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Local jump random walk

@ Consider a random walk of a particle along the real line.
@ Let hZ = {hz : z € Z} be the set of possible states of the particle.
@ Let u(x, t) be the probability of the particle to be at x € hZ at time t € 7N.

@ Local jump random walk: at each time step of size 7, the particle jumps to the
left or right with probability 1/2.

-

1 1
ux,t+7) = §u(x +h,t)+ iu(x —h,t)
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Local jump random walk

@ Consider a random walk of a particle along the real line.
@ Let hZ = {hz : z € Z} be the set of possible states of the particle.
@ Let u(x, t) be the probability of the particle to be at x € hZ at time t € 7N.

@ Local jump random walk: at each time step of size 7, the particle jumps to the
left or right with probability 1/2.

-

1 1
ux,t+7) = §u(x +h,t)+ iu(x —h,t)

If we consider 27 = h?, then we obtain

u(x,t+7) —u(x,t) u(x+ht)+u(x—h,t)—2u(x,t)

T h?

Letting h, 7 | 0 yields the heat equation

ou—Au=0

Juan Pablo Borthagaray Finite element approximation of fractional diffusion



Long jump random walk

@ The probability that the particle jumps from the point hk € hZ to the point
hm € hZis KC(k — m) = K(m — k):

000000 ¢

u(x, t+7) = > K(ku(x + hk,t).
keZ
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Long jump random walk

@ The probability that the particle jumps from the point hk € hZ to the point
hm € hZis KC(k — m) = K(m — k):

000000 ¢

u(x,t+7) =" K(kju(x + hk, t).

keZ
@ Since ), ., K(k) = 1, this yields
u(x, t+7) —u(x,t) = > K(k) (u(x + hk, t) — u(x,t))
kez

o If KC(k) ~ [K|~(12) with s € (0,1) and 7 = h*, then &) — hiC(kh). Letting
h, 7 | 0yields the fractional heat equation

t) — t
Ou(x,t) = C/ uix + T),/|1)+25u(x, )dy & Ju+ (—APu=0.
R
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Goal & outline

Consider fractional-order problems on bounded domains. Derive Sobolev
regularity estimates and perform a finite element analysis.

@ (Linear) Dirichlet problem.

» Finite element discretizations.
» Regularity of solutions.
» A BPX preconditioner.

@ Fractional obstacle problem.

@ Fractional minimal graphs.
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Integral definition for 2 C R"
Let 2 C R" be an open bounded set, and let f : 2 — R be sufficiently smooth.

@ Boundary value problem:

(=AYu=f inQ,
u=0 inQ°.

@ Integral representation:

(=A)u(x) = C(n,s) p.v. /n m dy =f(x), xe.

@ Boundary conditions: imposed in Q¢ = R" \
u=0 inQ"

@ Probabilistic interpretation: it is the same as over R" except that particles are
killed upon reaching Q¢.
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Setting
@ Fractional Sobolev spaces in R":

HS Rn {V S ’_2 Rn) |V‘H5(R") < OO}

with
o), — E0.5) <v>><w<x>—w<y>>dydx’
xRN |n+2S
1
2
Ve = VvV, anHs(Rn):(||v|\fzmn>+\v|is<w))-

@ Zero-extension Sobolev spaces in (2:
H(Q) = {v € H(R"): supp(v) C Q}.

We define the norm HVH;,S(Q) := |V|p:(rey. (Poincaré inequality in H°(€2))
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Setting
@ Fractional Sobolev spaces in R":

HS Rn {V S L2 Rn) |V‘H5(R") < OO}

with
o), — E0.5) <v>><w<x>—w<y>>dydx’
xRN |n+2S
1
2
Ve = VvV, anHs(Rn):(||v|\32<m+\v|is<w))-

@ Zero-extension Sobolev spaces in (2:
H(Q) = {v € H(R"): supp(v) C Q}.

We define the norm ||v||5 o := [v

pe(rny-  (Poincaré inequality in H*(2))
@ Weak formulation: givenf € H=5(Q) = [ES(Q)} ,find u € H*(Q) such that
(u,v)s = (f,v) W € H*(Q).

Existence, uniqueness & stability follow from Lax-Milgram.
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Regularity of solutions

Theorem (Vishik & Eskin, 1965; Grubb, 2015)
Let Q@ C R" with 02 € C* and f € H'(2) for somer > —s. Then,

" e H2+1(Q) ifs+r<1/2,
HH/2=5(Q), Ve >0, ifs+r>1/2.

@ Boundary behavior: typically,
u(x) = d(x,090)° + v(x),
with v smooth and vanishing on 9f2.

@ Example: if Q = B(0, 1), f = 1, then

u(x) = c(1 - XY,

which does not belong to H+1/2(Q).
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Holder regularity

Assume (2 is Lipschitz but satisfies a uniform exterior ball condition.

Theorem (Ros-Oton & Serra, 2014)
Iff € L>°(Q), thenu € C*(R") and

ullesny < C(2,9)[Iflloe (2)-

Furthermore, defining o (XL:: dist(x, 092), the function u/é* can be
continuously extended to €.

@ Boundary behavior: if f € C*# () (B < 2 — 2s), then

Vu(x) — Vu(y)| _
sup 0(x, ﬂ+5‘—<C, sup 5(x) | Vu(x)| < Co,
sup a(y) e I < e supat)! VU < G

where 6 (x) := dist(x, 9Q) and d(x,y) = min{d(x), I(y)}.
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Weighted fractional Sobolev regularity (Acosta & B., 2017)
@ Definition of space H.*%(2): let « > 0 and 6 € (0, 1). Define

2 2 [Vv(x) = Vv(y)[? 2a
vl?, = |lv +// d(x,y)““dx dy,
Mgy 3= Ml xRy =y bey)

with [[VI[E: o) = 1(v + Vv) 672
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Weighted fractional Sobolev regularity (Acosta & B., 2017)
@ Definition of space H.*%(2): let « > 0 and 6 € (0, 1). Define

2 |Vv(x) — VV(V)|2 2a
V|3, % + // o(x,y)"“dxdy,
Mo 1= Ml o oy Xy Y

with [[V][Z: ) = [I(v + Vv) 5(')a||L22(Q) :

Theorem (regularity)

Let f € C1=5(52), Q2 be a bounded Lipschitz domain satisfying an exterior ball
condition and ¢ > 0 be small. Then, the solution u of (—A)*u = f which
vanishes in Q)¢ belongs to H}f;:fe (Q) and satisfies the estimate

(Q C(&s)

ol -2y < = fller-~qa-

(Based on results by Ros-Oton & Serra).
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Besov regularity on Lipschitz domains (8. & Nochetto)
@ Besov estimate: given v € H*(B) let v, = v(- + h) be a translation; then

|V‘B§f§c(8) SUP |h‘a‘ — Vhlpe(p)
where C = C(xo) is a cone of directions centered at xo
° Functional if u is a minimizer of F(v) := Fa(v) — F1(v) with
Fo(v) =5 ||v||HS(Q and Fi (v) := (f,v), then
1
Sl = VI g = F(v) - Flu).

@ Translation operator (Savaré, 1998): let T,v = ¢v, + (1 — ¢)v be a convex
combination of vy, and v with ¢ a cut-off function with support of ¢ C By, (X;)
and ¢ = 1in B; = B, (x;) for x; € 2. Then

|u — Thulys(s) << F(Thu) — F(u)
h|7 ™ hec lh|o

@ Localization: if 2 = U, B; is a covering with finite overlap, then

Ivlle; ,(2) ~ Z Ivlle 8-
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Besov Regularity on Lipschitz Domains (continued)
@ Linear part: if v € (0, 1), then
]:1(Thv) — ]:1(V)

o < fllezBo,) [VIH (85, -

@ Quadratic part: Using the convexity of 5, we obtain
Fo (Thv) — Fa (V)

f)lelg T < ||¢HW§O(JR<1) ‘V|H’Y(B3p).
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Besov Regularity on Lipschitz Domains (continued)
@ Linear part: if v € (0, 1), then

]:1(Thv) — ]:1(V)
o < fllezBo,) [VIH (85, -

@ Quadratic part: Using the convexity of 5, we obtain

Fa(Thv) — Fa(v)
—— - Yy .
f)lelg Ih[7 > ||¢|\wgo(Rd)\V|H (B3p)

@ Basic pick-up regularity: Let f € L2(£2) and take y = s. Then the pick-up
regularity is s + v/2 = 3s/2:

u e By/2 ().
Ifs > 2, then B3S/2(Q) C H'(Q) and we can take v = 1 to conclude
ueB;2(Q).

Ifs < % then we need to iterate this argument progressively increasing .
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Besov regularity on Lipschitz domains: lift theorems

We deduce the following lift theorems without a uniform exterior ball condition, thus
allowing for reentrant corners.

@ Lift Theorem 1: Duality argument in the linear part can be modified to get

lul as
B2

2,00

<Ifll _s .
@~ | ”%f(m

Interpolating with [|ul|z: o) < [Iflln—:(o) vields

N »

[ullgese () S NFlln—=+ee) 0<t<

e Lift Theorem 2: If f € L%(Q2), then

|U\Bs+%(m < Cllfllz (e s>

2,00

N~ N~

ez = Clflieey 5 <
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FEM and best approximation

@ Discrete spaces: let {7} be a sequence of conforming, shape-regular meshes
on 2, and define

—{VhEC V‘TEP1VTET}
@ Discrete problem: find u, € V,, such that (up, vh)s = (f, vn) Vv, € Vj.

@ Best approximation: since we project over V, with respect to the energy norm
| - [ () induced by (-, -)s, we get

lu = unllfe() = min fJu = Vallg ()

@ A priori error analysis: must account for nonlocality and boundary behavior.
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Interpolation estimates in H*(€2)
@ Hardy-type estimates: for every v € ﬁS(Q),

IVIIg ) < CEs)IVIk(o), ifs € (0,1/2),
VIl ) < CLS)VIe(e),  ifs € (1/2,1).

@ Localized estimates in H*(2) (Faermann, 2002):

ctn,s) V) V)R, o)
2 ) ) 2
M < G250 | [ [ M avaer S,

TeET

where St is the patch associated with T € 7 and o is the shape regularity
constant of 7.

@ Quasi-interpolation (Ciarlet Jr., 2013): if I, is the Scott-Zhang operator,

(v = TThv) (x) — (v = TTpv) () |? o
/ s ‘ |n+25 dy dx 5 h72' 2S|v‘i['(551)’
.

where the hidden constant depends on n, o, £ and blows up as s 1 1.
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Quasi-uniform meshes

@ Error estimate: if 92 € C> and f € H'/275(Q2), then

lu = unllzsiey < €5, 003 [ I [z (e
()

@ Example: let @ = B(0,1) C R2 and f = 1. Then, the solution is given by

u(x) = (1 — |x?).

s 0.1 0.3 0.5 0.7 0.9
Order (inh) || 0.497 | 0.498 | 0.501 | 0.504 | 0.532

Rate is quasi-optimal. Is it possible to improve the order of convergence?
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Graded meshes

@ Weighted quasi-interpolation:

v —1IIhv)(x) — (v — IIpv 2 : —a—
/ |( h )( ) ( h )(Y)| dydx < Ch$(1+0 5)\V|il+0<5
TJS W

PR 2
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Graded meshes

@ Weighted quasi-interpolation:

_1 —(v—1II 2 21+0-a=
/ |(V hv)|(X) (V hV)(Y)| d)/dX < Ch-f—<1+0 S)‘vm}f“(ss )
TJSr T

X — y|n+25

@ Energy error estimate: let d = 2 and 7 be a graded mesh satisfying

h?, TNoQ#0,
hr < C(o) { hdist(T,00)/2, TNoQ =0,

whence #7 ~ h~2|logh|. Then,

lu = Ullggy S #T) 72 [og(# T Ifllc1—s -

@ Improvement: this also reads |[u — Ul < hlloghl [If|c1-.(g) and is thus
first order.
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Numerical experiment

Exact solution: if @ = B(0,1) C R? and f = 1, then u(x) = C(r? — |x|?)%,.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6

0.7 0.8 0.9
Uniform 7 | 0.497 | 0.496 | 0.498 | 0.500 | 0.501 | 0.505 | 0.504 | 0.503 | 0.532
Graded 7 | 1.066 | 1.040 | 1.019 | 1.002 | 1.066 | 1.051 | 0.990 | 0.985 | 0.977
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BPX preconditioner (B., Nochetto, Wu & Xu)
@ Conditioning of the stiffness matrix (Ainsworth, McLean & Tran, 1999):
h n—2s
K(A) ~ dim (V,)*/" (hm%x)

Thus, if n = 2, we have
» uniform meshes: k(A) ~ h™2;
» graded meshes (1 = 2): k(A) ~ h=2|loghl*.
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BPX preconditioner (B., Nochetto, Wu & Xu)
@ Conditioning of the stiffness matrix (Ainsworth, McLean & Tran, 1999):

h n—2s
K(A) ~ dim (V,)*/" (max)
hmin
Thus, if n = 2, we have
» uniform meshes: k(A) ~ h™2;
» graded meshes (1 = 2): k(A) ~ h=2|loghl*.

@ Preconditioner: assume we have a hierarchy of discrete spaces
Vo CV; C...CV, =V, with mesh size hy = v4. If

> Boundedness: foreveryv =" (v, [v[7 <ci ' >0 hF|vil[3;

» Stable decomposition: for every v € V, there exists a decompositionv = >
such that >1 b *||vj[[3 < co|v[5;
and ¢ : Vi — Vis the inclusion operator, then

J
B= E hy " e
k=0

leads to the condition number for BA:  x(BA) < .

J
j=0 Vi
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Basic Ingredients

@ Boundedness: strengthened Cauchy-Schwarz inequality.

Leti < j. Then, forevery0 < 8 < min{s% — s},

Vi v)s SV ilvillo Wi € i,y € VL

Proof via Fourier analysis in R%:
Use that (vi, vj)s < |Vi|s+3|Vj]s—g, and inverse inequalities.
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Basic Ingredients

@ Boundedness: strengthened Cauchy-Schwarz inequality.

Leti < j. Then, forevery0 < 8 < min{s% — s},

Vi v)s SV ilvillo Wi € i,y € VL

Proof via Fourier analysis in R%:
Use that (vi, vj)s < |Vi|s+3|Vj]s—g, and inverse inequalities.

@ Stable decomposition: lift theorem for Lipschitz domains.

If Q is Lipschitz, o« < £ and f € H~+(Q), then u € ().
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Numerical results

@ Example: Dirichlet problem in the square [—1,1]? and f = 1.

Stopping criterion: % <1x 10-6.

s=0.9 s=0.5
7| | DOFs e Tee T PG
11271 154 4 4 4 4
2272 ] 383 12 13 8 9
32731 1166 | 25 16 | 11| 12
412713953 | 46 | 19 | 17| 14
5] 25]15302 | 84 | 21 [ 24 ] 15
6126161495 | 157 | 23 | 32 | 16
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Numerical results

@ Example: Dirichlet problem in the square [—1,1]? and f = 1.

Stopping criterion: % <1x 10-6.

s=0.9 s=0.5
7| | DOFs e Tee T PG
11271 154 4 4 4 4
2272 ] 383 12 13 8 9
32731 1166 | 25 16 | 11| 12
412713953 | 46 | 19 | 17| 14
5] 25]15302 | 84 | 21 [ 24 ] 15
6126161495 | 157 | 23 | 32 | 16

@ Other contributions: H. Gimperlein, J. Stocek, C. Urztia-Torres (2019);
M. Fautsmann, J. Melenk, M. Parvisi, D. Praetorius (2019).

@ Extensions: theory extends to graded bisection grids.
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Obstacle problem (8., Nochetto & Salgado)

Let Q@ C R" be a bounded domain and let f, x: 2 — R be smooth enough data.

Find u: R" — R, supported in €2, such that

u>yx inf€,
(_A)Su >f in Qa
(=A)Yu=f wheneveru > x.
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Obstacle problem (8., Nochetto & Salgado)

Let 2 C R" be a bounded domain and let f, x : @ — R be smooth enough data.

Find u: R" — R, supported in €2, such that

u>yx inf€,
(_A)Su >f in Qa
(=A)Yu=f wheneveru > x.

Can be equivalently written as a variational inequality.

Find u € I such that
(uu—v)s < {f,u—v) WeKk,
where K denotes the convex set

K={veH():v>yae inQ}
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Assumptions

@ Domain: 99 is Lipschitz, and satisfies an exterior ball condition.

@ Data: from now on,

C12(@), se (0,1)
1

c(n < L(Q) = -
XE ( )7 0 —fef( ) {C172_2$(Q), = [%’

@ We assume that y < 0 on 012, so that

» the behavior of solutions near 902 is dictated by a linear problem;

» the nonlinearity is constrained to the interior of the domain.
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Assumptions

@ Domain: 99 is Lipschitz, and satisfies an exterior ball condition.

@ Data: from now on,

C12(@), se (0,1)
1

c(n < L(Q) = -
XE ( )7 O —fef( ) {C172_2$(Q), = [%’

@ We assume that y < 0 on 012, so that

» the behavior of solutions near 902 is dictated by a linear problem;

» the nonlinearity is constrained to the interior of the domain.

@ Non-locality: gluing interior and boundary estimates is not straightforward!
If n = 1 in a neighborhood of xy, then it does not follow that

(=A)(nu)(xo0) = (=A)u(xo).

Juan Pablo Borthagaray Finite element approximation of fractional diffusion



Regularity for the obstacle problem in R"

Theorem (Caffarelli, Salsa & Silvestre, 2008)
For the obstacle problem in R", if f € F;(R") and x € C**(R"), then the
solution u belongs to C1:S(R™).

(In particular, u € HLT*~¢(R") forall e > 0.)

loc
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Regularity for the obstacle problem in R"

Theorem (Caffarelli, Salsa & Silvestre, 2008)
For the obstacle problem in R", if f € F;(R") and x € C**(R"), then the
solution u belongs to C1:S(R™).

(In particular, u € HLT*~¢(R") forall e > 0.)

loc

Limiting cases: for the classical obstacle problem (s = 1), solutions are C!!.

If s = 0, then the obstacle problem reduces to min{u — x,u — f} = 0, so that for
smooth data, solutions are C%:1.
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Regularity for the obstacle problem in R"

Theorem (Caffarelli, Salsa & Silvestre, 2008)
For the obstacle problem in R", if f € F;(R") and x € C**(R"), then the
solution u belongs to C1:S(R™).

(In particular, u € HLT*~¢(R") forall e > 0.)

loc

Limiting cases: for the classical obstacle problem (s = 1), solutions are C!!.

If s = 0, then the obstacle problem reduces to min{u — x,u — f} = 0, so that for
smooth data, solutions are C%:1.

Recall also that for the linear problem, solutions are C° near 9.

Moral: free boundary regularity is not any worse than boundary regularity for the
linear problem.
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Regularity for the obstacle problem on 2

@ Interior regularity: Caffarelli-Salsa-Silvestre’s theorem + localization argument.

@ Boundary regularity: adapt the result for the linear Dirichlet problem.
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Regularity for the obstacle problem on 2

@ Interior regularity: Caffarelli-Salsa-Silvestre’s theorem + localization argument.

@ Boundary regularity: adapt the result for the linear Dirichlet problem.

Theorem

letu € FIS(Q) be the solution to the fractional obstacle problem. Then, for

every ¢ > 0 we have thatu € ﬁ%f;:fs(ﬁ) with the estimate

@)

||U||ﬁ}/+;:§f(n) < 2’

with C > 0 depending on x, s, n, 2, |[f|| , -
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Finite element approximation (n = 2)

@ Discrete problem: find up, € K = {vy € Vj,: v, > Ipx} such that
(Uh, Up — Vh)s < <f, Up — Vh> Vv, € K:h~

Here, I, is a positivity-preserving quasi-interpolation operator (Chen & Nochetto, 2000).
@ Weighted Sobolev regularity = graded meshes (keep #7 =~ h™2|logh|).

@ Fractional interpolation estimates: for quasi-interpolation operator I,,.
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Error bound

Since
llu— uh||%5(ﬂ) = (U—up,u—Ipu)s + (U — Un, InU — Up)s,

we have

1
EHU - uhHg%Q) < EHU - ’hqus(Q) + (U — Up, Ihu - uh)s-
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Error bound

Since
llu— uh||%5(ﬂ) = (U—up,u—Ipu)s + (U — Un, InU — Up)s,

we have

1
7||u7uh|‘gs<9) S 2” IhuHHs Q) (U7Uh,IhU7Uh)S.

2

o Interpolation error: |[u — Ihul|g oy < Ch1‘25||u||ﬁ1/+5725(ﬂ).
1/2—¢
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Error bound

Since
lu = unllF ) = (U= un,u— Int)s + (u = un, It = n)s,
we have

IhUH uh,lhu 7uh)5.

() + (u—

1
2
Sl — w2 g < 5 lu

2
i 2 lu— = on < Ch =28 ||ul|m1s—2e pon -
@ Interpolation error: ||u — Ihul|5: ) < Ch ||u||H}/+273 ©)
@ Second term in RHS: integrate by parts and use discrete variational inequality,
(0= b= wn)s < [ (= un) (=AY u =1
Q

- / [ =)+ O — ) 4+ (=) — (0= XD (A~ )
< / (h(u— x) — (u— X)) (—AYu—1).
Q
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Therefore,

(u— up, It — up)s < Z/ Ih(u—x)— (u=x)) ((-A)°u—f).

TeET
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Therefore,

(U= un ot —un)s < 3 [ (a(u =) = (=) (~A)u ).

TeT T l l

Contact Non-contact
Using the interior regularity u € C**(Q)
we deduce:
o u—yecCH(Q),
o (—A)Yu—fec(Q).
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Therefore,

(U= un ot —un)s < 3 [ (a(u =) = (=) (~A)u ).

TeT T l l

Contact Non-contact
Using the interior regularity u € C**(Q)
we deduce:
o u—yecCH(Q),
o (—A)Yu—fec(Q).

In the light blue elements we have

[(n(u —x) — (4= X)) (~A)°u — )] < Ch¥*h}~ = ch.
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Convergence rate

Theorem

Let 0 < f € F;(2) and assume that x € C**(Q) is such that x < 0 on 9.
Considering shape-regular graded meshes as before, if h is sufficiently small,
then it holds that

lu = unllg ey < CEHT)Y?|log(#T)[*/2.
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Numerical experiments
Problem: let 2 = B(0,1) C R?, and consider f, x so that the exact solution is

u() = (1 - [x2)% ps (x),

where pés) is a certain Jacobi polynomial of degree two.

99 0 [CXRETH e a5 96

7 98 7 58 g
log(dim(V,)) log(dim(V,.))

Left: s = 0.1; right: s = 0.9. The rate observed in both cases is ~ (#7)'/2.
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Qualitative behavior
Problem: let 2 = B(0,1) C R2,f

|
=
[«5]
=
o

2
1 1 1
X(Xl,Xz) = 5 — (Xl — Z) + ixg

s=0.1 s=0.5 s=10.9

A A

U
0.0e+00 0.1 0.15 0.2 025 03 0.35 04 5.0e-01
— | e —

l [
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Fractional minimal surfaces (s., Li & Nochetto)
@ A phase transition problem: consider the Ginzburg-Landau energy

Je(u; Q) = %/Q|Vu|2 dx + é/QW(u) dx,

where W(t) = (1 — t2)2.
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Fractional minimal surfaces (8., Li & Nochetto)

@ A phase transition problem: consider the Ginzburg-Landau energy
€ 9 1
Je(u; Q) == [ |Vul"dx + = [ W(u) dx,
2 Ja € Ja
where W(t) = (1 — t2)2.
@ If J.(-; Q) is uniformly bounded, then there exists a subsequence e, — 0 such
that

Ue, — XE — XE¢ in Llloc(Q)?

where E is a set with minimal perimeter in €2 (Modica, 1978).
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A unified framework for minimal surfaces

lu(x) —u(y)[* /
dxd + dx,
//Qg |X _ y‘n+2s y Q ( )

where Qg = (R" x R") \ (¢ x Q) ands € (0,1).

Consider now
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A unified framework for minimal surfaces

Consider now

Ju(x) —u(y)] /
dxdy + [ W(u) dx,
//Qg |x—y\"+25 y Q ( )

where Qg = (R" x R") \ (¢ x Q) ands € (0,1).

Up to an appropriate scaling in ¢, we have:

Theorem (Savin & Valdinoci, 2012)

Assume the energies J. (u.; §2) are uniformly bounded. Then, there exists a
subsequence ¢, — 0 such that u., — xe — xe in L1(Q).
Moreover, let u, be a sequence of minimizers.
@ Ifs € (0,1/2) and u. — xg, in ¢, then E minimizes a fractional perimeter
among all the sets {F C R" : F N Q¢ = Ep}.

@ Ifs € [1/2,1), then E is a set with minimal classical perimeter.
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Minimal sets
@ Classical perimeter:

P(E;R") = |xelsvrn) “ =" [XElwr 1 (mn)-

@ Fractional perimeter: (Imbert, 2009; Caffarelli, Roquejoffre & Savin, 2010)

Ps(E;R") = |xelwzs1 () = // IXe(0) fo( )|ddy, s (0,1/2).
RoxR X =y

@ Fractional perimeter of in Q:

[Xe(0) — Xe(y)]
E Q //QQ |X* y‘n+25 dXdy

Juan Pablo Borthagaray Finite element approximation of fractional diffusion



Minimal sets
@ Classical perimeter:

P(E;R") = |xelsvrn) “ =" [XElwr 1 (mn)-

@ Fractional perimeter: (Imbert, 2009; Caffarelli, Roquejoffre & Savin, 2010)

Ps(E;R") = |xelwzs1 () = // IXe(0) fo( )|ddy, s (0,1/2).
RoxR X =y

@ Fractional perimeter of in Q:

[Xe(0) — Xe(y)]
E Q //QQ |X* y‘n+25 dXdy

@ Problem: given E; C Q¢and's € (0, 1), find a
set E that

> minimizes the fractional perimeter Ps(E; 2) and
» satisfies E N Q° = Eo.
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Minimal sets
@ Classical perimeter:

P(E;R") = |xelsvrn) “ =" [XElwr 1 (mn)-

@ Fractional perimeter: (Imbert, 2009; Caffarelli, Roquejoffre & Savin, 2010)

Ps(E;R") = |xelwzs1 () = // IXe(0) fo( )|ddy, s (0,1/2).
RoxR X =y

@ Fractional perimeter of in Q:

[Xe(0) — Xe(y)]
E Q //QQ |X* y‘n+25 dXdy

@ Problem: given E; C Q¢and's € (0, 1), find a
set E that

> minimizes the fractional perimeter Ps(E; 2) and
» satisfies E N Q° = Eo.
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Fractional minimal graphs

@ Problem: find a locally s-minimal set E in E
Q=0xReR" st ENQ° =Ey, where /

1’

Eo = {X = (X, Xn1) € "2 X1 < g(0)},

for a given bounded continuous function g : Q¢ — R.

@ In this setting, there exists a unique minimal set E, and is actually a subgraph
(Dipierro, Savin & Valdinoci, 2016, Lombardini, 2016).
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Fractional minimal graphs

@ Problem: find a locally s-minimal set E in

Q=0xReR" st ENQ° =Ey, where / \\u i/\
-~ g i \ A

Eo = {X = (X, Xn41) € R Xnp1 < 8(X)},

for a given bounded continuous function g : Q¢ — R.

@ In this setting, there exists a unique minimal set E, and is actually a subgraph
(Dipierro, Savin & Valdinoci, 2016, Lombardini, 2016).

@ Fractional perimeter Ps(E; §2) in terms of u:

&= [ v (SRS et =il

Fa) = [ S d
s(a) = o (1+r2)(nt1+425)/2 r

@ Classical perimeter: this extends surface area I[u \/1 + [Vu(x)|?dx.

where
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Variational formulation
Consider the spaces

VE={v:R" >R : v|, e W*'(Q),v=ginQ7}, V’=VEforg=0.

Taking first variation of Is[u] gives: find u € V# such that

//Qo ( Ix — V(Y)) (U(X) _X”(VS/)SI(I?ZS— V(Y))dXdY =0

for every v € VY, where

1 1
o) = 5Gila) = [ (1+a%) "9 Gifa) = Fi(a),

Importantly, és(a) — 0asa — oo.
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Variational formulation
Consider the spaces

VE={v:R" >R : v|, e W*'(Q),v=ginQ7}, V’=VEforg=0.

Taking first variation of Is[u] gives: find u € V# such that

//Q Q ( )= y(y)) (u(x) _XU(YE/)'S«‘:(l)jr)Zs_ v ey — 0

for every v € VY, where

1 1
Gs(a) = _Gs(a) = /0 (1+a’?)~"H1+292dr - Gy(a) = Fi(a).

Importantly, Gs(a) — 0asa — oo.

Finding a s-minimal graph in R"*! becomes a nonhomogeneous problem in R"
for a nonlinear, degenerate diffusion operator of order s + %

Juan Pablo Borthagaray Finite element approximation of fractional diffusion



Discretization

@ Finite element space: let
VE={veCR"): vl e PLVTET, vloe =1Ig}, Vi) =Viforg=0,
where II}, is a quasi-interpolation operator.

@ Discrete problem: find uy, € Vﬁ such that for all v, € Vﬁ,

] & (a0 o)~ ) )
Qo

|x—y| |X— y|n+1+25

@ Solve discrete problems using either a semi-implicit L2-gradient flow or a
damped Newton method.
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Convergence

@ Interior regularity: minimizer satisfies u € C*((2).
(Barrios, Figalli, & Valdinoci, 2014; Cabré & Cozzi, 2017;
Figalli & Valdinoci, 2017)

@ Stickiness phenomenon: boundary datum may
not be attained continuously!

(Dipierro, Savin & Valdinoci, 2017)
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Convergence

@ Interior regularity: minimizer satisfies u € C*((2). Y
(Barrios, Figalli, & Valdinoci, 2014; Cabré & Cozzi, 2017;
Figalli & Valdinoci, 2017) ut

@ Stickiness phenomenon: boundary datum may
not be attained continuously!

(Dipierro, Savin & Valdinoci, 2017)

Theorem
Let u be the solution of the continuous problem and uy, be the discrete solutions,
then
lim Is[up] = L[u
b0 s[ h] s[ L
and
}!m) Hu — uhHWza,l(Q) =0, Vo€ [O,S).
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Experiments
@ Stickinessin 1d: Q = (—1,1), g(x) = sign(x) and s = 0.01: 0.01: 0.49.
> For the classical minimal surface problem, the minimizer is u(x) = x, x € (—1, 1).

o Effectof s € (0,1/2): Q2 =B(0,1),3 = xp(0,3/2) and s = 0.01: 0.01: 0.49.
» For the classical minimal surface problem, the minimizer is flat.

o Effectof v € [0,1]: 2 = B(0,1) \ B(0,1/2), 8 = vXx5(0,1/2), Where
v =0.02: 0.02: 1,and s = 0.25.

» For the classical minimal surface problem, when v > ~* & 0.66, there is no
classical solution.

Intinite
slope
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Graphs with prescribed nonlocal mean curvature

@ Prescribed classical mean curvature:

Vu~Vvdx:/fv W € H (D).
Q

1
/Q V14 |Vul?

@ Prescribed nonlocal mean curvature:

12 //Q ( nyy))(u(x) —|Xu<v>>|§+<lx+>25 ) ey = / v,

for all v € V9,

whens — 1/2.
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Experiment: prescribed nonlocal mean curvature
Stickiness inside the domain: let 2 = (—-1,1) C R,s = 0.01,8 = 0 and

f(x) = 1.5 % sign(x).

Up
°

Plot of up in (—1,1). Zoom-in near the origin.
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Concluding remarks

@ Fractional Laplacian (—A)*: nonlocal operator of order 0 < 2s < 2.
» Computational challenges: non-integrable singularities, unbounded domains;
» Analytical challenges: nonlocality, boundary singularity;
» Energy error estimate: weighted Sobolev spaces, localization of fractional norms,
graded meshes.

@ BPX preconditioning: mesh-independent condition number.
» Separation of scales (SCS inequality): via Fourier analysis in R%;
» Duality argument: lift property for Lipschitz domains.

@ Fractional obstacle problem:
» Holder regularity: C1* near the free boundary and C* near domain boundary;
» Energy error estimate: C'** regularity near the free boundary, weighted Sobolev
spaces, graded meshes.

@ Fractional minimal graphs: nonlinear, degenerate problem of order s + %
» Solutions may be discontinuous across 952 (stickiness phenomenon);
» Convergence (without rates) in W271(Q) for o < s.
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Concluding remarks

@ Fractional Laplacian (—A)*: nonlocal operator of order 0 < 2s < 2.
» Computational challenges: non-integrable singularities, unbounded domains;
» Analytical challenges: nonlocality, boundary singularity;
» Energy error estimate: weighted Sobolev spaces, localization of fractional norms,
graded meshes.

@ BPX preconditioning: mesh-independent condition number.
» Separation of scales (SCS inequality): via Fourier analysis in R%;
» Duality argument: lift property for Lipschitz domains.

@ Fractional obstacle problem:
» Holder regularity: C1* near the free boundary and C* near domain boundary;
» Energy error estimate: C'** regularity near the free boundary, weighted Sobolev
spaces, graded meshes.

@ Fractional minimal graphs: nonlinear, degenerate problem of order s + %
» Solutions may be discontinuous across 952 (stickiness phenomenon);
» Convergence (without rates) in W271(Q) for o < s.

Thank you!
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