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Overview

© Introduction
@ Cucker-Smale model
@ Previous flocking results

© Local flocking results
@ Existence of bi-cluster flocking on the particle model
@ Bi-cluster flocking on hydrodynamic C-S model
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Flocking Rules by Craig Raynolds (1987)
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Dynamics of Cucker-Smale model

Phase space : R?4N Configuration C := {(x;, v;)} ",
(xi,v;) € R? be i-th Cucker-Smale (C-S) flocking agent.
The dynamics of Cucker-Smale model (2007) :

xi=vj, t>0 i=1--- N,
KN
vj = NZMIIXJ = xi[[)(vj = vi),
j=1

(xi, vi)(0) = (xi0, vio),

where K is the positive coupling strength, and

the communication weight ¢ : R, — R is usually considered as a
nonincreasing nonnegative analytic function.

For simpliticy, we set

1
w(S) = W, for ,8 > 1.



Kinetic description of Cucker-Smale model

When we apply mean-field limit (N — oo) on the Cucker-Smale particle

model, we have the following equation of distribution function
f=1f(x,v,t);

Of +v -V, f+V, (&f)f) =0,
vt = [

R9 xRd

f(x,v,0) = fo(x,v).

Y(Ix — y[)(w — v)f(y, w)dydw,

This limit process is rigorously presented in [Ha, Tadmor (2008)].
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Hydrodynamic description of Cucker-Smale model

Let p = p(x, t) and u = u(x, t) be the mass density and bulk velocity of
the C-S ensemble at position x and time t, then the temporal-spatial
evolution of (p, u) is governed by

Op+V-(pu)=0, xeR? t>0,

pocu-+ pu- T = —Kp [ 01y = x)(ux) = ul»)().
(p; u)(x,0) = (po, wo),

where K is the coupling strength and v is the communication weight.

This equation comes from the mono-kinetic ansatz
f(X, v, t) = p(X7 t)(sv:u(x,t)(xv v, t)'
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Definition of flocking

Suppose that C := {(x;, v;)}!; is an interaction particle system.
Definition

@ C tends to a mono-cluster flocking state if and only if
sup xi(8) ()] < 0o, fim [lvi(®) —wy(1)] = 0.

@ C tends to a multi-cluster flocking state if and only if there exist
Ga = {(Xai, Vai) } 1o, for @ = 1,---, m such that UT_;G, = C,

(/) Each G, tends to a flocking state,

Sup [[Xai — Xajl| <00, lim |lvai — vq)l| =0, forall i,j,a.
>0 t—00

(if) All G, are separating each other,
SugHXOU'_X/BJ'H = 00, for all iajaa#ﬁ'
t>

We call it bi-cluster flocking if m = 2.
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Comparison with other models

© Heat equation : consider 1D space discretize x; = jh for some h > 0.
de(t) 1 ujp1—uj U1 —uj
e = e d _h\_ h_  h

Velocities in Cucker-Smale model follows basic rules of heat
dissipation on velocities.

@ Coulomb force : Force = —K%LRp

Interactions are related to the relative positions, then it becomes the
Hamiltonian system.
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Basic properties of Cucker-Smale model

@ all velocities of particles are attracted to the mean value.
The mono-cluster flocking state is the equilibrium state.

@ The multi-cluster flocking state is not an equilibrium.
It only exists as an asymptotic behavior as t — co.

@ The interaction between two particles is always attractive:

The second momentum is not increasing.
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Global flocking condition

Flocking condition was first suggested by Cucker and Smale.
1
y 1

1 ’ 1 o
Define a functional || x| = <N Z(x,- - xc)2> where x. = N Zx,-.
i=1 i=1

Theorem (Ha-Liu, 2009)

Let (x, v) be a solution with initial data (xo, vo) satisfying the following
condition:

|vol| < 2K h Y(2V'Nr)dr.

[[Xoll

Then there exists a positive number xp; such that

sup [ ()| <o, Iv(B)ll < lvolle @) ¢ > 0.
t>

Note that if [, t(r)dr = oo, then mono-cluster flocking always hold.
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Two particle result

Initial condition for global flocking

Let (x, v) € R? be the relative position and velocity between two particles,
with initial data (xp, v) satisfying vp > 0 and

vo < K / ¥(lyl)dy.

Then there it tends to the global flocking state. Converse is also true.
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Two particle result; proof

Let x := x; — x2 and v := v; — v» in R, We assume vy > 0.

Then the differences of x and v satisfy
x=v, v=—Ky(x|)v,
or equivalently,
dv = —K(|x|)dx.
Integrating the above relation yields

x(t)
v(t) =vo— K P(lyl)dy-

Suppose
v > K / (ly|)dy.
X0

Then, it follows that v(t) > foo(ot) Y(|y|)dy > 0 for all t.
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Proof on global flocking [Ha, Liu (2009)]

Lemma : differential inequalities
‘dHXH dllv||

<lvl, =g < —2Ke@VN|Ix|]llv].

proof of Lemma

N
d[x||> _ 2
i - N > i v)),

1

j
1 U ’

<2 (NZX12> (NZVJ'2) = 2[|x][||v]]-
j=1
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Proof on global flocking

proof of Lemma (Continued)

dlv|* _ 2
“dt N Z<VJ= vj),
i1
N N
2 K
=N > <VJ7 m D w(lxk = xj[)(vi — VJ)> ;
i1 k=1
N
2K
= > viovie = viyd(|xi = xl),
k=1
K
==z 2 lxe = xjDlvic— v,
k=1

since 1) is symmetric to the pair {k,j}.
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Proof on global flocking

proof of Lemma (Continued)

On each term of x and v,
|xi — xj| < 2||x]l00 < 2VN|x],

Dovk—vilP = (vil® + lvi? = 2(vi, v)

Jk Jk
SO MEEIO S SPARE) SV
Jk Jk Jk Jk

since we assumed zero mean velocity.
Therefore,
divi

5 < 2KUVN||x])llv]l
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Proof on global flocking

proof of Theorem (Ha, Liu)

Define a Lyapunov functional,

Larﬂwum+WQEWWMQVNQ¢,-$ dLt)

dt

Ix(0)]
L(£) < L(0) = [[v(t)]| + 2K/ W(2v/Ns)ds < [|v(0)].
x|
Under the condition of

[e.9]

\W®W§2K/ﬂw¢@¢ﬁﬂﬁ,

there should be xp > 0 such that || x(t)|| < xpm.
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Proof on global flocking

Hence
dfv||

dt
and we get result from Gronwall's lemma.

< —2Kp(2V Nxu)| v,

(O]l < V()] exp (~2K(2vNxu) )

Remark

@ ||x|loc plays a key role to set a lower bound of ¢ term.

@ We first should get a bound for ||x(t)|| to use Gronwall-type
inequalities.
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Global flocking condition

Remark
- If K > Ko(initial data), than it flocks.

- This result shows a sufficient condition for flocking.

Question
What can we say if there is no global flocking.

Goal of this talk

- Construct sufficient conditions on configurations, which tend to the
multi-cluster flocking.
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Three particle case

The three particles, however, we cannot expect simple conditions.
In RY, let (x;,v;) for i = 1,2, 3 represents three particles. In this dynamics,
we consider the initial conditions

X1(0) = Xp > 0, XQ(O) = —Xp, X3(0) =Xe [O,Xo],
V1(0) =y >0, VQ(O) = —\, V3(0) =Ve [07 Vo].

The difficulty comes from the flocking condition of 1 and 3. The dynamics
of (vi — v3) contains the interaction with particle 2,

d(\/1d;\/3) = —(flocking term) + g(w(Xz —x3) = Y(x1 — x2))(v1 — v2),

but it is not negative. Hence, for the dynamics between particles 1 and 3,
the particle 2 want to make them separated.
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Three particle case; simulation

Position
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Two time-position graph with xp = 1, vy = 0.8, X = 0.005, and V = 0.004.
Time from 0 to 20 and 0 to 2000, respectively.

Left : 2 particles, x; and x3, they get really closer in a short time. (Scale : 20)
Right: 3 particles, which tend to the global flocking eventually. (Scale : 2000)
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Local flocking results

@ Existence of bi-cluster flocking
(with J. Choi, S.-Y. Ha, F. Huang, C. Jin)

@ Multi-cluster flocking in terms of coupling strength
(with S.-Y. Ha, Y. Zhang)

© Bi-cluster flocking on hydrodynamic C-S model
(with S.-Y. Ha, X. Zhang, Y. Zhang)
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Existence of bi-cluster flocking

To measure the asymptotic state of local flocking, it is convenient to use
variations with respect to each group’s central value.

) 1/2 5
LSS <Z i — x;u2> V=D Nl
a=1 a=1

a=1

where ||%,||, ||| are the spatial and velocity L?-norms with respect to
the mean values x¢&,, v, of group a.

To see the separation of two groups, let Ay and A, be the average
velocity difference between the two local groups. For some reference unit
direction e € RY, we consider

Ay-e:=(x5—x7)-e, A, -e:=(v;—vi)- e



In terms of Lyapunov L? - functionals...

Goal : Existence of bi-cluster flocking

Definition of bi-cluster flocking needs two conditions;

@ Local flocking of each group,

@ Separation between two groups.

Hence we get bi-cluster flocking configurations if
Q X¥<oo, V=0
Q@ A,-e>c>0, for some c.

If (1) is satisfied, then (2) is similar to the two particle result.

If (2) is true, we can estimate (1) using Gronwall type inequalities.
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Existence of bi-cluster flocking

Theorem 1; [Choi-Ha-Huang-Jin-K. 2016]

A well-prepared initial data which satisfies the following conditions
(Co0) — (Co2) tends to a bi-cluster flocking.

@ (Co0) (Parameters): For some fixed unit vector e,

N>3, 2\ :=A,(0)-e Vo:=W(0),
Xo:=X(0), ro:= "l'Jn {(x1i(0) — x2;(0)) - e} .
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Existence of bi-cluster flocking

@ (Col) (Small perturbations):

Kmin{Nl,Nz} >

N . P(V2x)dx.

Vo <

@ (Cp2) (Close to bi-cluster): For the vector e from (Co0),

o0 Ao Vo
Ao > 42V, / P(x)dx <

: 22K \/M5(0)

where My(t) is the second momentum,

N
Ma(t) =) |vill*.
i=1
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Sketch of proof

Lemma 0; Statistical inequlities

Let {(x;, vi)}", be the solution to the C-S model with V(0) > 0.
Then the functionals (X, V, A,) satisfy the following coupled system of
dissipative differential inequalities (SDDI):

(i) |X| <V, |

(i Vv < ’m”’{,\/’w’@b(\fzxw + 2V2K/Ma(0)ehp,
o 2M5(0)

(inA, > —K mﬁjl\/ﬁ

where 1y is the maximal interaction strength between differnt groups,

Ym(t) == ff}g.xw(Hij — x1il[)-
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Sketch of proof

Step 1 : Continuity argument over the separating velocity
At t = 0, the following inequlity holds from the definition of Ag and rp.

min || x1;(t) — x2;(t)|| > Xot +ro, for t €0, T). (1)
i

We now define T* to be the supremum among all T satisfying (1).
We will show that T* = oco by assuming T* < oco.

Step 2 : Lyapunov function approach from global flocking

If the separation inequlity (1) holds,
then for large ag and rp, we can get X'(t) < oo using the Lyapunov
functional method;

O(X,V) =V + Km”'{N’W /X P(V2x)dx.
0
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Sketch of proof; Step 1

Lemma 1
Suppose that conditions (Cp) hold. Then

V(t) <2V fort e [0, TF).

Lemma 2
Suppose that conditions (Cp) hold. Then

(vii(t) — voj(t)) - e > Ao, for Vi,jandt e [0, T").

This implies T* = 0o, which ends the continuity argument.
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Sketch of proof; Step 1

Proof of lemma 1
From Lemma 0, we have

do dy Kmin{Nl, Nz}
< gt— N Y(V2X)V
< 2V2K+\/Mo(0)ih( Aot + rg) for t € [0, T*).

Integrating the above inequality, we obtain

V(t) + K’“”‘{N’W’ /Otw(\@/l’(t))V(t)dt

< V(0) + 2v2K /M5 (0) /OO Vot + 1o)dt
0

for t € [0, T*]. By condition (Cpl), we have V(t) < 2V, for t € [0, T*].
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Sketch of proof; Step 1

Proof of lemma 2
From lemma 0,

. 2M,(0) N
> s S .
A, > —K in (s, N2}¢(/\0t+ ro) forte0,T")

This yields

) /oo P(Xot + ro)dt  for t € [0, T™).
>} Jo

Ay(t) > 200 — Ky| ————
(t) 2 2a0 min{ Ny, N

We now use the condition (Col) to obtain A,(t) > 3ag. Then,

(vii(t) — voj(t)) - e = A, (t) + (V1 — V1)) - €

3
> a0 - V2V(t) > Ao, for t € [0, T*].
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Sketch of proof; Step 2

Lemma 3
We can prove the theorem by showing following properties.

(1) IXm >0 s.t. X(t) <Xy, te][0,00),
(if) V(t) < Cy(t) as t — oo, for some constant C > 0.
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Sketch of proof; Step 2

Proof of lemma 3 (i)
(i) Using the Lyapunov functional ®(X,V), we get

K min{Ny, No} [*(®)

V(t) + N Y(V2x)dx

Yoo (2)
<V + 2ﬁK\/M2(O)/ (Aot + ro)dt, for t € [0, 00).
0

Since condition (Cp2) means that there exist Xy > 0 such that

_ Kmin{Ny, N} [

m . P(V2x)dx.

2V

Using condition (Cpl), we obtain X (t) < Xj for t € [0, 00).
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Sketch of proof; Step 2

Proof of lemma 3 (ii)

K min{Nl, NQ}

(ii) Define By := N

(V2Xp). From Lemma 0, we get

V < —BoV 4 2v2K/Ma(0)h( Aot + ro) for t € [0, 0).

We use Gronwall's inequality to obtain

V(t) < Voe Mt 4 2v2Ky 2/22(0)w(r0) e_BTOt 2\[Kﬁv M2 (0 ?t +r
0

< Cy(t) as t— oc.
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Decay rate of velocity fluctuations

Corollary; [Choi-Ha-Huang-Jin-K. 2016]

Suppose that conditions (C90)-(Cp2) hold. Then there exist v{_, v5., and
positive constants C; and C; such that for any i/, j, s.t.

t t
G / P(r)dr < i) — vEul + vas(t) — vl < Go / b(r)dr.
0 0

v

Remark

@ The velocity fluctuation is decaying as in the order of [ (7)dr, while
it decays exponentially in the emergence of the mono-cluster flocking.
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Decay rate of velocity fluctuations

Proof of algebraic decay

In the proof of lemma 0, assume N < N, then

Ny

K Moot
50 = Vi) + gy 23 [0l (s) ~xu(v(5) - vils)s.
i=1 j=

If we multiply both sides by e, then the velocity can be estimated using
the result of Theorem 1.
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Lyapunov (L>,L?) - functionals

To measure the asymptotic state of local flocking, it is convenient to use
variations with respect to each group’s central value.

XY= m’axHxa,- - x|, V= m;_'avaa,- —vi,

Cc c
where x§,, v§, are the mean values of group a.

To see the separation of two groups, we define Ay and A, as the
followings in order to measure the average difference between two groups.

(v5(0) ~ v5(0))
[v5(0) — v£(O)]

Ay = mi
<=

(x5 — x3)

A, ;= mi S —vel.
', v g;gHvﬁ vall

Note : By using L°°-type norm, we can sort out the flocking condition in
terms of coupling strength K.
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Multi-cluster flocking in terms of K

Theorem 2; [Ha-K.-Zhang 2016]

A well-prepared initial data which satisfies the following conditions
(C10) — (C12) tends to a multi-cluster flocking.

@ (C10) (Parameters):

1
Ao EmlnHvﬁ() v (0)|], and
_ YNAo >
/ Y(s)ds := 81— ) V2VR(0) mln w(2x)dx

where vy = ming Ny /N.
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Multi-cluster flocking in terms of K

@ (C11) (restriction on initial configurations):

Ao . v5(0) — vi(0)
V(0) < —, min  (Xgko — Xai0) * > .
N N PO B Ol

@ (C12) (restriction on coupling strengths):

Ki < K < Ky, for

_ 21°(0)
K= max{IYN f;?l(o)d)@x)dx}’

. 20
Kz = min = .
2 {37/\/ fxa(o)w(2x)dx}
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Numerical simulation on coupling strength
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Velocity fluctuation changes along the parameter K, coupling sterngth.

Red, green, blue lines are for each group, and the bright blue line is for the global.
Left : Initial velocity distributions = Initial position distributions. N = 20.

Right : Velocity fluctuation evaluated at time t = 100K.
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Remark

Remark
The conclusion from the analysis on K

o L! estimate of ¥(||xgj(t) — x4i(t)||) is essential to control X*(t)
Therefore, initial space distribution critically affects local flocking.

@ Kj and K3 are in a similar order, in particular,
Ki: Ko ~min [[vg — v || : maxV®.
This is the main difficulty to the local flocking problem when we use
Lyapunov functional approach.
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Hydrodynamic description of Cucker-Smale model

Recall that the temporal-spatial evolution of (p, u) is governed by

dp+V-(pu)=0, xeR? t>0,

pdeu+ pu-Vu= —Kp /R By = x|)(u(x) — u(y))o(y)dy,
(IO’ u)(X’ 0) = (PO, U0)7

where K is the coupling strength and ) is the communication weight.

In order to analyze the bi-cluster flocking phenomena, we consider a
coupled system of hydrodynamic equations.
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Hydrodynamic description of Cucker-Smale model

For two homogeneous ensemble, we use the following equations, which we
only use for non-overlapping p1 and p2. Set (p1, p2, u1, u2) be the phase,

Otp1 + V- (p1u1) =0,
p10tur + pruy - Vg

%11/
Qi(t
+f€12/

p20tuz + paun - Vup

’f22/
Qo(t
+ K21 /

Qi(t

:0

2

8tp2+v~(p2U2)=0, (X, t)GRdXR+,

Jo(ly = x)(ua(y) — wi(x))dy

Jo(ly = x)(wa(y) — vi(x))dy,

Jo(ly = x)(wa(y) — va(x))dy

)o(ly = x)(a(y) — va(x))dy,

44 /62



A Lagrangian formulation

In order to use the techniques of particle model, we use a Lagrangian
formulation to describe the particle-path.

First, we introduce the triplet (n;, g;, v;) for Lagrangian variables,
consisting of the forward particle path 7; = n;(x, t), Lagrangian mass
gi = qi(x, t), and velocity densities v; = v;(x, t).

We set Q1 := spt(p1)(0) and Q3 := spt(p2)(0) for notational convenience.
Then, for a fixed x € €;,

dni(x, t)
dt
ni(x,0) = x.

= ui(ni(x,t),t), t>0, i=12,

and
qi(x, t) == pi(ni(x, t),t), vi(x,t) == uj(ni(x, t), t).
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A Lagrangian formulation

Using the Lagrangian formulation, we define Lyapunov functionals as in
the particle model:

(t) = [[vi(t) — vie(t)lLe (). 1=1,2,
Xi(t) == |Ini(t) — nic(t) ]| L= (@)

V() 1= max { (1) = ve(®)ll (@) 2 B) = Vel |-

(1) 1= max {lmn (- 1) = ne(t) i@ 2 ) = el iy

Vq(t) = mi t) — t

d( ) XEQl,I)[]EQQ |V1(X7 ) V2(y’ )|’

Xy(t) = mi t) — t)|.
d( ) XGQl,I}?GQZ ’XI (X’ ) X2 (y, )’

Note that (Xj, X) and (V;, V) measure the velocity and spatial
fluctuations around the local averages and global averages.
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A Lagrangian formulation

Definition of flocking
Let Z = {(n;, qi, v;)}?>_; be a classical global solution to the system.

@ The Lagrangian configuration Z exhibits an asymptotic “mono-cluster
flocking” if and only if the functionals X and V satisfy

sup X(t) <oo lim V(t)=0.
0<t<00 t—o0

@ The Lagrangian configuration Z exhibits an asymptotic “bi-cluster
flocking” if and only if the functionals X, V; and V, satisfy

. : (R — i : ‘
Ogs;1<pOO X;(t) < oo, tlgr;OV,(t) 0, 1<i<2, Oglpimvd(t) >0

v
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Mono-cluster flocking on hydrodynamic C-S model

Theorem 3; mono-cluster flocking [Ha-K.-Zhang-Zhang, 2017,
the corresponding result of Ha-Kang-Kwon(2014)]

Suppose that the following conditions (Cgl) — (Cg3) hold.
@ (Csl): Initial supports of p;o are bounded and disjoint:
L(spt(pio)) < o0, pio(x) >0, xeQf i=12 X(0)>0,

where £ is a d-dimensional Lebesgue measure in R9.

@ (Cg2): Initial data are sufficiently regular:

(0. v0) € HE(@) x H1@), =12, s> 941

@ (Cg3): The coupling strengths are symmetric and bounded below:

. Vo
K12 = Ko1, Min k| p; > .
12 21 iy u||PJOHL1(91) f;: 1/1(2x)dx
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Mono-cluster flocking on hydrodynamic C-S model

Then, there exists a positive constant €9 depending only on the pj;o such
that if [|vio||pys+1(q,) < €0,/ = 1,2, then the initial value problem has a

unique classical solution (pj, u;), i = 1,2 satisfying regularity and flocking
estimates:

(i) (q,v) € Qs(o0), n € C?([0,00); HTHY).
(i) sup X(t) < Xoo, V() < Voe G¥(2e)t ¢ >0

0<t<0
where C; := m|n |\p,o||L1(Q X min kj and we the solution space
1< 1<i,j<2
Qy(00) = {(ai ) : s € CO([0, T); H¥) N e (o, T); H*),
v € CO([0, T); H*tYynct([o, T); H¥) }.
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Bi-cluster flocking on hydrodynamic C-S model

Theorem 4; bi-cluster flocking [Ha-K.-Zhang-Zhang, 2017]
Suppose that the following conditions (Cg1) — (Co4) hold.

@ (Col): Initial supports of pjp are bounded and disjoint:

L(spt(pio)) < o0, pio(x) >0, xeQ, |piollra, >0,

1 A
X(O) >0, M= §|V2C(O) — V1c(0)| >0, Vi:= V,'(O) <

0
77

(v2¢(0) — uc(0))
[v2c(0) — 1c(0)

ro ;= min |(n2(x,0) — n1(y,0)) > 0,

where £9 is a d-dimensional Lebesgue measure in RY.

@ (Cg92): Initial data are sufficiently regular:

d
(gio, vio) € H5(Q) x HH(Q)), i=1,2, s> 5 +1.
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Bi-cluster flocking on hydrodynamic C-S model

@ (C93): The coupling strengths are symmetric and bounded below:

Vip + 2520 o< )l

Kjj >

Foo ) = 17 27
x, ¥(2s)ds

Ao

12C/2M,(0) [° 4(s)ds’

0< ko1 =K1 <

— 2 , : Y2
where C:=i_y[lpiollin + max {llvioll 2 lIpioll 3} s 2

positive constant only depending on pjg.

@ (Co4): (For simplicity,) The communication weight v takes the form
given by:
1
W= —1 . B>t
(1+ )5

51/62



Bi-cluster flocking on hydrodynamic C-S model

Then, there exists a positive constant g depending only on the pjg such
that if

max | VxViollHs(oy) + K12 max{)\gﬁ, (14 r2) P} < eo.

Then, the Cauchy problem has a unique classical solution (p;, u;),i = 1,2
given by

(i) (a,v) € Qs(o0), 1€ CO([0,00); H¥HY).

(if) Va(t) > Xo, Vi(t) < Ci max{eiw’lb(%)}’

Xi(t) <oo, for t>0, i=1,2.
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Bi-cluster flocking on hydrodynamic C-S model

Remark

By the standard Sobolev embedding theorem,

the solution (g;, v;) € Qs(o0) on s > 4 + 1 in Theorem are C, that is
(qi- v1) € CH( x [0,50)).

On the other hand, the parameter
Ro = max{)\aﬁ, (1+ )92}

indicates the initial separation of two groups.

The inter-group action factor k12Rg is needed to control the global
existence since k12Rg =~ 0 implies the system is close to the steady state
and the bi-cluster flocking situation.

53 /62



Sketch of proof

Flocking estimates

Let T, € (0,00] be a positive number, and suppose that (Cg) holds.
Let (i, gi, vi) be a classical solution to the system in [0, T.).

Then, there exists positive constants X, € (0, 00) and
G = Gpio, V10, V20, K11, K12, 22, M(0), Xo0) such that

- - Aot
sup_ Ai(£) < Ry Vi) < G| BRIy (10 S0)] ke (0, T,
0<t<T. 2

i.e., bi-cluster flocking occurs asymptotically. Moreover, if we let
Ro = max{)\gﬁ, (1 + r2)=5/2}, then we have

o(1)
(1+1t)8

K12

Vi(t) < (V,-(O) + Ro)

1
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Sketch of proof

A priori estimates

For any positive constant T € (0, 00|, let o; be positive constants
satisfying

k
8- Z o > 1,
i=1
and (n;, gi, vi) be a classical solution to the system in [0, T)

Then, for t € [0, T), there exists C; only depend on initial conditions and
parameters such that

C1 Cl
[vi(t)ll 2 < [lvaoll2 + A+of T [Vxva(t)][2 < m7 and

Cl s+1
VX t S > VX s <
[Vxva(8)]| (1+ t)(ﬁ—m) IV (&)l]m Z (1+1) 5 Z, 101

v
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Sketch of proof

Existence of solutions
Note that (7 is independent of T. we set

1> [[violle2 + (s +2) G

Then for initial data ujo € H5"1(Qy) satisfying ||ug|| ysi1 < 0 < €1 , where
€o is given in a priori estimates, we define

T, :=sup{T >0: sup |v(t)||gs+1 < e1}
0<t<

Note that we know T} > 0. Suppose T; < oo. Then, by definition we
have

sup [[v(t)[|pser = e1. (3)

0<t<Ty¥

A priori estimates says it cannot be true, hence T} = oc.
The iteration scheme on (7", v") leads to the global existence of solutions
for small 1.
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Sketch of proof

Proof on a priori estimates (Zeroth-order)

2dt/ lvi(x)[2dx
_— / /Q B0 00m() ~mEM ) — ) v

+ 1o / /Q o @0 0)(0) ~ m) () () - (x)dye

< 21y //Q RANOIAGIE
+ k12 / /Q aaly. O)valy)(min(na(y) ~ m 0] () e

v
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Sketch of proof

Proof on a priori estimates (Zeroth-order)

th/ lv1(x)|?dx

< O(1)(k11V1(0) + K12R0)
B (1+t)8
(1 + (Ao(:flri 2)8/2 //Q o q2(y; 0)va(y)llva(x)|dydx
o(1)
<@y

g1 (-, 0) | [[vall o

. (H11V1(0) + 512R0)HV1”L2‘

Here O(1) is a positive constant only depending on 125__. Then we have

H11V1(0) + k12 Ro

la(®)lliz < lviollez + O ==~ "y5
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Sketch of proof

How about the first order?

Vi 22
% ||Vx2 Iz = /{11/Q q1(y,0)(vi(y) — va(x)) V(¥ (m(y) — m(x))) - Vxvady

=7 (0T (60n ()~ m()) - Feady

+miz [ a2y, 0)(%2y) — (N V() ~ () - Frady
=7 @2y, 0) V() () - Vo

<wu [ a1y 0020 (4 () ~ mE]2em () dy Vv

+ raz / a2y, 0)[va(y) — ()[4 (12(y) — 11 (3)) 12 () ly | Voowa |-
Q
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Sketch of proof

Proof on a priori estimates (first-order)

For the higher order estimates, we set an ansatz to use flocking estimates.
Define

G
= x <
T sup{ t €(0,T] ) 1V eva (£)][ e < T Vk < s},

Then we need to show T* = T.
The zeroth-order has faster decay rate than our ansatz in T%, hence it is
good for zeroth-order with proper C;. For the first order, we use

G

vxi""gc}l vxi 5§01 .

Thus we have the following, which we can use it in estimates of Hk.

[Vni(x, t)] < O(l)(l + /O+O<> |VXV;(7')|dT) <O(1)G.

60 /62



Summary

What we did
@ The existence of the bi-cluster flocking state,
@ Conditions on K which occurs multi-cluster flocking,

@ Local flocking phenomena on hydrodynamic C-S model.

Remarks on the local flocking
@ Initial positions are critical to prove the position separation on t — oc.

@ We should prove the local flocking of each group and the separating
among groups simultaneously.
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