CONTROLLABILITY OF THE 1D FRACTIONAL HEAT EQUATION UNDER POSITIVITY CONSTRAINTS

Umberto Biccari

umberto.biccari@deusto.es u.biccari@gmail.com
cmc.deusto.es/umberto-biccari

DeustoTech, Universidad de Deusto, Bilbao, Spain VIII Partial differential equations, optimal design and numerics Centro de Ciencias de Benasque Pedro Pascual, August 18th-30th 2019

Joint work with Mahamadi Warma and Enrique Zuazua

1-d fractional heat equation

$$\begin{cases} z_t + (-d_x^2)^s z = u\chi_\omega & (x,t) \in (-1,1) \times (0,T) \\ z \equiv 0 & (x,t) \in (-1,1)^c \times (0,T), \\ z(\cdot,0) = z_0 & x \in (-1,1). \end{cases}$$
(FH)

•
$$\omega \subset (-1, 1)$$
 • $z_0 \in L^2(-1, 1)$.

We are interested in analyzing controllability properties under positivity state/control constraints.

Fractional Laplacian

$$(-d_x^2)^s z = C_s \,\mathsf{P.V.} \int_{\mathbb{R}} \frac{z(x) - z(y)}{|x - y|^{1 + 2s}} \, dy.$$

$$\mathcal{C}_s = \left(\int_{\mathbb{R}} rac{1-\cos(\zeta_1)}{|\zeta|^{1+2s}}\,d\zeta
ight)^{-1} = rac{s2^{2s}\Gamma\left(rac{1+2s}{2}
ight)}{\pi^rac{1}{2}\Gamma(1-s)}.$$

Fractional Sobolev space

$$H^{s}(-1,1) := \left\{ z \in L^{2}(-1,1) : \int_{-1}^{1} \int_{-1}^{1} \frac{|z(x) - z(y)|^{2}}{|x - y|^{1 + 2s}} dx dy < \infty \right\}$$

• Intermediate Hilbert space between $L^2(-1, 1)$ and $H^1(-1, 1)$.

Scalar product

$$\langle z, w \rangle_{H^s(-1,1)} := \int_{-1}^1 zw \, dx + \int_{-1}^1 \int_{-1}^1 \frac{(z(x) - z(y))(w(x) - w(y))}{|x - y|^{1 + 2s}} \, dx dy$$

Fractional Sobolev norm

$$||z||_{H^{s}(-1,1)} := \left(\int_{-1}^{1} |z|^{2} dx + \int_{-1}^{1} \int_{-1}^{1} \frac{|z(x) - z(y)|^{2}}{|x - y|^{1 + 2s}} dx dy\right)^{\frac{1}{2}}$$

Theorem (B. and Hernández-Santamaría, IMA J. Math. Control Inf., 2018)

There exists $u \in L^2(\omega \times (0, T))$ such that the fractional heat equation (\mathcal{FH}) is

- *null-controllable* at time T > 0 if and only if s > 1/2.
- approximately controllable at time T > 0 for all $s \in (0, 1)$.

Remark: the equation being linear, by translation if s > 1/2 we have controllability to trajectories \hat{z} .

Proof

Null controllability: through the moment method, based on the following behavior of the spectrum.

Eigenvalues (Kwaśnicki, J. Funct. Anal., 2012)

$$\lambda_k = \left(\frac{k\pi}{2} - \frac{(1-s)\pi}{4}\right)^{2s} + O\left(\frac{1}{k}\right).$$

Approximate controllability: The result follows from the following property.

Parabolic unique continuation

Given $s \in (0, 1)$ and $p^T \in L^2(-1, 1)$, let p be the unique solution to the adjoint equation. Let $\omega \subset (-1, 1)$ be an arbitrary open set. If p = 0 on $\omega \times (0, T)$, then p = 0 on $(-1, 1) \times (0, T)$.

This, in turn, is a consequence of the **unique continuation** property for the Fractional Laplacian.

Fall and Felli, Comm. Partial Differential Equations, 2014.

 The fractional heat equation preserves positivity: if z₀ is a given non-negative initial datum in L²(-1, 1) and u is a non-negative function, then so it is for the solution z of (FH).

B., Warma and Zuazua, 2019

Question

Can we control the fractional heat dynamics (\mathcal{FH}) from any initial datum $z_0 \in L^2(-1, 1)$ to any positive trajectory \hat{z} , under positivity constraints on the control and/or the state?

Theorem (B., Warma and Zuazua, 2019)

Let s > 1/2, $z_0 \in L^2(-1, 1)$ and let \hat{z} be a positive trajectory, i.e., a solution of (\mathcal{FH}) with initial datum $0 < \hat{z}_0 \in L^2(-1, 1)$ and right hand side $\hat{u} \in L^{\infty}(\omega \times (0, T))$. Assume that there exists $\nu > 0$ such that $\hat{u} \ge \nu$ a.e in $\omega \times (0, T)$. Then, the following assertions hold.

- 1. There exist T > 0 and a non-negative control $u \in L^{\infty}(\omega \times (0, T))$ such that the corresponding solution z of (\mathcal{FH}) satisfies $z(x, T) = \widehat{z}(x, T)$ a.e. in (-1, 1). Moreover, if $z_0 \ge 0$, we also have $z(x, t) \ge 0$ for every $(x, t) \in (-1, 1) \times (0, T)$.
- 2. Define the minimal controllability time by

$$T_{min}(z_0, \widehat{z}) := \inf \Big\{ T > 0 : \exists \ 0 \le u \in L^{\infty}(\omega \times (0, T)) \text{ s. } t.$$
$$z(\cdot, 0) = z_0 \text{ and } z(\cdot, T) = \widehat{z}(\cdot, T) \Big\}.$$

Then, $T_{min} > 0$.

3. For $T = T_{min}$, there exists a non-negative control $u \in \mathcal{M}(\omega \times (0, T_{min}))$, the space of Radon measures on $\omega \times (0, T_{min})$, such that the corresponding solution of (\mathcal{FH}) satisfies $z(x, T) = \hat{z}(x, T)$ a.e. in (-1, 1).

The proof requires two main ingredients:

1. Controllability through L^{∞} controls, consequence of the following observability inequality

$$\|p(\cdot,0)\|_{L^2(-1,1)}^2 \leq C\left(\int_0^T \int_\omega |p(x,t)| \, dx dt\right)^2$$

2. Dissipativity of the fractional heat semi-group.

Some preliminary results

Theorem

Let $\{\mu_k\}_{k>1}$ be a sequence of real numbers satisfying the conditions:

1. There exists $\gamma > 0$ such that $\mu_{k+1} - \mu_k \ge \gamma$ for all $k \ge 1$.

2.
$$\sum_{k\geq 1} \mu_k^{-1} < +\infty.$$

Then, for any T > 0, there is a positive constant C = C(T) > 0 such that, for any finite sequence $\{c_k\}_{k>1}$ it holds the inequality

$$\sum_{k\geq 1} |c_k|^2 e^{-2\mu_k T} \leq C \left\| \sum_{k\geq 1} c_k e^{-\mu_k t} \right\|_{L^1(0,T)}^2$$

PROOF:

Under the above hypothesis on $\{\mu_k\}_{k\geq 1}$, the function $F(t) := \sum_{k>1} c_k e^{-\mu_k t}$ satisfies

$$|c_k| \le C \, \|F\|_{L^1(0,T)} \,, \quad \sum_{k \ge 1} |c_k| e^{(\mu_1 - \mu_k)t} \le C(t) \, \|F\|_{L^1(0,T)} \,, \quad C(t) \text{ uniformly bounded } \forall t > 0.$$

Then

$$\sum_{k\geq 1} |c_k|^2 e^{-2\mu_k T} = \sum_{k\geq 1} |c_k| e^{(\mu_1 - \mu_k)t} \left(|c_k| e^{(\mu_k - \mu_1)t} e^{-2\mu_k T} \right) \le C \|F\|_{L^1(0,T)}^2.$$

Lemma

Consider the eigenvalue problem for the Dirichlet fractional Laplacian in (-1, 1):

$$\begin{cases} (-d_x^2)^s \phi_k = \lambda_k \phi_k, & x \in (-1,1) \\ \phi_k = 0, & x \in (-1,1)^c. \end{cases}$$

Then for any open subset $\omega \subset (-1, 1)$, there is a positive constant $\beta > 0$ such that $\|\phi_k\|_{L^1(\omega)} \ge \beta > 0$.

PROOF (main idea):

The proof is based on the fact that

$$\int_{\omega} |\phi_k(x)| \, dx \ge \int_{\omega} \left| \sin\left(\mu_k(1+x) + \frac{(1-s)\pi}{4} \right) - \frac{c(1-s)}{\sqrt{s}} \mu_k^{-1-2s} \right| \, dx$$
$$\mu_k := \frac{k\pi}{2} - \frac{(1-s)\pi}{4}$$

Proposition

For any T > 0 and $p_T \in L^2(-1,1)$, let $p \in L^2((0,T); H_0^s(-1,1)) \cap C([0,T]; L^2(-1,1))$ with $p_t \in L^2((0,T); H^{-s}(-1,1))$ be the weak solution of the adjoint system

$$\begin{cases} -p_t + (-d_x^2)^s p = 0, & (x,t) \in (-1,1) \times (0,T) \\ p = 0, & (x,t) \in (-1,1)^c \times (0,T) \\ p(\cdot,T) = p_T(\cdot), & x \in (-1,1). \end{cases}$$

Then, for any s > 1/2, there is a constant C = C(T) > 0 such that

$$\|\boldsymbol{p}(\cdot,0)\|_{L^2(-1,1)}^2 \leq C \left(\int_0^T \int_\omega |\boldsymbol{p}(x,t)| \, dx dt\right)^2.$$

Theorem

For any $z_0 \in L^2(-1, 1)$, s > 1/2 and T > 0, there exists a control function $u \in L^{\infty}(\omega \times (0, T))$ such that the corresponding unique weak solution z of (\mathcal{FH}) with initial datum $z(x, 0) = z_0(x)$ satisfies z(x, T) = 0 a.e. in (-1, 1). Moreover, there is a constant C > 0 (depending only on T) such that

$$||u||_{L^{\infty}(\omega \times (0,T))} \leq C ||z_0||_{L^2(-1,1)}.$$

PROOF:

Classical duality argument.

Proof of the main result - 1: constrained controllability

Subtracting *ẑ* in the equation, it is enough to show that there exist a time *T* > 0 and a control *v* ∈ *L*[∞](*ω* × (0, *T*)), *v* > −*ν* a.e. in *ω* × (0, *T*), such that

$$\begin{cases} \xi_t + (-d_x^2)^s \xi = v_{\chi\omega}, & (x,t) \in (-1,1) \times (0,T) \\ \xi = 0, & (x,t) \in (-1,1)^c \times (0,T) \\ \xi(\cdot,0) = z_0(\cdot) - \widehat{z}_0(\cdot), & x \in (-1,1) \end{cases} \Rightarrow \quad \xi(x,T) = 0.$$

• This is equivalent to the observability inequality

$$\|\boldsymbol{p}(\cdot,\tau)\|_{L^2(-1,1)}^2 \leq C(T-\tau) \left(\int_{\tau}^T \int_{\omega} |\boldsymbol{p}(\boldsymbol{x},t)| \, d\boldsymbol{x} dt\right)^2.$$

 Using that the eigenvalues {λ_k}_{k≥1} form a non-decreasing sequence, and the dissipativity of the fractional heat semi-group:

$$\begin{split} \| p(\cdot, 0) \|_{L^{2}(-1, 1)}^{2} &\leq e^{-2\lambda_{1}\tau} \| p(\cdot, \tau) \|_{L^{2}(-1, 1)}^{2} \\ &\leq e^{-2\lambda_{1}\tau} C(T - \tau) \left(\int_{0}^{T} \int_{\omega} | p(x, t) | \, dx dt \right)^{2} \end{split}$$

Proof of the main result - 1: constrained controllability

• By duality, the control v can be chosen such that

$$\|v\|_{L^{\infty}(\omega \times (0,T))}^{2} \leq e^{-2\lambda_{1}\tau}C(T-\tau) \|z_{0}-\widehat{z}_{0}\|_{L^{2}(-1,1)}^{2}.$$

• Taking $\tau = T/2$, we obtain

$$\|v\|_{L^{\infty}(\omega \times (0,T))}^{2} \leq e^{-\lambda_{1}T} C(T) \|z_{0} - \widehat{z}_{0}\|_{L^{2}(-1,1)}^{2}.$$

• The observability constant C(T) is **uniformly bounded** for any T > 0. Hence, for T large enough we have

$$\|\mathbf{v}\|_{L^{\infty}(\omega\times(0,T))}^{2}<\nu.$$

- This implies that v > −ν. Therefore, the control v > −ν steers ξ from z₀ − 2₀ to zero in time T > 0, provided T is large enough. Consequently, z is controllable to the trajectory 2 in time T.
- If $z_0 \ge 0$, thanks to the maximum principle, we also have $z(x, t) \ge 0$ for every $(x, t) \in (-1, 1) \times (0, T)$.

Proof of the main result - 2: positivity of T_{min}

Solution of (*FH*) in the basis of the eigenfunctions {*φ_k*}_{k≥1}:

$$z(x,t) = \sum_{k\geq 1} z_k(t)\phi_k(x).$$

$$z_k(t) = z_k^0 e^{-\lambda_k t} + \int_0^t e^{-\lambda_k(t-\tau)} u_k(\tau) d\tau, \quad u_k(t) := \int_\omega u(x,t)\phi_k(x) dx.$$

• $z(x, T) = \hat{z}(x, T)$ a.e. in (-1, 1):

$$z_k(T) = \int_{-1}^1 \widehat{z}(x,T)\phi_k(x)\,dx =: \zeta_k \quad \Rightarrow \quad \zeta_k - z_k^0 e^{-\lambda_k T} = \int_0^T e^{-\lambda_k(T-\tau)}u_k(\tau)\,d\tau.$$

• For every $0 \le \tau \le T$:

$$\zeta_k - z_k^0 e^{-\lambda_k T} \leq \int_0^T u_k(\tau) \, d\tau \leq \zeta_k e^{\lambda_k T} - z_k^0.$$

Assume by contradiction that, for every *T* > 0, there exists a non-negative control function *u^T* steering *z*₀ to *2*(·, *T*) in time *T*, and that *2*(·, *T*) ≠ *z*₀. Then:

$$\lim_{T\to 0^+}\int_0^T u_k^T(\tau)\,d\tau=\zeta_k-z_k^0=:\gamma \quad \Longrightarrow \quad z_k^0=\zeta_k-\gamma.$$

Proof of the main result - 2: positivity of T_{min}

•
$$z_0 \in L^2(-1,1)$$
:

$$\sum_{k\geq 1} |z_k^0|^2 = \sum_{k\geq 1} \left(\zeta_k^2 - 2\gamma\zeta_k + \gamma^2\right) < +\infty \quad \Rightarrow \quad \lim_{k\to+\infty} \left(\zeta_k^2 - 2\gamma\zeta_k + \gamma^2\right) = 0.$$

• Since $\{\phi_k\}_{k\geq 1}$ is an orthonormal complete system in $L^2(-1, 1)$, $\phi_k \rightarrow 0$ in $L^2(-1, 1)$ as $k \rightarrow +\infty$. Hence:

$$\lim_{k \to +\infty} (\widehat{z}(\cdot, T), \phi_k)_{L^2(-1,1)} = \lim_{k \to +\infty} \int_{-1}^1 \widehat{z}(x, T) \phi_k(x) \, dx$$
$$= \lim_{k \to +\infty} \zeta_k = 0 \quad \Rightarrow \quad \gamma = 0.$$

Consequently

$$0 = z_k^0 - \zeta_k = \int_{-1}^1 (z_0(x) - \hat{z}(x, T))\phi_k(x) \, dx, \text{ for all } k \ge 1.$$

• This is possible if and only if $z_0(x) = \hat{z}(x, T)$ a.e. in (-1, 1), which contradicts our previous assumption.

Proof of the main result - 3: minimal-time control

Constrained controllability of the system (\mathcal{FH}) holds in the minimal time T_{min} with controls in the (Banach) space of the Radon measures $\mathcal{M}(\omega \times (0, T_{min}))$ endowed with the norm

$$\begin{split} \|\mu\|_{\mathcal{M}(\omega\times(0,T_{\min}))} &= \sup\left\{\int_{\omega\times(0,T_{\min})}\varphi(x,t) \ d\mu(x,t): \\ \varphi &\in C(\overline{\omega}\times[0,T_{\min}],\mathbb{R}), \ \max_{\overline{\omega}\times[0,T_{\min}]}|\varphi| = 1\right\}. \end{split}$$

Solutions of (\mathcal{FH}) with controls in $\mathcal{M}(\omega \times (0, T_{min}))$ are defined by transposition

Transposition solution

Given $z_0 \in L^2(-1, 1)$, T > 0, and $u \in \mathcal{M}(\omega \times (0, T))$, the function $z \in L^1((-1, 1) \times (0, T))$ is a solution of (\mathcal{FH}) defined by transposition if

$$\int_{\omega \times (0,T)} p(x,t) du(x,t) = \langle z(\cdot,T), p_T \rangle - \int_{-1}^1 z_0(x) p(x,0) dx$$

where, for every $p_T \in L^{\infty}(-1, 1)$, the function $p \in L^{\infty}(Q)$ is the unique solution of

$$\begin{cases} -p_t + (-q_x^2)^s p = 0, & (x,t) \in (-1,1) \times (0,T) \\ p = 0, & (x,t) \in (-1,1)^c \times (0,T) \\ p(\cdot,T) = p_T, & x \in (-1,1). \end{cases}$$

Proof of the main result - 3: minimal-time control

• Denote $T_k := T_{min} + \frac{1}{k}, k \ge 1$.

There exists a sequence of non-negative controls $\{u^{T_k}\}_{k\geq 1} \subset L^{\infty}(\omega \times (0, T_k))$ such that the corresponding solution z^k of (\mathcal{FH}) with $z^k(x, 0) = z_0(x)$ a.e. in (-1, 1) satisfies $z^k(x, T_k) = \hat{z}(x, T_k)$ a.e. in (-1, 1).

- Extend these controls by \hat{u} on $(T_k, T_{min} + 1)$ to get a new sequence in $L^{\infty}(\omega \times (0, T_{min+1}))$.
- $p_T > 0 \implies p(x,t) \ge \theta > 0$ for all $(x,t) \in (-1,1) \times (0, T_{min} + 1)$. Then,

$$\theta \left\| u^{T_k} \right\|_{L^1(\omega \times (0, T_{\min} + 1))} = \theta \int_0^{T_{\min} + 1} \int_{\omega} u^{T_k}(x, t) \, dx dt$$

$$\leq \int_0^{T_{\min} + 1} \int_{-1}^1 p(x, t) u^{T_k}(x, t) \, dx dt$$

$$= \langle z(\cdot, T), p_T \rangle - \int_{-1}^1 z_0(x) p(x, 0) \, dx \leq M.$$

 {u^{T_k}}_{k≥1} is bounded in L¹(ω × (0, T_{min+1})), hence, it is bounded in the space *M*(ω × (0, T_{min+1})). Thus, extracting a sub-sequence, we have:

$$u^{T_k} \stackrel{*}{\rightharpoonup} \widetilde{u} \quad weakly -* in \mathcal{M}(\omega \times (0, T_{min+1})) \text{ as } k \to +\infty.$$

The limit control \tilde{u} satisfies the non-negativity constraint.

Proof of the main result - 3: minimal-time control (cont.)

• For any k large enough and $T_{min} < T_0 < T_{min+1}$, we have

$$\int_{\omega\times(0,T_0)} p(x,t) \ du^{T_k}(x,t) = \langle \widehat{z}(\cdot,T_0), p_T \rangle - \int_{-1}^1 z_0(x) p(x,0) \ dx.$$

• p_T : first **non-negative** eigenfunction of $(-d_x^2)^s$

 $p \in C([0,T]; D((-d_x^2)^s)) \hookrightarrow C([0,T] \times [-1,1]).$

• By definition of *weak*^{*} limit, letting $k \to +\infty$, we obtain

$$\int_{\omega\times(0,T_0)} p(x,t) \ d\widetilde{u}(x,t) = \langle \widehat{z}(\cdot,T_0), p_T \rangle - \int_{-1}^1 z_0(x) p(x,0) \ dx,$$

which implies that $z(x, T_0) = \hat{z}(x, T_0)$ a.e. in (-1, 1).

• Taking the limit as $T_0 \rightarrow T_{min}$ and using the fact that

 $|\widetilde{u}|(\omega \times (T_{min}, T_0)) = |\hat{u}|(\omega \times (T_{min}, T_0)) = 0, \text{ as } T_0 \to T_{min}$ we deduce that $z(x, T_{min}) = \widehat{z}(x, T_{min})$ a.e. in (-1, 1).

Numerical simulations

- We consider the problem of steering the initial datum $z_0(x) = \frac{1}{2} \cos(\frac{\pi}{2}x)$ to the target trajectory \hat{z} solution of \mathcal{FH} with initial datum $\hat{z}_0(x) = 6 \cos(\frac{\pi}{2}x)$ and right-hand side $\hat{u} \equiv 1$.
- We choose s = 0.8 and $\omega = (-0.3, 0.8) \subset (-1, 1)$ as the control region.
- The approximation of the minimal controllability time is obtained by solving the following constrained minimization problem:

minimize T

$$\begin{cases}
T > 0 \\
z_t + (-d_x^2)^s z = u_{\chi_\omega}, & a. e. in (-1, 1) \times (0, T) \\
z(\cdot, 0) = z_0 \ge 0, & a. e. in (-1, 1) \\
z \ge 0, & a. e. in (-1, 1) \times (0, T) \\
u \ge 0, & a. e. in \omega \times (0, T).
\end{cases}$$

To perform the simulations, we apply a FE method for the space discretization of the fractional Laplacian on a uniform space-grid

$$x_i = -1 + \frac{2i}{N_x}, \quad i = 1, \dots, N_x,$$

with $N_x = 20$. Moreover, we use an explicit Euler scheme for the time integration on the time-grid

$$t_j = \frac{Tj}{N_t}, \quad j = 0, \ldots, N_t,$$

with N_t satisfying the **Courant-Friedrich-Lewy** condition. In particular, we choose here $N_t = 100$.

Numerical simulations

- We obtain the minimal time $T_{min} \simeq 0,2101$.
- In this time horizon, the fractional heat equation *FH* is controllable from the initial datum *z*₀ to the desired trajectory *2*(·, *T*) by maintaining the positivity of the solution.

Numerical simulations

• The impulsional behavior of the control is lost when extending the time horizon beyond T_{min}.

This control has been computed by solving the minimization problem:

$$\begin{split} \min \ \|z(\cdot,T) - \widehat{z}(\cdot,T)\|_{L^2(-1,1)} \\ \begin{cases} T > 0 \\ z_t + (-d_x^2)^s z = u\chi_{\omega}, & a. e. \text{ in } (-1,1) \times (0,T) \\ z(\cdot,0) = z_0 \ge 0, & a. e. \text{ in } (-1,1) \\ z \ge 0, & a. e. \text{ in } (-1,1) \times (0,T) \\ u \ge 0, & a. e. \text{ in } \omega \times (0,T). \end{cases} \end{split}$$

• Finally, when considering a time horizon *T* < *T*_{min}, constrained controllability fails.

THANK YOU FOR YOUR ATTENTION!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 694126-DYCON).

European Research Council Established by the European Commission

DeustoTech

