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Abstract

We address the problem of inverse design of linear hyperbolic transport equations in 2D
heterogeneous media. We develop numerical algorithms based on gradient-adjoint method-
ologies on unstructured grids. While the flow equation is compulsorily solved by means of a
second order upwind scheme so to guarantee sufficient accuracy, the necessity of using the
same order of approximation when solving the sensitivity or adjoint equation is examined.
Two test cases, including Doswell frontogenesis, are analysed. We show the convenience of
using a low order method for the adjoint resolution, both in terms of accuracy and efficiency.
An analytical explanation for this fact is also provided in the sense that, when employing
higher order schemes for the adjoint problem, spurious high frequency numerical components
slow down the convergence process.

Keywords Linear transport - Inverse design - Sensitivity - First and second order schemes -
Gradient descent method - Adjoint
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1 Introduction

Adjoint methods have been systematically associated to the optimal control design (Herty
et al. 2015) and their applications to aerodynamics (Carpentieri et al. 2007; Castro et al.

Communicated by Cristina Turner.

B<XI M. Morales-Herndndez
mmorales @unizar.es

' Fluid Mechanics, LIFTEC-EINA,CSIC-Universidad Zaragoza, Maria de Luna 3, 50018 Zaragoza,
Spain

2 Department of Soil and Water, EEAD-CSIC, Avda. Montafiana 1005, 50059 Zaragoza, Spain

DeustoTech, University of Deusto, 48007 Bilbao, Basque Country, Spain

Departamento de Matemdticas, Universidad Auténoma de Madrid, Cantoblanco, Madrid 28049,
Spain

Facultad Ingenierfa, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country,
Spain

Published online: 04 October 2019 &)\ Springer f DMAC


http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-019-0935-0&domain=pdf
http://orcid.org/0000-0001-6961-7250

168  Page 2 of 25 M. Morales-Hernandez, E. Zuazua

2007; Giles and Pierce 2000; Ulbrich 2001). During the last decades, several works were
oriented to develop a robust control theory based on the concepts of observability, optimality
and controllability for linear and non-linear equations and systems of equations (Castro et al.
2008; Zuazua 2002, 2005, 2007). At the same time, and focusing on applications related to
computational fluid dynamics, many contributions can be found in the literature concerning
inverse design, parameter identification or optimization in general for engineering problems
(Power et al. 2006) and in aeronautical applications in particular (Castro et al. 2007; Jameson
1988). The use of adjoint equations and gradient methods for this purposes is widely justified
via the minimization of a functional or cost function (Huang and Ascher 2014; Nocedal and
Wright 1999), resulting a suitable way of analysing the sensitivity of a complex dynamical
system (Li and Petzold 2004).

Optimization methods and, in particular, the best representative gradient descent method,
need some information about the gradient of the function to be minimized, which will be
closest related to the resolution of the adjoint variables. Two trends or approaches have
divided the research community when trying to solve backwards in time the adjoint equation
or system of equations: the continuous and the discrete version. While in the continuous
approach the set of adjoint equations is derived analytically and then discretized and solved
by means of a certain numerical method, the discrete approach consist of a straightforward
algebraic manipulation to achieve the discretized version of the adjoint equation from the
original numerical methods used for the primitive flow equations. Although a large number
of works can be found comparing both strategies Nadarajah and Jameson (2000); Peter and
Dwight (2010), Giles and Pierce (2000) clarify the advantages and disadvantages of using
one or another approach.

Since the discrete approach forces to use the discrete adjoint problem of the flow solver to
numerically solve the adjoint equation, the continuous approach is adopted due to its valuable
flexibility of using different solvers for the flow and adjoint equations. It is well known that
problems where high frequencies play an important role such as the control of wave equation
(Zuazua 2005; Ervedoza and Zuazua 2013; Glowinski 1992) or the shape design optimization
(Nochetto et al. 1996) require a filtering or smoothing operator to eliminate the undesirable
oscillations that appear when applying the discrete approach for the optimization method. In
contrast, as subsequently detailed, the use of such operator can be avoided by adopting a low
order numerical scheme for the adjoint equation in unsteady flows.

In this paper, the focus is put on the 2D linear scalar transport equation, that can be
expressed in a conservative form as follows:

du(x,y,t)
T+V-(vu)=0, u(x, y,0) = uo, ey
where v = v(x, y) is a time-independent velocity field of propagation.

Given a target function u* = u*(x, y), the aim in the 2D inverse design problem consists
in finding u¢ such that u(7) ~ u™ via the minimization of a functional J:

1 *12
J(uo) = EIM(T) —ul" (2)

This problem can be easily addressed by simply solving the transport equation backwards in
time because of the time reversibility of the model. But such a simple approach fails as soon
as the model involves nonlinearities (leading to shock discontinuities) or diffusive terms,
making the system time-irreversible.
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o k ( O) ‘ backward

P

uFt1(0) = u*(0) — ea*(0)

Fig. 1 Iteration of the 2D inverse design

We are thus interested in the development of gradient descent methods with the aid of the
adjoint equation (solved backwards in time) that can be easily deduced

do(x,y,t)

o v-Vo =0, o(T)=u(T) —u*, 3)

where 0 = o (x, y, t) is the adjoint variable.

To achieve a good match with the continuous solutions, high order numerical schemes
need to be used for the forward state Eq. (1). Here, we shall use a second order scheme. Our
main objective is to test the convenience of using the same order of accuracy when solving
the adjoint equation or, by the contrary, to employ a low order one. When implementing the
gradient descent iterations, the numerical scheme employed for solving the adjoint equation
determines the direction of descent. Hence, different solvers for the adjoint system provide
different results that can be compared in terms of accuracy and efficiency.

As we shall see, and this will be illustrated in two examples, with a full geometric meaning,
the use of a first order scheme is not only sufficient but, in fact, provides better results in terms
of computational complexity (efficiency) and accuracy. Although this might seem surprising
at first, it is a consequence of the fact that when employing a second order scheme for the
adjoint problem, spurious high frequency numerical components slow down the convergence
process.

Even in this linear purely hyperbolic model, in which nonlinear and diffusive effects have
been ignored, when dealing with intricate geometric configurations either for the velocity
field or for the shape of the target, building accurate and efficient numerical schemes is not
an easy task. The main advantage of the gradient-adjoint methods developed here resides in
its potential extrapolation to real problems with complicated non-linear fluxes, source and
diffusive terms that cannot be addressed by simple backward resolution.

A gradient-adjoint iterative method is based on iterating a loop where the equation of state
(flow equation) is solved in a forward sense while the adjoint equation, which is of hyperbolic
nature as well, is solved backwards in time (see Fig. 1).

The adequate resolution of this loop is the main question addressed in this paper, paying
attention not only to accuracy but also to reducing its computational complexity. One could
expect that the choice of high order numerical methods to solve both the equation of state
and the adjoint one should provide the best results in terms of accuracy, at the prize of a high
computational cost. But this is not always true and it is possible to relax the necessity of
using the same order of accuracy for the resolution of the adjoint equation, not only reducing
considerably the computational time needed by the complete loop but also achieving the
same order of accuracy on the approximation of the inverse design, which is our ultimate
goal.
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The outline of this paper is as follows: after this introduction, the 2D inverse design problem
is analysed from a continuous point view, where the derivation of the adjoint equation and
the gradient descent method are developed. The discrete version of the problem is then
analysed. In particular, two schemes are presented, which will be the basis of the numerical
experiments: a First Order Upwind (FOU) scheme and a Second Order Upwind (SOU)
scheme, both implemented on unstructured grids. Afterwards, two test cases with analytical
solution are used to evaluate the convenience of using one or another solver for the resolution
of the adjoint equation, based on the accuracy and the computational time. The FOU scheme
provides better results and an analytical explanation for this fact is also enclosed. This fact
is illustrated and explained by further analytical and computational considerations. We close
the article by pointing towards some possible extensions and directions for future research.

2 2D inverse design
2.1 Governing equations and derivation of the continuous adjoint equation

As stated in the introduction, we focus on the following conservative linear transport scalar
equation with an heterogeneous time-independent vector field v = v(x, y):
ou
— 4+ V.- (vu) =0. “4)
at
Here, and in the sequel - denotes the scalar product in RZ.

Obviously, the solution u = u(x, y, t) exists and it is unique and can be determined by
means of the method of characteristics provided v is smooth enough (say, C'). Thus, for all
initial data ug € L2(R?) there exists an unique solution in the class C ([0, T']; L2(R?)).

Let us consider the inverse design problem: given £2 C R? and a target function u* = u*(x, y)
at t = T, to determine the initial condition ug such that u(x,y,T) = u*(x, y) for all
(x,y) € £2.

From now on, the (x,y) dependence of the variables will be often omitted in the notation
for the sake of clarity.

As mentioned above, the problem could be easily addressed solving the Eq. (4) backwards
in time from the final datum u* at r = T, to determine uo = u(x, y, 0) exactly. But we are
interested in addressing it from the point of view of optimal control. Let us, therefore, define
the following functional, as a classical measure of the quadratic error with respect to the
target function u™*:

1
T (ug) = 5/9 (u(T) — u*)* dS. )

The derivation of the adjoint equation can be achieved by simply multiplying by o =
o (x, y,t) and integrating over £2 x [0, T']

r u
ol —+V-(vu))dSdr=0. (6)
0 Q ot
Integrating by parts

T 9o T T
/ au|gdS — / / u—dSdr +/ % uov -ndldr — / / uv-VodSdr =0,(7)
Q 0o Jo 0t o Jog 0 Je

where 0 £2 is the boundary and n is the outward normal direction to the domain £2, respectively.
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It is feasible to take Gateaux derivatives with respect to the variable « in this identity getting:

/06u| ds — / /SM—det—i—/ % Suov-ndldt — / /SMV VodSdt = 0.
982

®)

Gathering appropriately the terms:

® (#)

—
/ / (———V Vo)del—l—/ 68u|0d5+/ % duov-ndldt =0. (9)
2 082

Let us select () =0

0% Ve =0 10
—5 vV Vo= (10)
hence (9) becomes
/ [o(T)5u(T) — o (0)su(0)]dS + (g1) = 0. (11)
Q
Assuming o (T) = u(T) — u*
/ W(T) — u*)Su(T)dS + (f1) = / o (0)éu(0)dS. (12)
Q Q
This derivation led to the adjoint equation (#):
oo
—E—V Vo =0 o(T) =u(T) —u*, (13)

o = o(x, y,t) being the adjoint variable. This equation will measure the sensitivity of the
solution to changes in the initial condition. It is worth mentioning that the adjoint equation
is solved backwards in time (from t = T to t = 0). In fact, system (13) is well-posed if and
only if the original system is well posed in the forward sense.

The term (fit}) includes the boundary conditions. The computation of the sensitivity of the
functional and the adjoint system when the PDE model is considered in the whole space (in the
absence of boundaries) is straightforward. However, when the model and the cost functional
is considered in a bounded domain £2, suitable boundary conditions need to be imposed
for both the state and the adjoint system. In that case Dirichlet null boundary conditions are
imposed in complementary subsets of the boundary depending on whether the characteristics
are incoming or outgoing. Note that the characteristics are the same for both models, but that
the sense of time is reversed from one to the other, which explains the necessity of shaping
the role of the boundary subsets to impose the boundary conditions. Therefore, let us split
the set 02 = 921 U 92~ where

T={(x,y)€dR2|v-n=0}, 92 ={(x,y)€d2|v-n<0}. (14)
Taking the first variation of the boundary condition for the state equation (4) gives:

Su(x,y,0) =0 V(x,y) e a2 . (15)
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Additionally, adjoint equation (13) requires imposing adequate boundary conditions to avoid
the problem to be overdetermined when solving it backwards in time:

o(x,y,H)=0 VY(x,y) €dRt. (16)

Therefore, the term (fiff) vanishes. On the other hand, it is also feasible to take the first
variation of J with respect to ug in (5)

8J(uo):/ Su(T) (u(T) — u*)dsS. (17)
ko)
Finally,

8J (up) = / w(T) — u™)su(T)dS :/ o (0)6u(0)dsS. (18)
2 2

2.2 Gradient descent method and classical result of convergence

We apply a classical steepest descent algorithm to minimize the cost functional J. Given any
initilization value for u, say u8 = 0, for instance, the iteration can be written as follows:

ub™ = uf — e VIk, (19)
for k > 0, where
k
gk _ 80
Sug
From (18):
8J (uk
vk =00 _ k) (20)
Sug

In practice, the numerical scheme used for the resolution of the adjoint equation, determines
the descent direction 0¥ (0) in (19) that governs the next initial condition ué“ for the forward
state equation.

Here, we take the step ¢ to be constant, independent of k. Other, more sophisticated and
optimal choices are also possible. But the computational results we achieved are essentially
the same. For the sake of simplicity we thus take & independent of k. As it is well known
(Ciarlet 1982), assuming that

IVJ (1) — VIu2)| < Mluy —uz| (VJ(uy) — VI ), uy — uz) > mluy — ua|? (21)
one has the following estimate on the convergence of the gradient iteration
b — uh? < (1= 2em + e2MP)|u* — |, 22)

where ugj is the exact initial datum driving the solution of the state equation to the target u*.
Therefore, the convergence is guaranteed if and only if

1 —2em+e’M? < 1 (23)
or equivalently
2m

@ Springer f bMA



Adjoint computational methods for 2D inverse design. . . Page70f25 168

The velocity of convergence is then:
lub — ufl < (1 —2em + &> M**?|ug — uf| (25)

The problem under consideration enters in the class of quadratic minimization problems
Ax = b, A being symmetric and positive definite that can be solved via minimisation of the
functional

J(x) = %(Ax,x) — (b, x). (26)

If A is ill-conditioned, m << M, and ¢ should be very small to ensure the convergence.

3 Numerical approach to the continuous 2D inverse design problem
3.1 Numerical schemes for the flow equation

To obtain a numerical solution based on a finite volume approach, (4) is integrated in £2; X
[, "t1] where £2; represents each computational cell of the domain and = 4 A

/ / ( +V- (vu)> dsdr = 0. 27)

Using the Gauss divergence theorem

/ u(x,y,t”+1)dS—f u(x, y, ")dS+/
2 2

where f = vu is the flux, 0£2; denotes the boundary of £2; and n = (n,, n,) its unit normal
vector. The last contour integral in (28) can be replaced by the sum of the fluxes defined at
each edge k of length /i:

l"+1

it

f f.ndmdr =0, (28)
982;

it NEg

/ u(x,y,t’”'l)dS—/ u(x, y,t )dS—l—/ ka i dt =0, (29)
£2;

where Ng is the number of edges of each cell i (Ng = 3 is for triangular grids) with
neighbouring cells ji. Figure 2 clarifies the meaning of each variable.

In this work two numerical schemes are proposed: a first order upwind scheme and a
second order upwind scheme based on MUSCL-Hancock approach, which are described
afterwards.

3.1.1 First Order Scheme (FOU)

The FOU scheme can be formulated by considering the spatially-averaged value of the
variable u(x, y, t) at each cell i with area A;

1
=7/ u(x, y, ") d2 (30)
Ai Jg

and the time-averaged value at each interface k

1

f,':’*nk = o /,n (£ - my) dr. 31
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Fig.2 Sketch of the 2D finite volume approach

Therefore, from (28), the numerical scheme can be written in terms of the numerical fluxes
£
k

Wt = yn — £ gl (32)

The choice of the numerical fluxes in (32) will determine the diverse numerical schemes
described in the literature (Toro 2009; Godlewski and Raviart 1996).

There exists an equivalent way of formulating a conservative scheme using the flux dif-
ference splitting procedure. The numerical fluxes £’ in (32) can be expressed as follows in
terms of an upwind difference:

fime = (f - mg) + (8fn), (33)
where
(st = w (34)

According to (Godlewski and Raviart 1996), the following property is satisfied:

NEg
anlk =0 (35)
k=1

hence (32) is rewritten using (35) to achieve the flux difference formulation
n+1 n At & n,—
it = - = > @ty Tl (36)
Y k=1

whose meaning is simple: cell i is updated from time ¢" to time #"+! according to the in-going
contributions arriving from the neighbouring interfaces. The time step size is restricted by
the CFL condition (Courant et al. 1928). In the case of triangular grids, this expression is
(Morales-Hernandez et al. 2013):

min(y;, x;)

At = CFL min
k [v-n|}

@ Springer f bMA
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where

(3%)

3.1.2 Second Order Scheme (SOU)
We shall also use a SOU scheme, based on the MUSCL-Hancock approach (van Leer 1979).
Starting from the formulation of the FOU scheme, a two-step algorithm is adopted to get

a better accuracy. First of all, the solution at each cell i is linearly reconstructed using the
gradient vectors L; and the information provided by the three neighbouring cells ji, j» and

J3 (see Fig. 2)
Ui, —Uj
= “>, (39)
' (”Jé —Uuj

where

1 Vi —y1 —yz+y1)
J= 40
(2 —x)(y3 —y1) — (x3 —x)(y2 — y1) <_x3 X1 x2 —x 40

and (x1, y1), (x2, y2) and 93, y3) are the centroid coordinates of cells jj, j» and j3, respec-
tively. The limited slopes L; are obtained by means of the so-called flux limiter ¢

L = min D (o)L, 41

where the values o are computed as in Hubbard (1999). In this work, the limiter proposed
by Sweby (1984) is used:

@ (r) = max[0, min(Br, 1), min(r, B)] 1 <p <2. (42)

Therefore, it is possible to obtain the values at the edges (capital subscript) according to the
limited slopes and the position vectors r from the middle point M of the cell edge p to the
centroid of the cell i as follows:

Urp =u; + I’,‘ME,‘. (43)

Figure 3 shows a sketch of the variables and the linear reconstruction for the MUSCL-
Hancock approach.

Therefore, for each interface p sharing cells i and j, the quantities u;, and u s, can be defined
representing a suitable interpolation to the edge p from cells i and j, respectively. Once the
values are reconstructed at each interface, ensuring that

min(u;, uj) < upp, ujp < max(u;, u;) (44)

an intermediate step between time ¢ and " *! is required to achieve a second order accurate
scheme in space and time according to the wall-cell contributions:

Ar L&

+1/2

Wt =g, - T > (st il (45)
k=1

A second step is then computed, regarding not only for the wall-cell contributions but also
for the wall-wall contributions at both sides of each wall

At & Ar &
+1 n+1/2,— n+1/2
W = - T k§_1(8fn) e k§_1(8fn) et (46)
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Fig.3 MUSCL-Hancock reconstruction

where Sf;l_tl/z = J"H/z — £ and 817}:4/2 = f;’kﬂﬂ — . It is worth noting that

the wall-wall contributions are formulated using an upwind philosophy while the wall-cell
contributions are written as a central term.

3.2 Adjoint numerical schemes

To apply the same numerical techniques described above for the flow equation, the adjoint
equation:

do *
—E—V~V0‘=O o(T)=u(T) —u™, a7

has to be expressed in a conservative divergence form as follows:

—aa—j—v-(va)+ov-v:0 o(T) =u(T) —u*, (48)

where an extra term related to the divergence of the velocity field appears. To solve numeri-
cally this equation, we shall consider the term o'V - v as a source term and the same procedure
as in (28) can be applied. Assuming the backward resolution of this adjoint equation, the
following linearization in time is considered:

fian!

/ UV~Vdet:/(0V-V)”+] ds. (49)
2 2

m

This assumption allow us to formulate the FOU and SOU schemes for the adjoint equation
in an analogous way to those proposed for the flow equation. However, it is necessary to take
care about the signs in the upwind discretization in view of the fact that the sense of time is
to be reversed. At the end, the FOU scheme for the adjoint equation is given by:
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ain — n+l Z((an)’H—] +l Z(a n)n+1
— a;’l-‘rl 1— 72(8V )I’l+1 +l + 72(8f )I’l+1 +lk7 (50)
DV

while the SOU scheme is formulated in two steps as follows:

Ar & At O
n+1/2 +1 +1 +1
op M=ot 1 2A,~Z(8V“)7’” vy T (6D
k=1
DV
NE NE
At At
+1 +1,+ n+1
o' =o' 1 - A—iZ(évn)'}J I — A—iZ(s )}
k=1 k=1
DV
N,
n+1/2 + Al n+1/2
+ Z(ar U B IS (52)
=1

where sz;',j ll/ .- =1, n /2 fl."H . The terms underbraced with DV are related to the divergence

of the velocity ﬁeld and they vanish in the following test cases.

4 Test cases

The use of a SOU scheme for the flow equation (forward) is mandatory to achieve the best
accuracy since the FOU scheme is unable to capture the detail for the equation of state when
trying to reach the target function. A includes the comparison between the FOU and SOU
schemes for the forward simulation associated to the test cases presented in this section. The
issue of using one or another approach for solving the adjoint equation and, consequently,
the gradient direction approach, is worth analysing.

In both of them the vector field generating the dynamics is rather heterogeneous and pro-
duces a significant transformation of the initial profiles under the evolution. Furthermore, the
final targets correspond to continuous evolutions starting up from an initial datum with sharp
edges. Thus, even if the problems under consideration are linear, it is hard to achieve accu-
rate results. To check the efficiency and accuracy of the main two numerical schemes under
consideration we take advantage of having an analytical expression of the exact solution.
Furthermore, it is important to mention that the velocity fields in both test cases are
divergence-free. The state equation can the be written similarly in divergence or non-
divergence form:

9 9
l+v-(vu)=a—’:+(v-v)u=o, (53)

ot
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Fig.4 Boundary regions for both 2 1
test cases
3: i8
4% 7
............................ ;
5 6
because
V.v=0,

in the two examples under consideration. Since both test cases are considered over a square
domain, eight different boundaries can be distinguished, referenced in Fig. 4.

From now on, by the exact solution we understand the projection or restriction of the analytical
solution on the computational mesh.

Additionally, as mentioned in Sect. 2.2, the step size ¢ is set as a constant at the beginning
of each iteration. However, if the convergence is not guaranteed, i.e., J¥*! >= J*, the step
size is halved until J¥*! < J¥_ Therefore, the stopping criteria for the iterative algorithm
are:

1. To reach the maximum number of iterations

2. To achieve the maximum allowable error of the functional, in this case, 10~°

3. To descend below eyin = 107 when halving the step size ¢ trying to achieve conver-
gence.

4.1 Test case 1: Doswell frontogenesis

The first 2D test case was first proposed (in a forward sense) in Doswell (1984). It symbolizes
the presence of horizontal temperature gradients and fronts in the context of meteorological
dynamics. The original problem consists of a computational domain £2 = [—5, 5]% in which
a front defined by the following initial condition:

— i
u(x,y,0) = tanh (8) (54)
is advected under the velocity field given by
1
v=(—ygr),xgr) gr)=—0sech’(r)tanh(r) v = 2.59807, (55)
r

where r = /x2 + y2 and § is a constant representing the sharpness of the front for the initial
condition (54). The exact solution on the whole space R? has the following explicit form:

ycos(gt) — x sin(gt))

(56)

u(x,y,t) =tanh ( 5

This allows us to formulate the problem of inverse design. Given the exact value of the
solution at time t = T, i.e. giving (56) as a target function at t = 7', we aim to recover by a

@ Springer f bMA



Adjoint computational methods for 2D inverse design. . . Page 130f25 168
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Fig.5 Doswell frontogenesis: exact initial condition (left) and target function (right) for the inverse problem

computational version of the gradient-adjoint methodology described above, an accurate and
efficient approximation of the initial datum (54). According to the velocity field, boundary
conditions are imposed on regions 2, 4, 6 and 8 (see Fig. 4) for the state equation. Therefore,
the boundary condition (16) for the adjoint equation will be imposed on regions 1, 3, 5 and
7.

In our numerical experiments we take the values § = 1 and T = 4s. The exact initial
condition and the exact target are shown in Fig. 5 (left and right, respectively). As can be seen,
the target presents a vortex-type profile, due to the heterogeneous geometry of the velocity
field.

Our goal is to build a numerical method capable of predicting accurately and efficiently
an approximation of (54) out of the target (56) by means of a numerical version of the
optimisation algorithm above.

The domain is discretized in 39998 unstructured triangles using Triangle (Shewchuk
2002) in a uniform Delaunay mesh. The initial condition for the first iteration in (19) is
uo(x, v, 0) = 0. Both the forward and backward resolution are parallelized with OPENMP
in 4 cores. The maximum number of iterations for the gradient method is set to 75, a constant
step ¢ = 0.5 is selected and the Courant number is set to CFL = 0.5.

The numerical results are shown in Figs. 6, 7 and 8 for the target u(x, y, T), initial
condition u(x, y, 0) and adjoint o (x, y, 0), respectively, at the last iteration of the gradient
method. On the left side the VJFOU approach is displayed while the VJSOU resolution is
illustrated on the right side.

To complete the qualitative results, the error computed as the difference between the exact and
the numerical approximation is displayed in Figs. 9 and 10 for the target u(x, y, T) —u*(x, y)
and the initial datum u(x, y, 0) — u®(x, y).

Quantitative results can be obtained by means of the computation of L, and L, norms,
not only with respect to the target function but also to the known exact initial condition u®
in order to evaluate the results achieved by VJFOU and v JSOU:

N
Lo@")y = | u(xi, T) = u*(xi)? Loo(u") = max|u(x;, T) — u*(x;)|
N i ’

N
Lo@®) = | D (u(xi, 0) = ut ()2 Loo(®) = max |u(x;, 0) —u®(x;)].  (57)
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Fig.6 Doswell frontogenesis: numerical target u(x, y, T') achieved by V.J FOU (1eft) and v JSOU (right)
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Fig. 7 Doswell frontogenesis: numerical initial condition u(x, y, 0) achieved by VJ FOU (1eft) and V7SOV
(right)
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Fig. 8 Doswell frontogenesis: numerical adjoint variable o (x, y, 0) achieved by V.J FOU (left) and V. JSOU
(right)

@ Springer I br\/\



Adjoint computational methods for 2D inverse design. . . Page 150f25 168

T
1.343e-01

0.1
0.05
0
| -0.05
01
-1.221e-01

Fig.9 Doswell frontogenesis: target error u(x, y, T) —u™(x, y) achieved by V.J Fou (leftyand V.J Sou (right)

Fig. 10 Doswell frontogenesis: initial datum error u(x, y, 0) —u®(x, y) achieved by V.J FoU (left) and V.J sou
(right)
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Table %J Doswell Frontogenesis: Ly and Lo norms, number of iterations and CPU time for the VJ FOU and
v SO

Scheme  Lp (u”) Loo uT) Ly %) Loo %) nlters  CPU Time (s)
FOU 1.37127e+00  1.37078e—01  1.36043e+00  8.64870e—02 75 366.26
SouU 1.23889¢+00  1.34271e—01  1.88749¢+00  1.40718e—01 45 488.61

Table 1 condenses this information as well as the number of iterations and the CPU time for
each proposed scheme. For the sake of clarity and for each comparison, the best results are
highlighted in bold font.

Note that the number of iterations for the VJSOU approach does not reach the maximum
number of iterations set at the beginning of the inverse design process because at iteration
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ug 1.0 ut 1.000e+00
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=00 E 0.000e+00

Fig. 11 Square rotation: exact initial condition (left) and target function (right) for the inverse problem

45, the functional is not able to diminish its value to the next iteration due to the deterioration
of the initial condition by the high frequencies.

4.2 Test case 2: rotation of a square shape

The second test case is again a forward flow problem with analytical solution representing
the advection of a square interface centered at (0.5,0.5)

u(x,y,0) = x0.4,0.6)x[0.4,0.6] (X, ¥) (58)

in a computational domain £2 = [0, 1] x [0, 1] under the influence of a constant vorticity
velocity field given by:
—X). (59)

11
v=(y—§,5

3n . .
Therefore, after T = —— the square shape rotates # = 135° and the analytical solution
consists just of a rotation of the initial interface. In this case, boundary conditions are imposed

onregions 1, 3, 5 and 7 (see Fig. 4) for the state equation and on regions 2, 4, 6 and 8 for the
adjoint equation, respectively.

. . . . 3
Thus, we formulate the inverse problem, taking as target the analytical solution at = 7

The aim is then to recover the initial condition given by (58). Figure 11 shows the exact initial
condition (left) and the target function (right) for the inverse problem.

The domain is discretized in 77398 unstructured triangles and the code is paralellised in 4
cores using OPENMP as in the previous test case. Both flow and adjoint equations use a CFL
value of 0.5, which ensures their stability. For the gradient method (19), the first iteration is
set uo(x, v, 0) = 0, the maximum number of iterations is 75 and a constant gradient step
& = 0.5 is chosen.

Figures 12 and 13 show the numerical results achieved by the VJFOU (left) and V JSOU
(right) for the target u(x, y, T') and adjoint o (x, y, 0), respectively. The initial condition
u(x,y, 0) obtained by each approach is illustrated in Fig. 14 in plant view and in a 3D view
for the V JFOU (upper) and V.J SOU (Jower).

The computation of norms L, and L, as in (57) is straightforward for this test case.
Results are displayed in Table 2, including the information about the number of iterations
and the CPU time consumed by each approach.
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Fig. 12 Square rotation: numerical target u(x, y, T') achieved by V.J FOU (left) and v JSOU (right)
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Fig. 13 Square rotation: numerical adjoint variable o (x, y, 0) achieved by V.J FOU (jeft) and v JSOU (right)

Table 2 Square rotation: Ly and L norms, number of iterations and CPU time for the v JFOU ang v sSOU

Scheme L, uT) Loo uT) Ly u%) Loo (1) nlters  CPU time (s)
FOU 1.10586e4+01  7.66632e—01  1.15172e+01  8.24541e—01 75 6169.88
SOU 8.07958¢+00  6.59056e—01  1.23071e+01  8.66051e—01 75 11188.89

5 Discussion of the numerical results

First of all, it is important to highlight that both qualitative and quantitative results show the
same behaviour: when regarding the error made with respect to the target function, the results
obtained by the V.JSOU approach are more accurate than those achieved by the VJFOU one.
However, when computing the error with respect to the exact initial condition, the V.JFOU
estimation is more convenient since the Ly and L, norms are reduced.

As expected, the VJFOU recovers an initial condition with a smooth shape, which is
mainly due to the numerical diffusion associated to the resolution of the adjoint equation
with less order of accuracy. Therefore, in those cases whose exact initial condition is a
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u0
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Fig.14 Squarerotation: numerical initial conditionu (x, y, 0) achieved by V.J FOU (upper)and V.J SOU (1ower)

smooth function, this approach is highly recommended in contrast to the V.JSOU estimation.
The difference between both approaches is not noticeable when dealing with discontinuous
initial conditions, where both estimations provide an error in the same order of magnitude.
On the other hand, it is worth highlighting that the VJ5OU approach introduces high
frequencies and spurious oscillations in the inverse design process. It is well documented
that similar issues arise in other contexts, such as the boundary observation and control of
wave-like equations (Zuazua 2005; Ervedoza and Zuazua 2013) or shape design problems for
elliptic equations (Nochetto et al. 1996; Dogan et al. 2007) so that, algorithms, to converge,
need to implement added smoothing or filtering techniques, to avoid high frequency spurious
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oscillations. However, the use of VJFOU reduces considerably the number of discontinuities
and oscillations, acting itself as a smoothing effect over the numerical approximation.

The CPU time, which constitutes a known bottleneck, is also examined. In gradient/adjoint
methods the equations have to be solved forward and backward iteratively and it is important
to employ light and quick forward and backward solvers providing a correct estimation of the
solution. In this work, two solvers are examined: a First Order Upwind (FOU) scheme and
a Second Order Upwind (SOU) one. First, as the best accuracy is required for the forward
computations, the SOU scheme is adopted for the flow equations. However, both schemes
provide similar results in terms of accuracy when dealing with the resolution of the adjoint
equation. Therefore, the CPU time consumed by each model can be a decisive factor to choose
the adequate solver. It is well known that the first order scheme requires less computations
to achieve the numerical approximation of the solution. Hence the computational time is
reduced when opting for this FOU rather than SOU not only with the same number of
iterations (as in the square rotation) test case but also with a higher number of iterations (as
in the frontogenesis test).

6 Analytical elucidation

In this section, the numerical results presented in the previous section are explained from an
analytical point of view. To simplify the notation the linear scalar equation under consideration
can be rewritten as follows:

uy+Lu=0 u() =ug L=V-(vu), (60)
where v is a time-independent velocity field.
Given a target uy € H, H being a Hilbert space, we are interested in achieving ug € H

such that the solution of the former evolution equation satisfies u(7) = uy. As stated in the
introduction, the focus is put on solving this problem via the minimization of the functional

Jug) = 3 ()~ ugP (61)
by means of a gradient descent method where VJ = ¢ (0) and o is the adjoint variable:
ub™ = uf — ea(0). (62)
The gradient o (0) is achieved by solving the adjoint equation:
—o+L* =0 o(T) =ul(T) — uy, (63)
where L* is the adjoint operator.

Therefore, the minimization of (61) consists in a loop in which each iteration is described
by means of the following flowchart:

60 63
w(© =2 w1y —uy — 5 0). (64)
forward backward

When approximating both forward and adjoint solvers by the SOU we are simply imple-
menting the same gradient descent strategy for the SOU approximation of the optimisation
problem.
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If, at the level of adjoint resolution, we replace the SOU by the FOU one, we rather implement
a loop of the form

U+ Lu =0 u(0) = uop, (65)
—5,+L*6 =0 6(T) =u(T) — ug, (66)
where L* is a perturbation of the original adjoint L* obtained when replacing SOU by FOU.

This loop, a priori, does not correspond to the implementation of a gradient descent
algorithm for the minimisation of a cost functional. The corresponding algorithm reads

ukt = uk — e6%(0) (67)
and the modified loop becomes:
w0 =2 w1 —uwg —2 5 50). 68)
forward backward

To better compare the two approaches, we do it in this abstract context in which notation is
simpler, and the overall effect of modifying the solver for the adjoint equation can be easily
identified.

Let us first consider the exact solution of (63)

0 (0) = e " u(T) — ug) (69)
and the exact solution of (66)
5(0) = e Lo (u(T) — uy). (70)
Thus, (70) can be written in terms of (69)
50) = e TEu(T) —ug) = ¢ T B u(T) — ug), (71)
where
B=ellee TLs, (72)

This indicates that, when solving the adjoint equation with the FOU scheme instead of with
the SOU scheme, we are actually applying the gradient descent method to a modified cost
functional of the form

1
Jp(u) = §<B(M(T) —uq), u(T) — uq) (73)
whose gradient is given by
(VIgu), z) = (Bu(T) — uaq), z(T)). (74)

The change in the solver for the adjoint equation corresponds to filtering (through the oper-
ator B) the functional, weighting in a different manner the requirement y(7') ~ y;. When
passing from SOU to FOU, the high frequencies numerical components are penalised, while
maintaining, essentially, the low ones. Therefore, the mixed algorithm combining the SOU
for the forward resolution and the FOU for the adjoint one we employ in this paper corre-
sponds to a projected adjoint-gradient method proposed as those employed in the numerical
control of waves (noise reduction), Zuazua (2005); Ervedoza and Zuazua (2013), or in shape
design optimization, Dogan et al. (2007).
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Fig. 15 Angle between the original and the modified adjoint

To compare both gradient descent directions, the following numerical experiment is con-
sidered: for each iteration k, let always consider the initial data uﬁ as the data provided by
the SOU gradient computation:

up = ug "t — eVFSOU (75)

vk,SOU vk,FOU

and let compute both the and approaches. In fact it makes no sense to compare
the gradient directions in the iterates of the two methods since the adjoint resolution would
introduce a modification that will be reflected in the next initial condition. Additionally,
when moving to the next iterations, neither the forward resolution nor the backward one
would start from the same initial datum, which would produce significant disparity in the
gradient directions. Therefore, the following vectors can be defined:

wk,FOU — (Jk,SOU’ Jk+1,FOU) wk,SOU — (Jk,SOU’ Jk-‘rl,SOU) (76)

that accounts for the variation in the functional (of each approach) in each iteration given the
same initial datum. In particular, it is feasible to compute the angle 6 between the w*FOU
and @50V as follows:

0" FOU | )k, SOU

O = arccos )

|wk,FOU| |wk,FOU|

The results are plotted in Fig. 15 for both test cases. Note that only the first 45 iterations are
compared for the test case 1.

As can be observed, the angles between both approaches are very close meaning that the
use of VFOU ag represents a slight modification of the original V50U gradient estimation.
A second conclusion should be mentioned: the angle decreases as the number of iterations
grows. The inverse behaviour during the first seven iterations is due to the fact that the
initial condition u® = 0 is very far from the exact solution hence both approaches make a
relevant modification during these iterations, decreasing the functional in the same order of
magnitude.
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7 Remark: diffusive models

In this paper, we have analysed the purely hyperbolic model. Similar issues arise for
convection-diffusion models, in the presence of an added diffusive term. Several comments
are in order:

1. When adding the diffusion term, the model becomes parabolic and the boundary condition
(the Dirichlet one in analogy with those considered in this article in the hyperbolic model)
need to be imposed all along the boundary both for the state and the adjoint equation.

2. The gradient methodology described in this paper can be easily adapted to this case and,
although the parabolic model becomes time-irreversible, the state equation is well-posed
in the forward sense of time, while the adjoint equation is well-posed in the backward
sense, thus making the whole methodology consistent.

3. When adding viscosity terms and thus making the numerical schemes more complex, it
becomes even of greater utility to employ the continuous methodology when deriving the
adjoint numerical scheme. And the discussion about “SOU versus FOU” to numerically
approximate the adjoint system within the gradient iteration remains relevant.

4. The same conclusions of the hyperbolic tests apply on the parabolic context too.

8 Conclusions and perspectives

The convenience of using the same order of accuracy for the adjoint resolution for inverse
problems is analysed in this work. In order to eliminate the uncertainties related to non-linear
problems, the linear scalar equation in the 2D framework is selected. First, we opt for using
the continuous approach for the inverse design problem since it provides a relevant versatility
when using different numerical schemes in contrast to the discrete methodology.

The flow equation is solved by means of a second order accurate method. A gradient
descent method is chosen to minimize the distance to a target function and the estimation
of the gradient in this iterative method, which for the linear case coincides with the adjoint
variable at t=0, is examined. Therefore, the numerical resolution of the adjoint equation is
analysed by means of two numerical methods: a First Order Upwind (FOU) scheme and
a Second Order Upwind (SOU) scheme. Some test cases with exact solution are used to
determine the adequate solver and the error in terms of L, and Ly, norms not only with
respect to the target function, but also with respect to the exact solution are computed. The
CPU time consumed by the iterative algorithm by the FOU and the SOU approaches is also
displayed.

Although the VSOU estimation is able to achieve less error with respect to the target
function, the VFOU approach provides a better (or at least the same) error when regarding
the norms of the exact solution. In particular, it can be concluded that the first order order
estimation is the best choice when dealing with smooth functions since the second order
approach introduces some high frequencies and undesirable oscillations. On the other hand,
if considering sharp interfaces or discontinuities not only in the target function but also in the
exact solution, the differences between both approaches are reduced and the error is in the
same order of magnitude. Since the computational time required by the first order estimation
is reduced in comparison to the second order approach, VFOU is preferred, at least for these
kind of unsteady problems. A deep study would be necessary for non-linear problems.

Finally, an analytical explanation for this fact is also provided, where it can be concluded
that a modified gradient-adjoint method is indeed used when solving with the VFOU approach,
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that allows to filter naturally the high frequencies and to modify the descent direction in the
gradient method to achieve the same or better results in terms of accuracy in comparison with
the VSOU estimation. A remark regarding diffusive problems has been also included.

To conclude, the main perspectives are related to the extrapolation of these ideas to more
complex non-linear fluxes where shock waves are present. Furthermore, the behaviour of
the first order adjoint resolution for higher order solver for the flow equation can be also
considered as a future work.
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Appendix A: Forward simulation with SOU and FOU schemes

The aim of this Appendix is to numerically demonstrate that the use of the SOU scheme

rather than a FOU scheme is essential for the forward simulation (flow equation). Therefore

both FOU and SOU schemes are compared for test cases 1 and 2. Figures 16 and 17 shows the

numerical results for the frontogenesis test case at t = 4s and for the rotating square test case
3r

att= TS’ respectively. On the left side the FOU scheme is used while on the right side the

SOU scheme. As can be observed, the numerical diffusion associated to the FOU scheme is
clearly highlighted in comparison with the SOU scheme hence the forward simulation must
be solved with a high order scheme, in this case the SOU scheme.
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0.35

T

-1.00

Fig. 16 Doswell frontogenesis: numerical approximation achieved by the FOU (left) and SOU (right) schemes
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Fig. 17 Square rotation: numerical approximation achieved by the FOU (left) and SOU (right) schemes
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