p

2K
p
M2(0) M ,

(iii)�̇v � �K

s
2M2(0)

min{N1,N2}
 M ,

where  M is the maximal interaction strength between di↵ernt groups,

 M(t) := max
i ,j

 (kx2j � x1ik).
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Sketch of proof

Step 1 : Continuity argument over the separating velocity

At t = 0, the following inequlity holds from the definition of �0 and r0.

min
i ,j

kx1i (t)� x2j(t)k > �0t + r0, for t 2 [0,T ). (1)

We now define T
⇤ to be the supremum among all T satisfying (1).

We will show that T ⇤ = 1 by assuming T
⇤ < 1.

Step 2 : Lyapunov function approach from global flocking

If the separation inequlity (1) holds,
then for large ↵0 and r0, we can get X (t) < 1 using the Lyapunov
functional method;

�(X ,V) := V +
K min{N1,N2}

N

Z X

0

 (
p

2x)dx .
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Sketch of proof; Step 1

Lemma 1

Suppose that conditions (C0) hold. Then

V(t) < 2V0 for t 2 [0,T ⇤).

Lemma 2

Suppose that conditions (C0) hold. Then

(v1i (t)� v2j(t)) · e > �0, for 8i , j and t 2 [0,T ⇤).

This implies T ⇤ = 1, which ends the continuity argument.
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Sketch of proof; Step 1

Proof of lemma 1

From Lemma 0, we have

d�

dt


dV

dt
+

K min{N1,N2}

N
 (

p

2X )V

 2
p

2K
p
M2(0) (�0t + r0) for t 2 [0,T ⇤).

Integrating the above inequality, we obtain

V(t) +
K min{N1,N2}

N

Z
t

0

 (
p

2X (t))V(t)dt

 V(0) + 2
p

2K
p

M2(0)

Z 1

0

 (�0t + r0)dt

for t 2 [0,T ⇤]. By condition (C01), we have V(t) < 2V0 for t 2 [0,T ⇤].

31 / 62



Sketch of proof; Step 1

Proof of lemma 2

From lemma 0,

�̇v � �K

s
2M2(0)

min{N1,N2}
 (�0t + r0) for t 2 [0,T ⇤).

This yields

�v (t) � 2↵0 � K

s
2M2(0)

min{N1,N2}

Z 1

0

 (�0t + r0)dt for t 2 [0,T ⇤).

We now use the condition (C01) to obtain �v (t) �
3

2
↵0. Then,

(v1i (t)� v2j(t)) · e = �v (t) + (v̂1i � v̂2j) · e

>
3

2
↵0 �

p

2V(t) > �0, for t 2 [0,T ⇤].
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Sketch of proof; Step 2

Lemma 3

We can prove the theorem by showing following properties.

(i) 9XM > 0 s.t. X (t)  XM , t 2 [0,1),
(ii) V(t) < C (t) as t ! 1, for some constant C > 0.
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Sketch of proof; Step 2

Proof of lemma 3 (i)

(i) Using the Lyapunov functional �(X ,V), we get

V(t) +
K min{N1,N2}

N

Z X (t)

X0

 (
p

2x)dx

 V0 + 2
p

2K
p

M2(0)

Z 1

0

 (�0t + r0)dt, for t 2 [0,1).

(2)

Since condition (C02) means that there exist XM > 0 such that

2V0 =
K min{N1,N2}

N

Z
XM

X0

 (
p

2x)dx .

Using condition (C01), we obtain X (t)  XM for t 2 [0,1).
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Sketch of proof; Step 2

Proof of lemma 3 (ii)

(ii) Define �0 :=
K min{N1,N2}

N
 (

p

2XM). From Lemma 0, we get

V̇  ��0V + 2
p

2K
p

M2(0) (�0t + r0) for t 2 [0,1).

We use Gronwall’s inequality to obtain

V(t)  V0e
��0t +

2
p
2K

p
M2(0) (r0)

�0
e
��0

2
t +

2
p
2K

p
M2(0)

�0
 (
�0
2
t + r0)

 C (t) as t ! 1.
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Decay rate of velocity fluctuations

Corollary; [Choi-Ha-Huang-Jin-K. 2016]

Suppose that conditions (C00)-(C02) hold. Then there exist v c

11, v c

21 and
positive constants C1 and C2 such that for any i , j , s.t.

C1

Z
t

0

 (⌧)d⌧  kv1i (t)� v c

11k+ kv2j(t)� v c

21k  C2

Z
t

0

 (⌧)d⌧.

Remark

The velocity fluctuation is decaying as in the order of
R
 (⌧)d⌧ , while

it decays exponentially in the emergence of the mono-cluster flocking.
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Decay rate of velocity fluctuations

Proof of algebraic decay

In the proof of lemma 0, assume N1  N2, then

v c

1(t) = v c

1(0) +
K

N1N

N1X

i=1

N2X

j=1

Z
t

0

 (kx2j(s)� x1i (s)k)(v2j(s)� v1i (s))ds.

If we multiply both sides by e, then the velocity can be estimated using
the result of Theorem 1.
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Lyapunov (L1,L2) - functionals

To measure the asymptotic state of local flocking, it is convenient to use
variations with respect to each group’s central value.

X
↵ := max

i

kx↵i � xc

↵k, V
↵ := max

i

kv↵i � v c

↵k,

where xc
↵, v c

↵ are the mean values of group ↵.

To see the separation of two groups, we define �x and �v as the
followings in order to measure the average di↵erence between two groups.

�x := min
↵ 6=�

�����(x
c

� � xc

↵) ·
(v c

�(0)� v c
↵(0))

kv c

�(0)� v c
↵(0)k

����� , �v := min
↵ 6=�

kv c

� � v c

↵k.

Note : By using L
1-type norm, we can sort out the flocking condition in

terms of coupling strength K .
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Multi-cluster flocking in terms of K

Theorem 2; [Ha-K.-Zhang 2016]

A well-prepared initial data which satisfies the following conditions
(C10)� (C12) tends to a multi-cluster flocking.

(C10) (Parameters):

�0 :=
1

2
min
� 6=↵

kv c

�(0)� v c

↵(0)k, and
Z 1

r0

 (s)ds :=
�N�0

8(1� �N)
p

2M2(0)
min
↵

Z 1

X↵(0)

 (2x)dx ,

where �N = min↵ N↵/N.
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Multi-cluster flocking in terms of K

(C11) (restriction on initial configurations):

V
↵(0) <

�0
4
, min

� 6=↵,i ,k

�
x�k0 � x↵i0

�
·

v c

�(0)� v c
↵(0)

kv c

�(0)� v c
↵(0)k

� r0.

(C12) (restriction on coupling strengths):

K1 < K < K2, for

K1 = max
↵

n 2V↵(0)

�N
R1
X↵(0)

 (2x)dx

o
,

K2 = min
↵

n 2�0
3�N

R1
X↵(0)

 (2x)dx

o
.
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Numerical simulation on coupling strength
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Velocity fluctuation changes along the parameter K , coupling sterngth.
Red, green, blue lines are for each group, and the bright blue line is for the global.
Left : Initial velocity distributions = Initial position distributions. N = 20.
Right : Velocity fluctuation evaluated at time t = 100K .
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Remark

Remark

The conclusion from the analysis on K

L
1 estimate of  (kx�j(t)� x↵i (t)k) is essential to control X↵(t)

Therefore, initial space distribution critically a↵ects local flocking.

K1 and K2 are in a similar order, in particular,
K1 : K2 ⇠ min kv c

� � v c
↵k : maxV↵.

This is the main di�culty to the local flocking problem when we use
Lyapunov functional approach.
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Hydrodynamic description of Cucker-Smale model

Recall that the temporal-spatial evolution of (⇢, u) is governed by

@t⇢+r · (⇢u) = 0, x 2 Rd , t > 0,

⇢@tu + ⇢u ·ru = �K⇢

Z

R
 (|y � x |)(u(x)� u(y))⇢(y)dy ,

(⇢, u)(x , 0) = (⇢0, u0),

where K is the coupling strength and  is the communication weight.

In order to analyze the bi-cluster flocking phenomena, we consider a
coupled system of hydrodynamic equations.
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Hydrodynamic description of Cucker-Smale model

For two homogeneous ensemble, we use the following equations, which we
only use for non-overlapping ⇢1 and ⇢2. Set (⇢1, ⇢2, u1, u2) be the phase,

@t⇢1 +r · (⇢1u1) = 0, @t⇢2 +r · (⇢2u2) = 0, (x , t) 2 Rd
⇥ R+,

⇢1@tu1 + ⇢1u1 ·ru1

= 11

Z

⌦1(t)

⇢1(x)⇢1(y) (|y � x |)(u1(y)� u1(x))dy

+ 12

Z

⌦2(t)

⇢1(x)⇢2(y) (|y � x |)(u2(y)� u1(x))dy ,

⇢2@tu2 + ⇢2u2 ·ru2

= 22

Z

⌦2(t)

⇢2(x)⇢2(y) (|y � x |)(u2(y)� u2(x))dy

+ 21

Z

⌦1(t)

⇢2(x)⇢1(y) (|y � x |)(u1(y)� u2(x))dy ,
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A Lagrangian formulation

In order to use the techniques of particle model, we use a Lagrangian
formulation to describe the particle-path.

First, we introduce the triplet (⌘i , qi , vi ) for Lagrangian variables,
consisting of the forward particle path ⌘i = ⌘i (x , t), Lagrangian mass
qi = qi (x , t), and velocity densities vi = vi (x , t).

We set ⌦1 := spt(⇢1)(0) and ⌦2 := spt(⇢2)(0) for notational convenience.
Then, for a fixed x 2 ⌦i ,

8
<

:

d⌘i (x , t)

dt
= ui (⌘i (x , t), t), t > 0, i = 1, 2,

⌘i (x , 0) = x .

and
qi (x , t) := ⇢i (⌘i (x , t), t), vi (x , t) := ui (⌘i (x , t), t).
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A Lagrangian formulation

Using the Lagrangian formulation, we define Lyapunov functionals as in
the particle model:

Vi (t) := kvi (t)� vic(t)kL1(⌦i )
, i = 1, 2,

Xi (t) := k⌘i (t)� ⌘ic(t)kL1(⌦i )
,

V(t) := max
n
kv1(·, t)� vc(t)kL1(⌦1)

, kv2(·, t)� vc(t)kL1(⌦2)

o
,

X (t) := max
n
k⌘1(·, t)� ⌘c(t)kL1(⌦1)

, k⌘2(·, t)� ⌘c(t)kL1(⌦2)

o
,

Vd(t) := min
x2⌦1,y2⌦2

|v1(x , t)� v2(y , t)|,

Xd(t) := min
x2⌦1,y2⌦2

|x1(x , t)� x2(y , t)|.

Note that (Xi ,X ) and (Vi ,V) measure the velocity and spatial
fluctuations around the local averages and global averages.
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A Lagrangian formulation

Definition of flocking

Let Z = {(⌘i , qi , vi )}2i=1
be a classical global solution to the system.

1 The Lagrangian configuration Z exhibits an asymptotic “mono-cluster
flocking” if and only if the functionals X and V satisfy

sup
0t<1

X (t) < 1 lim
t!1

V(t) = 0.

2 The Lagrangian configuration Z exhibits an asymptotic “bi-cluster
flocking” if and only if the functionals Xi ,Vi and Vd satisfy

sup
0t<1

Xi (t) < 1, lim
t!1

Vi (t) = 0, 1  i  2, inf
0t<1

Vd(t) > 0.
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Mono-cluster flocking on hydrodynamic C-S model

Theorem 3; mono-cluster flocking [Ha-K.-Zhang-Zhang, 2017,
the corresponding result of Ha-Kang-Kwon(2014)]

Suppose that the following conditions (C81)� (C83) hold.

(C81): Initial supports of ⇢i0 are bounded and disjoint:

L
d(spt(⇢i0)) < 1, ⇢i0(x) > 0, x 2 ⌦0

i
, i = 1, 2, X (0) > 0,

where L
d is a d-dimensional Lebesgue measure in Rd .

(C82): Initial data are su�ciently regular:

(qi0, vi0) 2 H
s(⌦i )⇥ H

s+1(⌦i ), i = 1, 2, s >
d

2
+ 1.

(C83): The coupling strengths are symmetric and bounded below:

12 = 21, min
i,j

ijk⇢j0kL1(⌦1)
>

V0R1
X0

 (2x)dx
.
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Mono-cluster flocking on hydrodynamic C-S model

Then, there exists a positive constant "0 depending only on the ⇢i0 such
that if kvi0kHs+1(⌦i )

< "0, i = 1, 2, then the initial value problem has a
unique classical solution (⇢i , ui ), i = 1, 2 satisfying regularity and flocking
estimates:

(i) (q, v) 2 Qs(1), ⌘ 2 C
0
�
[0,1);Hs+1

�
.

(ii) sup
0t<1

X (t) < x1, V(t)  V0e
�C1 (2x1)t , t � 0,

where C1 := min
1i2

||⇢i0||L1(⌦i )
⇥ min

1i ,j2

ij and we the solution space

Qs(1) :=
�
(qi , vi ) : qi 2 C

0([0,T );Hk) \ C
1([0,T );Hk�1),

vi 2 C
0([0,T );Hk+1) \ C

1([0,T );Hk)
 
.
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Bi-cluster flocking on hydrodynamic C-S model

Theorem 4; bi-cluster flocking [Ha-K.-Zhang-Zhang, 2017]

Suppose that the following conditions (C91)� (C94) hold.

(C91): Initial supports of ⇢i0 are bounded and disjoint:

L
d(spt(⇢i0)) < 1, ⇢i0(x) > 0, x 2 ⌦0

i , k⇢i0kL1(⌦i )
> 0,

X (0) > 0, �0 :=
1

2
|v2c(0)� v1c(0)| > 0, Vi0 := Vi (0) <

�0
2
,

r0 := min


(⌘2(x , 0)� ⌘1(y , 0)) ·

(v2c(0)� v1c(0))

|v2c(0)� v1c(0)|

�
> 0,

where L
d is a d-dimensional Lebesgue measure in Rd .

(C92): Initial data are su�ciently regular:

(qi0, vi0) 2 H
s(⌦i )⇥ H

s+1(⌦i ), i = 1, 2, s >
d

2
+ 1.
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Bi-cluster flocking on hydrodynamic C-S model

(C93): The coupling strengths are symmetric and bounded below:

ii >
Vi0 +

2C12
p

2M2(0)

�0

R1
r0
 (s)ds

R
+1
Xi0

 (2s)ds
, i = 1, 2,

0 < 21 = 12 <
�0

12C
p
2M2(0)

R1
r0
 (s)ds

,

where C := ⇧2

i=1k⇢i0kL1(⌦i )
+ max

1i2

{k⇢i0kL2(⌦i )
k⇢i0k

1/2
L1(⌦i )

} is a

positive constant only depending on ⇢i0.

(C94): (For simplicity,) The communication weight  takes the form
given by:

 (r) =
1

(1 + r2)
�
2

, � > 1.
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Bi-cluster flocking on hydrodynamic C-S model

Then, there exists a positive constant "0 depending only on the ⇢i0 such
that if

max
1i2

krxvi0kHs(⌦i )
+ 12max{���

0
, (1 + r

2

0 )
��/2

} < "0.

Then, the Cauchy problem has a unique classical solution (⇢i , ui ), i = 1, 2
given by

(i) (q, v) 2 Qs(1), ⌘ 2 C
0
�
[0,1);Hs+1

�
.

(ii) Vd(t) > �0, Vi (t)  C̃ii max
n
e
�ii (2x

iL
)t

2 , 
⇣�0t

4

⌘o
,

Xi (t) < 1, for t � 0, i = 1, 2.
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Bi-cluster flocking on hydrodynamic C-S model

Remark

By the standard Sobolev embedding theorem,
the solution (qi , vi ) 2 Qs(1) on s > d

2
+ 1 in Theorem are C

1, that is
(qi , vi ) 2 C

1(⌦i ⇥ [0,1)).

On the other hand, the parameter

R0 := max{���
0

, (1 + r
2

0 )
��/2

}

indicates the initial separation of two groups.
The inter-group action factor 12R0 is needed to control the global
existence since 12R0 ' 0 implies the system is close to the steady state
and the bi-cluster flocking situation.
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Sketch of proof

Flocking estimates

Let T⇤ 2 (0,1] be a positive number, and suppose that (C8) holds.
Let (⌘i , qi , vi ) be a classical solution to the system in [0,T⇤).

Then, there exists positive constants x̄1 2 (0,1) and
C̄1 = C̄1(⇢i0,V10,V20,11,12,22,M2(0), x̄1) such that

sup
0t<T⇤

Xi (t)  x̄1, Vi (t)  C̄1

h
e
� 1

2
ii (2x̄1)t+ 

⇣
r0+

�0t

2

⌘i
, t 2 (0,T⇤),

i.e., bi-cluster flocking occurs asymptotically. Moreover, if we let
R0 = max{���

0
, (1 + r

2

0
)��/2}, then we have

Vi (t) 
⇣
Vi (0) +

12
ii

R0

⌘
O(1)

(1 + t)�
.
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Sketch of proof

A priori estimates

For any positive constant T 2 (0,1], let �i be positive constants
satisfying

� �

kX

i=1

�i > 1,

and (⌘i , qi , vi ) be a classical solution to the system in [0,T ).

Then, for t 2 [0,T ), there exists C1 only depend on initial conditions and
parameters such that

kv1(t)kL2  kv10kL2 +
C1

(1 + t)��1
, krxv1(t)kL2 

C1

(1 + t)�
, and

krxv1(t)kH1 
C1

(1 + t)(���1)
, krxv1(t)kHs 

s+1X

k=1

C1

(1 + t)(��
P

k

i=1
�i )

.
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Sketch of proof

Existence of solutions

Note that C1 is independent of T . we set

"1 > kv10kL2 + (s + 2)C1.

Then for initial data ui0 2 H
s+1(⌦1) satisfying ku0kHs+1  "0 < "1 , where

"0 is given in a priori estimates, we define

T
⇤
e := sup{T � 0 : sup

0tT

kv(t)kHs+1 < "1}.

Note that we know T
⇤
e > 0. Suppose T

⇤
e < 1. Then, by definition we

have
sup

0tT⇤
e

kv(t)kHs+1 = "1. (3)

A priori estimates says it cannot be true, hence T
⇤
e = 1.

The iteration scheme on (⌘n, vn) leads to the global existence of solutions
for small "1.
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Sketch of proof

Proof on a priori estimates (Zeroth-order)

1

2

d

dt

Z

⌦1

|v1(x)|
2
dx

= 11

ZZ

⌦1⇥⌦1

q1(y , 0) (⌘1(y)� ⌘1(x))(v1(y)� v1(x)) · v1(x)dydx

+ 12

ZZ

⌦2⇥⌦1

q2(y , 0) (⌘2(y)� ⌘1(x))(v2(y)� v1(x)) · v1(x)dydx

 211

ZZ

⌦1⇥⌦1

q1(y , 0)V1(t)|v1(x)|dydx

+ 12

ZZ

⌦2⇥⌦1

q2(y , 0)|v2(y)| (min(|⌘2(y)� ⌘1(x)|))|v1(x)|dydx
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Sketch of proof

Proof on a priori estimates (Zeroth-order)

1

2

d

dt

Z

⌦1

|v1(x)|
2
dx


O(1)(11V1(0) + 12R0)

(1 + t)�
kq1(·, 0)kL1kv1kL1

+
O(1)12

(1 + (�0t + r0)2)�/2

ZZ

⌦2⇥⌦1

q2(y , 0)|v2(y)kv1(x)|dydx


O(1)

(1 + t)�
· (11V1(0) + 12R0)kv1kL2 .

Here O(1) is a positive constant only depending on  2x̄1 . Then we have

kv1(t)kL2  kv10kL2 +O(1)
11V1(0) + 12R0

(1 + t)��1
.
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Sketch of proof

How about the first order?

d

dt

krxv1k
2

L2

2
= 11

Z

⌦1

q1(y , 0)(v1(y)� v1(x))rx( (⌘1(y)� ⌘1(x))) ·rxv1dy

�11

Z

⌦1

q1(y , 0)rxv1( (⌘1(y)� ⌘1(x))) ·rxv1dy

+ 12

Z

⌦2

q2(y , 0)(v2(y)� v1(x))rx( (⌘2(y)� ⌘1(x))) ·rxv1dy

�12

Z

⌦2

q2(y , 0)rxv1( (⌘2(y)� ⌘1(x))) ·rxv1dy

 11

Z

⌦1

q1(y , 0)2|v1(x)|| 
0(⌘1(y)� ⌘1(x))||@x⌘1(x)|dy |rxv1|

+ 12

Z

⌦2

q2(y , 0)|v2(y)� v1(x)|| 
0(⌘2(y)� ⌘1(x))||@x⌘1(x)|dy |rxv1|.
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Sketch of proof

Proof on a priori estimates (first-order)

For the higher order estimates, we set an ansatz to use flocking estimates.
Define

T
⇤ := sup

n
t 2 (0,T ]

��� krxv1(t)kHk <
C1

(1 + t)(��
P

k+1

i=1
�i )

, 8k  s

o
,

Then we need to show T
⇤ = T .

The zeroth-order has faster decay rate than our ansatz in T
⇤, hence it is

good for zeroth-order with proper C1. For the first order, we use

krxvikL1  O(1)krxvikHs  O(1)
C1

(1 + t)(��
P

s+1

i=1
�i )

.

Thus we have the following, which we can use it in estimates of Hk .

|rx⌘i (x , t)|  O(1)
⇣
1 +

Z
+1

0

|rxvi (⌧)|d⌧
⌘
 O(1)C1.
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Summary

What we did
1 The existence of the bi-cluster flocking state,

2 Conditions on K which occurs multi-cluster flocking,

3 Local flocking phenomena on hydrodynamic C-S model.

Remarks on the local flocking

1 Initial positions are critical to prove the position separation on t ! 1.

2 We should prove the local flocking of each group and the separating
among groups simultaneously.
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Thank you
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