Finite element approximation of fractional diffusion

Juan Pablo Borthagaray

Department of Mathematics, University of Maryland, United States

Departamento de Matemática y Estadística del Litoral, Universidad de la República, Uruguay

DeustoTech – Universidad de Deusto July 12, 2019

Local jump random walk

- Consider a random walk of a particle along the real line.
- Let $h\mathbb{Z} = \{hz : z \in \mathbb{Z}\}$ be the set of possible states of the particle.
- Let u(x, t) be the probability of the particle to be at $x \in h\mathbb{Z}$ at time $t \in \tau\mathbb{N}$.
- Local jump random walk: at each time step of size τ , the particle jumps to the left or right with probability 1/2.

Local jump random walk

- Consider a random walk of a particle along the real line.
- Let $h\mathbb{Z} = \{hz : z \in \mathbb{Z}\}$ be the set of possible states of the particle.
- Let u(x, t) be the probability of the particle to be at $x \in h\mathbb{Z}$ at time $t \in \tau\mathbb{N}$.
- Local jump random walk: at each time step of size τ , the particle jumps to the left or right with probability 1/2.

$$\mathbf{u}(\mathbf{x},\mathbf{t}+\tau) = \frac{1}{2}\mathbf{u}(\mathbf{x}+\mathbf{h},\mathbf{t}) + \frac{1}{2}\mathbf{u}(\mathbf{x}-\mathbf{h},\mathbf{t})$$

If we consider $2\tau = h^2$, then we obtain

$$\frac{\mathsf{u}(\mathsf{x},\mathsf{t}+\tau)-\mathsf{u}(\mathsf{x},\mathsf{t})}{\tau} = \frac{\mathsf{u}(\mathsf{x}+\mathsf{h},\mathsf{t})+\mathsf{u}(\mathsf{x}-\mathsf{h},\mathsf{t})-2\mathsf{u}(\mathsf{x},\mathsf{t})}{\mathsf{h}^2}$$

Letting $h, \tau \downarrow 0$ yields the heat equation

 $\partial_t \textbf{u} - \Delta \textbf{u} = 0$

Juan Pablo Borthagaray

Long jump random walk

 The probability that the particle jumps from the point hk ∈ hZ to the point hm ∈ hZ is K(k − m) = K(m − k):

Long jump random walk

• The probability that the particle jumps from the point $hk \in h\mathbb{Z}$ to the point $hm \in h\mathbb{Z}$ is $\mathcal{K}(k-m) = \mathcal{K}(m-k)$:

• Since $\sum_{k\in\mathbb{Z}}\mathcal{K}(k)=1$, this yields

$$\mathsf{u}(\mathsf{x},\mathsf{t}+\tau)-\mathsf{u}(\mathsf{x},\mathsf{t})=\sum_{\mathsf{k}\in\mathbb{Z}}\mathcal{K}(\mathsf{k})\left(\mathsf{u}(\mathsf{x}+\mathsf{h}\mathsf{k},\mathsf{t})-\mathsf{u}(\mathsf{x},\mathsf{t})\right)$$

• If $\mathcal{K}(\mathbf{k}) \sim |\mathbf{k}|^{-(1+2s)}$ with $s \in (0,1)$ and $\tau = h^{2s}$, then $\frac{\mathcal{K}(\mathbf{k})}{\tau} = h\mathcal{K}(\mathbf{k}h)$. Letting $h, \tau \downarrow 0$ yields the fractional heat equation

$$\partial_t \mathsf{u}(\mathsf{x},\mathsf{t}) = \mathsf{C} \int_{\mathbb{R}} \frac{\mathsf{u}(\mathsf{x}+\mathsf{y},\mathsf{t}) - \mathsf{u}(\mathsf{x},\mathsf{t})}{|\mathsf{y}|^{1+2s}} d\mathsf{y} \quad \Leftrightarrow \quad \partial_t \mathsf{u} + (-\Delta)^s \mathsf{u} = 0.$$

Juan Pablo Borthagaray

Goal & outline

Consider fractional-order problems on bounded domains. Derive **Sobolev** regularity estimates and perform a finite element analysis.

• (Linear) Dirichlet problem.

- Finite element discretizations.
- Regularity of solutions.
- A BPX preconditioner.
- Fractional obstacle problem.
- Fractional minimal graphs.

Juan Pablo Borthagaray

Integral definition for $\Omega \subset \mathbb{R}^n$

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set, and let $f : \Omega \to \mathbb{R}$ be sufficiently smooth.

Boundary value problem:

$$\begin{cases} (-\Delta)^{s} \mathbf{u} = \mathbf{f} & \text{in } \Omega, \\ \mathbf{u} = 0 & \text{in } \Omega^{c}. \end{cases}$$

• Integral representation:

$$(-\Delta)^s u(x) = C(n,s) \text{ p.v. } \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy = f(x), \quad x \in \Omega$$

• Boundary conditions: imposed in $\Omega^c = \mathbb{R}^n \setminus \overline{\Omega}$

$$u = 0$$
 in Ω^c .

 Probabilistic interpretation: it is the same as over Rⁿ except that particles are killed upon reaching Ω^c.

Juan Pablo Borthagaray

Setting

• Fractional Sobolev spaces in \mathbb{R}^n :

$$H^{s}(\mathbb{R}^{n}) = \left\{ v \in L^{2}(\mathbb{R}^{n}) \colon |v|_{H^{s}(\mathbb{R}^{n})} < \infty \right\}$$

with

$$\begin{split} (\mathbf{v},\mathbf{w})_{s} &= \frac{\mathbf{C}(\mathbf{n},s)}{2} \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{(\mathbf{v}(\mathbf{x}) - \mathbf{v}(\mathbf{y}))(\mathbf{w}(\mathbf{x}) - \mathbf{w}(\mathbf{y}))}{|\mathbf{x} - \mathbf{y}|^{n+2s}} d\mathbf{y} d\mathbf{x}, \\ |\mathbf{v}|_{H^{s}(\mathbb{R}^{n})} &= \sqrt{(\mathbf{v},\mathbf{v})_{s}}, \quad \|\mathbf{v}\|_{H^{s}(\mathbb{R}^{n})} = \left(\|\mathbf{v}\|_{L^{2}(\mathbb{R}^{n})}^{2} + |\mathbf{v}|_{H^{s}(\mathbb{R}^{n})}^{2}\right)^{\frac{1}{2}}. \end{split}$$

Zero-extension Sobolev spaces in Ω:

$$\widetilde{\mathbf{H}}^{\mathrm{s}}(\Omega) = \left\{ \mathbf{v} \in \mathbf{H}^{\mathrm{s}}(\mathbb{R}^{n}) \colon \mathrm{supp}(\mathbf{v}) \subset \overline{\Omega} \right\}.$$

We define the norm $\|\mathbf{v}\|_{\widetilde{H}^{s}(\Omega)} := |\mathbf{v}|_{H^{s}(\mathbb{R}^{n})}$. (Poincaré inequality in $\widetilde{H}^{s}(\Omega)$)

Juan Pablo Borthagaray

Setting

• Fractional Sobolev spaces in \mathbb{R}^n :

$$H^{s}(\mathbb{R}^{n}) = \left\{ v \in L^{2}(\mathbb{R}^{n}) \colon |v|_{H^{s}(\mathbb{R}^{n})} < \infty \right\}$$

with

$$\begin{split} (\mathbf{v}, \mathbf{w})_{s} &= \frac{C(n, s)}{2} \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{(\mathbf{v}(x) - \mathbf{v}(y))(\mathbf{w}(x) - \mathbf{w}(y))}{|x - y|^{n + 2s}} dy dx, \\ |\mathbf{v}|_{H^{s}(\mathbb{R}^{n})} &= \sqrt{(\mathbf{v}, \mathbf{v})_{s}}, \quad \|\mathbf{v}\|_{H^{s}(\mathbb{R}^{n})} = \left(\|\mathbf{v}\|_{L^{2}(\mathbb{R}^{n})}^{2} + |\mathbf{v}|_{H^{s}(\mathbb{R}^{n})}^{2}\right)^{\frac{1}{2}}. \end{split}$$

• Zero-extension Sobolev spaces in Ω:

$$\widetilde{\mathsf{H}}^{\mathrm{s}}(\Omega) = \left\{ \mathsf{v} \in \mathsf{H}^{\mathrm{s}}(\mathbb{R}^{n}) \colon \mathrm{supp}(\mathsf{v}) \subset \overline{\Omega} \right\}.$$

We define the norm $\|\mathbf{v}\|_{\widetilde{H}^{s}(\Omega)} := |\mathbf{v}|_{H^{s}(\mathbb{R}^{n})}$. (Poincaré inequality in $\widetilde{H}^{s}(\Omega)$)

• Weak formulation: given $f \in H^{-s}(\Omega) = \left[\widetilde{H}^{s}(\Omega)\right]^{*}$, find $u \in \widetilde{H}^{s}(\Omega)$ such that

$$(\mathbf{u},\mathbf{v})_{s} = \langle \mathbf{f},\mathbf{v}\rangle \ \forall \mathbf{v} \in \widetilde{H}^{s}(\Omega).$$

Existence, uniqueness & stability follow from Lax-Milgram.

Juan Pablo Borthagaray

Regularity of solutions

Theorem (Vishik & Èskin, 1965; Grubb, 2015) Let $\Omega \subset \mathbb{R}^{n}$ with $\partial \Omega \in C^{\infty}$ and $f \in H^{r}(\Omega)$ for some $r \geq -s$. Then, $u \in \begin{cases} H^{2s+r}(\Omega) & \text{if } s + r < 1/2, \\ H^{s+1/2-\varepsilon}(\Omega), & \forall \varepsilon > 0, & \text{if } s + r \geq 1/2. \end{cases}$

• Boundary behavior: typically,

 $\mathbf{u}(\mathbf{x}) \approx \mathbf{d}(\mathbf{x}, \partial \Omega)^{s} + \mathbf{v}(\mathbf{x}),$

with v smooth and vanishing on $\partial \Omega$.

• Example: if $\Omega = B(0, 1)$, $f \equiv 1$, then

$$\mathbf{u}(\mathbf{x}) = \mathbf{C}(1 - |\mathbf{x}|^2)^{\mathsf{s}}_+,$$

which does not belong to $H^{s+1/2}(\Omega)$.

Juan Pablo Borthagaray

Hölder regularity

Assume Ω is Lipschitz but satisfies a uniform exterior ball condition.

Theorem (Ros-Oton & Serra, 2014) If $f \in L^{\infty}(\Omega)$, then $u \in C^{s}(\mathbb{R}^{n})$ and $\|u\|_{C^{s}(\mathbb{R}^{n})} \leq C(\Omega, s)\|f\|_{L^{\infty}(\Omega)}$. Furthermore, defining $\delta(x) := \operatorname{dist}(x, \partial\Omega)$, the function u/δ^{s} can be continuously extended to $\overline{\Omega}$.

continuously extended to Ω .

• Boundary behavior: if $f \in C^{\beta}(\overline{\Omega})$ ($\beta < 2 - 2s$), then

$$\sup_{\mathbf{x},\mathbf{y}\in\Omega} \delta(\mathbf{x},\mathbf{y})^{\beta+s} \frac{|\nabla \mathbf{u}(\mathbf{x}) - \nabla \mathbf{u}(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|^{\beta+2s-1}} \leq \mathsf{C}_1, \qquad \sup_{\mathbf{x}\in\Omega} \delta(\mathbf{x})^{1-s} |\nabla \mathbf{u}(\mathbf{x})| \leq \mathsf{C}_2,$$

where $\delta(\mathbf{x}) := \operatorname{dist}(\mathbf{x}, \partial \Omega)$ and $\delta(\mathbf{x}, \mathbf{y}) = \min\{\delta(\mathbf{x}), \delta(\mathbf{y})\}.$

Juan Pablo Borthagaray

Weighted fractional Sobolev regularity (Acosta & B., 2017)

• Definition of space $H^{1+\theta}_{\alpha}(\Omega)$: let $\alpha \geq 0$ and $\theta \in (0,1)$. Define

$$\|\mathbf{v}\|_{\widetilde{H}^{1+\theta}_{\alpha}(\Omega)}^{2} := \|\mathbf{v}\|_{H^{1}_{\alpha}(\Omega)}^{2} + \iint_{(\mathbb{R}^{n}\times\mathbb{R}^{n})\setminus(\Omega^{c}\times\Omega^{c})} \frac{|\nabla \mathbf{v}(\mathbf{x}) - \nabla \mathbf{v}(\mathbf{y})|^{2}}{|\mathbf{x}-\mathbf{y}|^{n+2\theta}} \,\delta(\mathbf{x},\mathbf{y})^{2\alpha} d\mathbf{x} \, d\mathbf{y},$$

with $\|\mathbf{v}\|_{\mathbf{H}^1_{\alpha}(\Omega)}^2 = \|(\mathbf{v} + \nabla \mathbf{v}) \,\delta(\cdot)^{\alpha}\|_{\mathbf{L}^2(\Omega)}^2$.

Juan Pablo Borthagaray

Weighted fractional Sobolev regularity (Acosta & B., 2017)

• Definition of space $H^{1+\theta}_{\alpha}(\Omega)$: let $\alpha \geq 0$ and $\theta \in (0,1)$. Define

$$\begin{split} \|\mathbf{v}\|_{\widetilde{H}^{1+\theta}_{\alpha}(\Omega)}^{2} &:= \|\mathbf{v}\|_{H^{1}_{\alpha}(\Omega)}^{2} + \iint_{(\mathbb{R}^{n} \times \mathbb{R}^{n}) \setminus (\Omega^{c} \times \Omega^{c})} \frac{|\nabla \mathbf{v}(\mathbf{x}) - \nabla \mathbf{v}(\mathbf{y})|^{2}}{|\mathbf{x} - \mathbf{y}|^{n+2\theta}} \, \delta(\mathbf{x}, \mathbf{y})^{2\alpha} d\mathbf{x} \, d\mathbf{y}, \\ \text{with } \|\mathbf{v}\|_{H^{1}_{\alpha}(\Omega)}^{2} &= \|(\mathbf{v} + \nabla \mathbf{v}) \, \delta(\cdot)^{\alpha}\|_{L^{2}(\Omega)}^{2}. \end{split}$$

Theorem (regularity)

Let $f \in C^{1-s}(\overline{\Omega})$, Ω be a bounded Lipschitz domain satisfying an exterior ball condition and $\varepsilon > 0$ be small. Then, the solution u of $(-\Delta)^s u = f$ which vanishes in Ω^c belongs to $\widetilde{H}^{1+s-2\varepsilon}_{1/2-\varepsilon}(\Omega)$ and satisfies the estimate

$$\|u\|_{\widetilde{H}^{1+s-2\varepsilon}_{1/2-\varepsilon}(\Omega)} \leq \frac{\mathcal{C}(\Omega,s)}{\varepsilon} \|f\|_{\mathcal{C}^{1-s}(\overline{\Omega})}.$$

(Based on results by Ros-Oton & Serra).

Juan Pablo Borthagaray

Besov regularity on Lipschitz domains (B. & Nochetto)

• Besov estimate: given $v \in H^{s}(B)$ let $v_{h} = v(\cdot + h)$ be a translation; then

$$|\mathbf{v}|_{\mathsf{B}^{\mathsf{s}+\sigma}_{2,\infty}(\mathsf{B})}\lesssim \sup_{\mathbf{h}\in\mathcal{C}}\frac{1}{|\mathbf{h}|^{\sigma}}|\mathbf{v}-\mathbf{v}_{\mathbf{h}}|_{\mathsf{H}^{\mathsf{s}}(\mathsf{B})},$$

where $C = C(x_0)$ is a cone of directions centered at x_0 .

• Functional: if u is a minimizer of $\mathcal{F}(\mathbf{v}) := \mathcal{F}_2(\mathbf{v}) - \mathcal{F}_1(\mathbf{v})$ with $\mathcal{F}_2(\mathbf{v}) := \frac{1}{2} \|\mathbf{v}\|_{\widetilde{H}(\Omega)}^2$ and $\mathcal{F}_1(\mathbf{v}) := \langle f, \mathbf{v} \rangle$, then

$$\frac{1}{2} \|\mathbf{u} - \mathbf{v}\|_{\widetilde{H}^{s}(\Omega)}^{2} = \mathcal{F}(\mathbf{v}) - \mathcal{F}(\mathbf{u}).$$

• Translation operator (Savaré, 1998): let $T_h v = \phi v_h + (1 - \phi)v$ be a convex combination of v_h and v with ϕ a cut-off function with support of $\phi \subset B_{2\rho}(x_j)$ and $\phi = 1$ in $B_j = B_{\rho}(x_j)$ for $x_j \in \Omega$. Then

$$\frac{|u-T_hu|_{H^s(B)}}{|h|^{\sigma}} \lesssim \sup_{h \in \mathcal{C}} \frac{\mathcal{F}(T_hu) - \mathcal{F}(u)}{|h|^{\sigma}}.$$

• Localization: if $\Omega = \bigcup_{i=1}^{m} B_i$ is a covering with finite overlap, then

$$\|\mathbf{v}\|_{B^{s}_{p,q}(\Omega)}\approx\sum_{i=1}^{m}\|\mathbf{v}\|_{B^{s}_{p,q}(B_{j})}.$$

Juan Pablo Borthagaray

Besov Regularity on Lipschitz Domains (continued)

• Linear part: if $\gamma \in (0,1)$, then

$$\sup_{h\in\mathcal{C}}\frac{\mathcal{F}_1(\mathsf{T}_h\mathsf{v})-\mathcal{F}_1(\mathsf{v})}{|h|^{\gamma}}\leq \|f\|_{L^2(\mathcal{B}_{2\rho})}|\mathsf{v}|_{\mathsf{H}^{\gamma}(\mathcal{B}_{3\rho})}.$$

• Quadratic part: Using the convexity of \mathcal{F}_2 , we obtain

$$\sup_{h\in\mathcal{C}}\frac{\mathcal{F}_{2}(\mathsf{T}_{h}\mathsf{v})-\mathcal{F}_{2}(\mathsf{v})}{|h|^{\gamma}}\leq \|\phi\|_{\mathsf{W}_{\infty}^{1}(\mathbb{R}^{d})}|\mathsf{v}|_{\mathsf{H}^{\gamma}(\mathcal{B}_{3\rho})}.$$

Besov Regularity on Lipschitz Domains (continued)

• Linear part: if $\gamma \in (0,1)$, then

$$\sup_{\mathbf{h}\in\mathcal{C}}\frac{\mathcal{F}_1(\mathbf{T}_{\mathbf{h}}\mathbf{v})-\mathcal{F}_1(\mathbf{v})}{|\mathbf{h}|^{\gamma}}\leq \|\mathbf{f}\|_{L^2(\mathcal{B}_{2\rho})}|\mathbf{v}|_{\mathcal{H}^{\gamma}(\mathcal{B}_{3\rho})}.$$

• Quadratic part: Using the convexity of \mathcal{F}_2 , we obtain

$$\sup_{\boldsymbol{h}\in\mathcal{C}}\frac{\mathcal{F}_{2}(\mathsf{T}_{\boldsymbol{h}}\boldsymbol{v})-\mathcal{F}_{2}(\boldsymbol{v})}{|\boldsymbol{h}|^{\gamma}}\leq \|\phi\|_{\mathsf{W}^{1}_{\infty}(\mathbb{R}^{d})}|\boldsymbol{v}|_{\mathsf{H}^{\gamma}(\mathsf{B}_{3\rho})}.$$

• Basic pick-up regularity: Let $f \in L^2(\Omega)$ and take $\gamma = s$. Then the pick-up regularity is $s + \gamma/2 = 3s/2$:

$$\mathsf{u} \in \mathsf{B}^{3\mathsf{s}/2}_{2,\infty}(\Omega).$$

If s $> \frac{2}{3}$, then $B^{3s/2}_{2,\infty}(\Omega) \subset H^1(\Omega)$ and we can take $\gamma = 1$ to conclude

$$u \in B^{s+\frac{1}{2}}_{2,\infty}(\Omega).$$

If $s \leq \frac{2}{3}$, then we need to iterate this argument progressively increasing γ .

Juan Pablo Borthagaray

Besov regularity on Lipschitz domains: lift theorems

We deduce the following lift theorems without a uniform exterior ball condition, thus allowing for reentrant corners.

• Lift Theorem 1: Duality argument in the linear part can be modified to get

$$u|_{\mathsf{B}^{\frac{3s}{2}}_{2,\infty}(\Omega)} \lesssim \|f\|_{\mathsf{B}^{-\frac{s}{2}}_{2,1}(\Omega)}.$$

Interpolating with $\|u\|_{\widetilde{H}^{s}(\Omega)} \lesssim \|f\|_{H^{-s}(\Omega)}$ yields

$$\|u\|_{\widetilde{H}^{s+t}(\Omega)} \lesssim \|f\|_{H^{-s+t}(\Omega)} \qquad 0 \le t \le \frac{s}{2}.$$

• Lift Theorem 2: If $f \in L^2(\Omega)$, then

$$\begin{split} |\mathbf{u}|_{\mathsf{B}^{s+\frac{1}{2}}_{2,\infty}(\Omega)} &\leq \mathsf{C} \|\mathbf{f}\|_{\mathsf{L}^{2}(\Omega)} \qquad s > \frac{1}{2}, \\ |\mathbf{u}|_{\mathsf{B}^{2s-\epsilon}_{2,\infty}(\Omega)} &\leq \mathsf{C}_{\epsilon} \|\mathbf{f}\|_{\mathsf{L}^{2}(\Omega)} \qquad s \leq \frac{1}{2}. \end{split}$$

Juan Pablo Borthagaray

Finite element approximation of fractional diffusion

-1

FEM and best approximation

 Discrete spaces: let {*T*} be a sequence of conforming, shape-regular meshes on Ω, and define

$$\mathbb{V}_h = \{ \mathsf{v}_h \in \mathsf{C}(\overline{\Omega}) \colon \mathsf{v} \big|_{\mathsf{T}} \in \mathcal{P}_1 \, \forall \mathsf{T} \in \mathcal{T} \}.$$

- Discrete problem: find $u_h \in \mathbb{V}_h$ such that $(u_h, v_h)_s = \langle f, v_h \rangle \ \forall v_h \in \mathbb{V}_h$.
- Best approximation: since we project over \mathbb{V}_h with respect to the energy norm $|\cdot|_{\widetilde{H}^s(\Omega)}$ induced by $(\cdot, \cdot)_s$, we get

$$\|u-u_h\|_{\widetilde{H}^s(\Omega)} = \min_{v_h \in V_h} \|u-v_h\|_{\widetilde{H}^s(\Omega)}.$$

• A priori error analysis: must account for nonlocality and boundary behavior.

Juan Pablo Borthagaray

Interpolation estimates in $\widetilde{H}^{s}(\Omega)$

• Hardy-type estimates: for every $v \in \widetilde{H}^{s}(\Omega)$,

$$\begin{split} \|\mathbf{v}\|_{\widetilde{H}^{\mathsf{f}}(\Omega)} &\leq \mathsf{C}(\Omega, \mathsf{s}) \|\mathbf{v}\|_{H^{\mathsf{s}}(\Omega)}, \quad \text{ if } \mathsf{s} \in (0, 1/2), \\ \|\mathbf{v}\|_{\widetilde{H}^{\mathsf{f}}(\Omega)} &\leq \mathsf{C}(\Omega, \mathsf{s}) |\mathbf{v}|_{H^{\mathsf{s}}(\Omega)}, \quad \text{ if } \mathsf{s} \in (1/2, 1). \end{split}$$

• Localized estimates in $H^{s}(\Omega)$ (Faermann, 2002):

$$|\mathbf{v}|_{H^{\mathsf{F}}(\Omega)}^{2} \leq \frac{\mathsf{C}(n,\mathsf{s})}{2} \sum_{\mathsf{T} \in \mathcal{T}} \left[\int_{\mathsf{T}} \int_{\mathsf{S}_{\mathsf{T}}} \frac{|\mathbf{v}(\mathbf{x}) - \mathbf{v}(\mathbf{y})|^{2}}{|\mathbf{x} - \mathbf{y}|^{n+2s}} \, d\mathbf{y} d\mathbf{x} + \frac{\mathsf{C}(n,\sigma)}{\mathsf{s} \mathbf{h}_{\mathsf{T}}^{2s}} \|\mathbf{v}\|_{L^{2}(\mathsf{T})}^{2} \right],$$

where S_T is the patch associated with $T \in T$ and σ is the shape regularity constant of T.

• Quasi-interpolation (Ciarlet Jr., 2013): if Π_h is the Scott-Zhang operator,

$$\int_T \int_{S_T} \frac{|(v - \Pi_h v)(x) - (v - \Pi_h v)(y)|^2}{|x - y|^{n + 2s}} \, dy \, dx \lesssim h_T^{2\ell - 2s} |v|_{H^\ell(S_{S_T})}^2,$$

where the hidden constant depends on *n*, σ , ℓ and blows up as $s \uparrow 1$.

Juan Pablo Borthagaray

Quasi-uniform meshes

• Error estimate: if $\partial \Omega \in C^{\infty}$ and $f \in H^{1/2-s}(\Omega)$, then

 $\|\boldsymbol{u}-\boldsymbol{u}_{\boldsymbol{h}}\|_{\widetilde{H}^{s}(\Omega)} \leq C(\boldsymbol{s},\sigma)\boldsymbol{h}^{\frac{1}{2}} |\ln\boldsymbol{h}| \, \|\boldsymbol{f}\|_{H^{1/2-s}(\Omega)}.$

• Example: let $\Omega = B(0,1) \subset \mathbb{R}^2$ and f = 1. Then, the solution is given by

$$\mathbf{u}(\mathbf{x}) = \mathbf{C}(1 - |\mathbf{x}|^2)^{\mathsf{s}}_+.$$

S	0.1	0.3	0.5	0.7	0.9
Order (in h)	0.497	0.498	0.501	0.504	0.532

Rate is quasi-optimal. Is it possible to improve the order of convergence?

Juan Pablo Borthagaray

Graded meshes

• Weighted quasi-interpolation:

$$\int_{\mathsf{T}}\int_{\mathsf{S}_{\mathsf{T}}}\frac{|(\mathsf{v}-\Pi_{\mathsf{h}}\mathsf{v})(\mathsf{x})-(\mathsf{v}-\Pi_{\mathsf{h}}\mathsf{v})(\mathsf{y})|^{2}}{|\mathsf{x}-\mathsf{y}|^{n+2s}}d\mathsf{y}d\mathsf{x} \leq Ch_{\mathsf{T}}^{2(1+\theta-\alpha-s)}|\mathsf{v}|_{\mathsf{H}^{1+\theta}_{\alpha}(\mathsf{S}_{\mathsf{S}_{\mathsf{T}}})}^{2}$$

Juan Pablo Borthagaray

Graded meshes

• Weighted quasi-interpolation:

$$\int_T\int_{S_T}\frac{|(v-\Pi_hv)(x)-(v-\Pi_hv)(y)|^2}{|x-y|^{n+2s}}dydx\leq Ch_T^{2(1+\theta-\alpha-s)}|v|_{H^{1+\theta}_\alpha(S_{S_T})}^2.$$

• Energy error estimate: let d = 2 and T be a graded mesh satisfying

$$h_{\mathsf{T}} \leq \mathsf{C}(\sigma) \left\{ \begin{array}{cc} h^2, & \mathsf{T} \cap \partial \Omega \neq \emptyset, \\ h \operatorname{dist}(\mathsf{T}, \partial \Omega)^{1/2}, & \mathsf{T} \cap \partial \Omega = \emptyset, \end{array} \right.$$

whence $\#\mathcal{T} \approx h^{-2} |\log h|$. Then,

 $\|\boldsymbol{u} - \boldsymbol{U}\|_{\widetilde{H}^{s}(\Omega)} \lesssim (\#\mathcal{T})^{-\frac{1}{2}} |\log(\#\mathcal{T})| \, \|\boldsymbol{f}\|_{C^{1-s}(\overline{\Omega})}.$

• Improvement: this also reads $||u - U||_{\widetilde{H}^s(\Omega)} \lesssim h |\log h| ||f||_{C^{1-s}(\overline{\Omega})}$ and is thus first order.

Juan Pablo Borthagaray

Numerical experiment

Exact solution: if $\Omega = B(0,1) \subset \mathbb{R}^2$ and f = 1, then $u(x) = C(r^2 - |x|^2)_+^s$.

Value of s	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Uniform \mathcal{T}	0.497	0.496	0.498	0.500	0.501	0.505	0.504	0.503	0.532
Graded \mathcal{T}	1.066	1.040	1.019	1.002	1.066	1.051	0.990	0.985	0.977

Juan Pablo Borthagaray

BPX preconditioner (B., Nochetto, Wu & Xu)

• Conditioning of the stiffness matrix (Ainsworth, McLean & Tran, 1999):

$$\kappa(\mathbf{A}) \simeq \dim \left(\mathbb{V}_h \right)^{2\mathfrak{s}/n} \left(rac{h_{\max}}{h_{\min}}
ight)^{n-2\mathfrak{s}}$$

Thus, if n = 2, we have

- uniform meshes: $\kappa(\mathbf{A}) \simeq h^{-2s}$;
- graded meshes ($\mu = 2$): $\kappa(\mathbf{A}) \simeq h^{-2} |\log h|^s$.

BPX preconditioner (B., Nochetto, Wu & Xu)

• Conditioning of the stiffness matrix (Ainsworth, McLean & Tran, 1999):

$$\kappa(\mathbf{A}) \simeq \dim \left(\mathbb{V}_{h}
ight)^{2 \mathrm{s/n}} \left(rac{h_{\max}}{h_{\min}}
ight)^{n-2 \mathrm{s}}$$

Thus, if n = 2, we have

- uniform meshes: $\kappa(\mathbf{A}) \simeq h^{-2s}$;
- graded meshes (μ = 2): κ(A) ≃ h⁻² | log h|^s.
- **Preconditioner:** assume we have a hierarchy of discrete spaces $\mathbb{V}_0 \subset \mathbb{V}_1 \subset \ldots \subset \mathbb{V}_J = \mathbb{V}$, with mesh size $h_i = \gamma^{2j}$. If
 - Boundedness: for every $\mathbf{v} = \sum_{j=0}^{J} \mathbf{v}_{j}, \quad |\mathbf{v}|_{s}^{2} \le c_{1}^{-1} \sum_{j=0}^{J} h_{j}^{-2s} \|\mathbf{v}_{j}\|_{0}^{2};$
 - Stable decomposition: for every $v \in \mathbb{V}$, there exists a decomposition $v = \sum_{j=0}^{J} v_j$ such that $\sum_{j=0}^{J} h_j^{-2s} ||v_j||_0^2 \le c_0 |v|_s^2$;

and $\iota_k \colon \mathbb{V}_k \to \mathbb{V}$ is the inclusion operator, then

$$\mathbf{B} = \sum_{k=0}^{J} h_k^{s-n} \iota_k \iota'_k$$

leads to the condition number for **BA**: $\kappa(\mathbf{BA}) \leq \frac{c_0}{c_1}$.

Juan Pablo Borthagaray

Basic Ingredients

• Boundedness: strengthened Cauchy-Schwarz inequality.

Let
$$i \leq j$$
. Then, for every $0 \leq \beta < \min\{s, \frac{3}{2} - s\}$,

$$(\mathsf{v}_i,\mathsf{v}_j)_{\mathsf{s}} \lesssim \gamma^{2\beta|j-i|} h_j^{-\mathsf{s}} |\mathsf{v}_i|_{\mathsf{s}} \|\mathsf{v}_j\|_0 \qquad \forall \mathsf{v}_i \in \mathbb{V}_i, \mathsf{v}_j \in \mathbb{V}_j.$$

Proof via Fourier analysis in \mathbb{R}^d :

Use that $(v_i, v_j)_s \le |v_i|_{s+\beta} |v_j|_{s-\beta}$, and inverse inequalities.

Basic Ingredients

• Boundedness: strengthened Cauchy-Schwarz inequality.

Let
$$i \leq j$$
. Then, for every $0 \leq \beta < \min\{s, \frac{3}{2} - s\}$,

$$(\mathsf{v}_i,\mathsf{v}_j)_{\mathsf{s}} \lesssim \gamma^{2\beta|j-i|} h_j^{-\mathsf{s}} |\mathsf{v}_i|_{\mathsf{s}} \|\mathsf{v}_j\|_0 \qquad \forall \mathsf{v}_i \in \mathbb{V}_i, \mathsf{v}_j \in \mathbb{V}_j.$$

Proof via Fourier analysis in \mathbb{R}^d : Use that $(v_i, v_j)_s \leq |v_i|_{s+\beta} |v_j|_{s-\beta}$, and inverse inequalities.

• Stable decomposition: lift theorem for Lipschitz domains.

If Ω is Lipschitz, $\alpha < \frac{s}{2}$ and $f \in H^{-s+\alpha}(\Omega)$, then $\mathbf{u} \in \widetilde{H}^{s+\alpha}(\Omega)$.

Juan Pablo Borthagaray

Numerical results

• Example: Dirichlet problem in the square $[-1, 1]^2$ and f = 1. Stopping criterion: $\frac{\|b-A\mathbf{x}\|_2}{\|b\|_2} \le 1 \times 10^{-6}$.

J	hյ	DOFs	s =	0.9	s = 0.5		
			CG	PCG	CG	PCG	
1	2^{-1}	154	4	4	4	4	
2	2^{-2}	383	12	13	8	9	
3	2^{-3}	1166	25	16	11	12	
4	2^{-4}	3953	46	19	17	14	
5	2^{-5}	15302	84	21	24	15	
6	2^{-6}	61495	157	23	32	16	

Numerical results

• Example: Dirichlet problem in the square $[-1, 1]^2$ and f = 1. Stopping criterion: $\frac{\|b-Ax\|_2}{\|b\|_2} \le 1 \times 10^{-6}$.

J	hյ	DOFs	s =	0.9	s = 0.5		
			CG	PCG	CG	PCG	
1	2^{-1}	154	4	4	4	4	
2	2^{-2}	383	12	13	8	9	
3	2^{-3}	1166	25	16	11	12	
4	2^{-4}	3953	46	19	17	14	
5	2^{-5}	15302	84	21	24	15	
6	2^{-6}	61495	157	23	32	16	

- Other contributions: H. Gimperlein, J. Stocek, C. Urzúa-Torres (2019); M. Fautsmann, J. Melenk, M. Parvisi, D. Praetorius (2019).
- Extensions: theory extends to graded bisection grids.

Juan Pablo Borthagaray

Obstacle problem (B., Nochetto & Salgado)

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f, \chi \colon \Omega \to \mathbb{R}$ be smooth enough data.

Find $u \colon \mathbb{R}^n \to \mathbb{R}$, supported in Ω , such that

$$\begin{array}{ll} \mathbf{u} \geq \chi & \text{ in } \Omega, \\ (-\Delta)^s \mathbf{u} \geq \mathbf{f} & \text{ in } \Omega, \\ (-\Delta)^s \mathbf{u} = \mathbf{f} & \text{ whenever } \mathbf{u} > \chi. \end{array}$$

Obstacle problem (B., Nochetto & Salgado)

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f, \chi \colon \Omega \to \mathbb{R}$ be smooth enough data.

Find
$$u: \mathbb{R}^n \to \mathbb{R}$$
, supported in Ω , such that
 $u \ge \chi \quad \text{in } \Omega$,
 $(-\Delta)^s u \ge f \quad \text{in } \Omega$,
 $(-\Delta)^s u = f \quad \text{whenever } u > \chi$.

Can be equivalently written as a variational inequality.

Find $u \in \mathcal{K}$ such that $(u, u - v)_s \leq \langle f, u - v \rangle \quad \forall v \in \mathcal{K},$ where \mathcal{K} denotes the convex set $\mathcal{K} = \{ v \in \widetilde{H}^s(\Omega) : v \geq \chi \text{ a.e. in } \Omega \}.$

Juan Pablo Borthagaray

Assumptions

- **Domain:** $\partial \Omega$ is Lipschitz, and satisfies an exterior ball condition.
- Data: from now on,

$$\chi \in \mathbf{C}^{2,1}(\Omega), \qquad 0 \le \mathbf{f} \in \mathcal{F}_{\mathbf{s}}(\overline{\Omega}) = \begin{cases} \mathbf{C}^{2,1-2\mathbf{s}}(\overline{\Omega}), & \mathbf{s} \in \left(0,\frac{1}{2}\right) \\ \mathbf{C}^{1,2-2\mathbf{s}}(\overline{\Omega}), & \mathbf{s} \in \left[\frac{1}{2},1\right) \end{cases}$$

- We assume that $\chi < 0$ on $\partial \Omega$, so that
 - the behavior of solutions near $\partial \Omega$ is dictated by a linear problem;
 - the nonlinearity is constrained to the interior of the domain.

Assumptions

- **Domain:** $\partial \Omega$ is Lipschitz, and satisfies an exterior ball condition.
- Data: from now on,

$$\chi \in \mathbf{C}^{2,1}(\Omega), \qquad 0 \le \mathbf{f} \in \mathcal{F}_{\mathbf{s}}(\overline{\Omega}) = \begin{cases} \mathbf{C}^{2,1-2\mathbf{s}}(\overline{\Omega}), & \mathbf{s} \in \left(0,\frac{1}{2}\right) \\ \mathbf{C}^{1,2-2\mathbf{s}}(\overline{\Omega}), & \mathbf{s} \in \left[\frac{1}{2},1\right) \end{cases}$$

- We assume that $\chi < 0$ on $\partial \Omega$, so that
 - the behavior of solutions near $\partial \Omega$ is dictated by a linear problem;
 - the nonlinearity is constrained to the interior of the domain.
- Non-locality: gluing interior and boundary estimates is not straightforward! If $\eta \equiv 1$ in a neighborhood of x_0 , then it does not follow that

$$(-\Delta)^{\mathsf{s}}(\eta \mathsf{u})(\mathsf{x}_0) = (-\Delta)^{\mathsf{s}}\mathsf{u}(\mathsf{x}_0).$$

Juan Pablo Borthagaray

Regularity for the obstacle problem in \mathbb{R}^n

Theorem (Caffarelli, Salsa & Silvestre, 2008)

For the obstacle problem in \mathbb{R}^n , if $f \in \mathcal{F}_s(\mathbb{R}^n)$ and $\chi \in C^{2,1}(\mathbb{R}^n)$, then the solution u belongs to $C^{1,s}(\mathbb{R}^n)$.

(In particular, $u \in H^{1+s-\varepsilon}_{loc}(\mathbb{R}^n)$ for all $\varepsilon > 0$.)

Regularity for the obstacle problem in \mathbb{R}^n

Theorem (Caffarelli, Salsa & Silvestre, 2008)

For the obstacle problem in \mathbb{R}^n , if $f \in \mathcal{F}_s(\mathbb{R}^n)$ and $\chi \in C^{2,1}(\mathbb{R}^n)$, then the solution u belongs to $C^{1,s}(\mathbb{R}^n)$.

(In particular, $u \in H^{1+s-\varepsilon}_{loc}(\mathbb{R}^n)$ for all $\varepsilon > 0$.)

Limiting cases: for the classical obstacle problem (s = 1), solutions are $C^{1,1}$.

If s = 0, then the obstacle problem reduces to min $\{u - \chi, u - f\} = 0$, so that for smooth data, solutions are $C^{0,1}$.

Juan Pablo Borthagaray

Regularity for the obstacle problem in \mathbb{R}^n

Theorem (Caffarelli, Salsa & Silvestre, 2008)

For the obstacle problem in \mathbb{R}^n , if $f \in \mathcal{F}_s(\mathbb{R}^n)$ and $\chi \in C^{2,1}(\mathbb{R}^n)$, then the solution u belongs to $C^{1,s}(\mathbb{R}^n)$.

(In particular, $u \in H^{1+s-\varepsilon}_{loc}(\mathbb{R}^n)$ for all $\varepsilon > 0$.)

Limiting cases: for the classical obstacle problem (s = 1), solutions are $C^{1,1}$.

If s = 0, then the obstacle problem reduces to min $\{u - \chi, u - f\} = 0$, so that for smooth data, solutions are $C^{0,1}$.

Recall also that for the linear problem, solutions are C^{s} near $\partial \Omega$.

Moral: free boundary regularity is not any worse than boundary regularity for the linear problem.

Juan Pablo Borthagaray

Regularity for the obstacle problem on Ω

- Interior regularity: Caffarelli-Salsa-Silvestre's theorem + localization argument.
- Boundary regularity: adapt the result for the linear Dirichlet problem.

Regularity for the obstacle problem on Ω

- Interior regularity: Caffarelli-Salsa-Silvestre's theorem + localization argument.
- Boundary regularity: adapt the result for the linear Dirichlet problem.

Theorem

Let $\mathbf{u} \in \widehat{H}^{s}(\Omega)$ be the solution to the fractional obstacle problem. Then, for every $\varepsilon > 0$ we have that $\mathbf{u} \in \widetilde{H}_{1/2-\varepsilon}^{1+s-2\varepsilon}(\Omega)$ with the estimate

$$\|\mathbf{u}\|_{\widetilde{H}^{1+s-2\varepsilon}_{1/2-\varepsilon}(\Omega)} \leq \frac{\mathsf{C}}{\varepsilon},$$

with C > 0 depending on χ , s, n, Ω , $\|f\|_{\mathcal{F}_{s}(\overline{\Omega})}$.

Juan Pablo Borthagaray

Finite element approximation (n = 2)

• Discrete problem: find $u_h \in \mathcal{K}_h = \{v_h \in \mathbb{V}_h : v_h \ge I_h \chi\}$ such that

$$(\mathbf{u}_h, \mathbf{u}_h - \mathbf{v}_h)_s \leq \langle \mathbf{f}, \mathbf{u}_h - \mathbf{v}_h \rangle \quad \forall \mathbf{v}_h \in \mathcal{K}_h.$$

Here, I_h is a positivity-preserving quasi-interpolation operator (Chen & Nochetto, 2000).

- Weighted Sobolev regularity \Rightarrow graded meshes (keep $\#T \approx h^{-2} |\log h|$).
- Fractional interpolation estimates: for quasi-interpolation operator I_h.

Juan Pablo Borthagaray

Error bound

Since

$$\|\boldsymbol{u}-\boldsymbol{u}_h\|_{\widetilde{H}^s(\Omega)}^2=(\boldsymbol{u}-\boldsymbol{u}_h,\boldsymbol{u}-\boldsymbol{I}_h\boldsymbol{u})_s+(\boldsymbol{u}-\boldsymbol{u}_h,\boldsymbol{I}_h\boldsymbol{u}-\boldsymbol{u}_h)_s,$$

we have

$$\frac{1}{2}\|\boldsymbol{u}-\boldsymbol{u}_{h}\|_{\widetilde{H}^{s}(\Omega)}^{2}\leq \frac{1}{2}\|\boldsymbol{u}-\boldsymbol{I}_{h}\boldsymbol{u}\|_{\widetilde{H}^{s}(\Omega)}^{2}+(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{I}_{h}\boldsymbol{u}-\boldsymbol{u}_{h})_{s}.$$

Error bound

Since

$$\|\boldsymbol{u}-\boldsymbol{u}_h\|_{\widetilde{H}^s(\Omega)}^2=(\boldsymbol{u}-\boldsymbol{u}_h,\boldsymbol{u}-\boldsymbol{I}_h\boldsymbol{u})_s+(\boldsymbol{u}-\boldsymbol{u}_h,\boldsymbol{I}_h\boldsymbol{u}-\boldsymbol{u}_h)_s,$$

we have

$$\frac{1}{2} \|\mathbf{u} - \mathbf{u}_{\mathsf{h}}\|_{\widetilde{H}^{\mathsf{s}}(\Omega)}^{2} \leq \frac{1}{2} \|\mathbf{u} - \mathbf{I}_{\mathsf{h}}\mathbf{u}\|_{\widetilde{H}^{\mathsf{s}}(\Omega)}^{2} + (\mathbf{u} - \mathbf{u}_{\mathsf{h}}, \mathbf{I}_{\mathsf{h}}\mathbf{u} - \mathbf{u}_{\mathsf{h}})_{\mathsf{s}}.$$

• Interpolation error: $\|u - I_h u\|_{\widetilde{H}^s(\Omega)} \leq Ch^{1-2\varepsilon} \|u\|_{\widetilde{H}^{1+s-2\varepsilon}_{1/2-\varepsilon}(\Omega)}.$

Juan Pablo Borthagaray

Error bound

Since

$$\|\boldsymbol{u}-\boldsymbol{u}_h\|_{\widetilde{H}^s(\Omega)}^2=(\boldsymbol{u}-\boldsymbol{u}_h,\boldsymbol{u}-\boldsymbol{I}_h\boldsymbol{u})_s+(\boldsymbol{u}-\boldsymbol{u}_h,\boldsymbol{I}_h\boldsymbol{u}-\boldsymbol{u}_h)_s,$$

we have

$$\frac{1}{2} \|\mathbf{u} - \mathbf{u}_{\mathbf{h}}\|_{\widetilde{H}^{s}(\Omega)}^{2} \leq \frac{1}{2} \|\mathbf{u} - \mathbf{I}_{\mathbf{h}}\mathbf{u}\|_{\widetilde{H}^{s}(\Omega)}^{2} + (\mathbf{u} - \mathbf{u}_{\mathbf{h}}, \mathbf{I}_{\mathbf{h}}\mathbf{u} - \mathbf{u}_{\mathbf{h}})_{s}.$$

- Interpolation error: $\|u I_h u\|_{\widetilde{H}^s(\Omega)} \leq Ch^{1-2\varepsilon} \|u\|_{\widetilde{H}^{1+s-2\varepsilon}_{1/2-\varepsilon}(\Omega)}$.
- Second term in RHS: integrate by parts and use discrete variational inequality,

$$\begin{aligned} (\mathbf{u} - \mathbf{u}_h, \mathbf{I}_h \mathbf{u} - \mathbf{u}_h)_s &\leq \int_{\Omega} (\mathbf{I}_h \mathbf{u} - \mathbf{u}_h)((-\Delta)^s \mathbf{u} - f) \\ &= \int_{\Omega} \left[(\mathbf{u} - \chi) + (\mathbf{I}_h \chi - \mathbf{u}_h) + (\mathbf{I}_h (\mathbf{u} - \chi) - (\mathbf{u} - \chi)) \right] ((-\Delta)^s \mathbf{u} - f) \\ &\leq \int_{\Omega} (\mathbf{I}_h (\mathbf{u} - \chi) - (\mathbf{u} - \chi)) ((-\Delta)^s \mathbf{u} - f). \end{aligned}$$

Juan Pablo Borthagaray

Therefore,

$$(\mathbf{u}-\mathbf{u}_{\mathsf{h}},\mathbf{I}_{\mathsf{h}}\mathbf{u}-\mathbf{u}_{\mathsf{h}})_{\mathsf{s}} \leq \sum_{\mathsf{T}\in\mathcal{T}}\int_{\mathsf{T}}\left(\mathbf{I}_{\mathsf{h}}(\mathbf{u}-\chi)-(\mathbf{u}-\chi)\right)\left((-\Delta)^{\mathsf{s}}\mathbf{u}-f\right).$$

Juan Pablo Borthagaray

Therefore,

۲ ۲

Juan Pablo Borthagaray

Therefore,

۲

$$(u - u_h, l_h u - u_h)_s \leq \sum_{T \in \mathcal{T}} \int_T (l_h (u - \chi) - (u - \chi)) ((-\Delta)^s u - f).$$
Using the interior regularity $u \in C^{1,s}(\Omega)$
we deduce:
• $u - \chi \in C^{1,s}(\Omega),$
• $(-\Delta)^s u - f \in C^{1-s}(\Omega).$

In the light blue elements we have

$$\left|\left(\mathbf{I}_{\mathbf{h}}(\mathbf{u}-\chi)-(\mathbf{u}-\chi)\right)\left((-\Delta)^{s}\mathbf{u}-\mathbf{f}\right)\right|\leq\mathbf{C}\mathbf{h}_{\mathrm{T}}^{1+s}\mathbf{h}_{\mathrm{T}}^{1-s}=\mathbf{C}\mathbf{h}_{\mathrm{T}}^{2}.$$

Juan Pablo Borthagaray

Convergence rate

Theorem

Let $0 \leq f \in \mathcal{F}_{s}(\overline{\Omega})$ and assume that $\chi \in C^{2,1}(\Omega)$ is such that $\chi < 0$ on $\partial\Omega$. Considering shape-regular graded meshes as before, if h is sufficiently small, then it holds that

$$\|\mathbf{u} - \mathbf{u}_{\mathbf{h}}\|_{\widetilde{H}^{s}(\Omega)} \leq C(\#\mathcal{T})^{1/2} |\log(\#\mathcal{T})|^{3/2}.$$

Juan Pablo Borthagaray

Numerical experiments

Problem: let $\Omega = B(0,1) \subset \mathbb{R}^2$, and consider *f*, χ so that the exact solution is

$$u(\mathbf{x}) = (1 - |\mathbf{x}|^2)^s_+ p_2^{(s)}(\mathbf{x})_+$$

where $p_2^{(s)}$ is a certain Jacobi polynomial of degree two.

Left: s = 0.1; right: s = 0.9. The rate observed in both cases is $\approx (\#T)^{1/2}$.

Juan Pablo Borthagaray

Qualitative behavior

Problem: let $\Omega = B(0,1) \subset \mathbb{R}^2$, f = 0 and

$$\chi(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{2} - \sqrt{\left(\mathbf{x}_1 - \frac{1}{4}\right)^2 + \frac{1}{2}\mathbf{x}_2^2}.$$

Fractional minimal surfaces (B., Li & Nochetto)

• A phase transition problem: consider the Ginzburg-Landau energy

$$J_{\varepsilon}(\mathbf{u};\Omega) = \frac{\varepsilon}{2} \int_{\Omega} |\nabla \mathbf{u}|^2 \, d\mathbf{x} \, + \, \frac{1}{\varepsilon} \int_{\Omega} \mathsf{W}(\mathbf{u}) \, d\mathbf{x},$$

where $W(t) = \frac{1}{4}(1 - t^2)^2$.

Fractional minimal surfaces (B., Li & Nochetto)

• A phase transition problem: consider the Ginzburg-Landau energy

$$J_{\varepsilon}(\mathbf{u};\Omega) = rac{\varepsilon}{2} \int_{\Omega} |\nabla \mathbf{u}|^2 \, d\mathbf{x} \, + \, rac{1}{\varepsilon} \int_{\Omega} \mathbf{W}(\mathbf{u}) \, d\mathbf{x},$$

where $W(t) = \frac{1}{4}(1-t^2)^2$.

• If $J_{\varepsilon}(\,\cdot\,;\Omega)$ is uniformly bounded, then there exists a subsequence $\varepsilon_k\to 0$ such that

$$u_{\varepsilon_k} \to \chi_E - \chi_{E^c} \text{ in } L^1_{loc}(\Omega),$$

where **E** is a set with minimal perimeter in Ω (Modica, 1978).

Juan Pablo Borthagaray

A unified framework for minimal surfaces

Consider now

$$J_{\varepsilon}(\mathbf{u};\Omega) = \frac{\varepsilon^{2s}}{2} \iint_{Q_{\Omega}} \frac{|\mathbf{u}(\mathbf{x}) - \mathbf{u}(\mathbf{y})|^2}{|\mathbf{x} - \mathbf{y}|^{n+2s}} \, d\mathbf{x} \, d\mathbf{y} + \int_{\Omega} \mathbf{W}(\mathbf{u}) \, d\mathbf{x},$$

where $Q_{\Omega} = (\mathbb{R}^n \times \mathbb{R}^n) \setminus (\Omega^c \times \Omega^c)$ and $s \in (0, 1)$.

Juan Pablo Borthagaray

A unified framework for minimal surfaces

Consider now

$$J_{\varepsilon}(\mathbf{u};\Omega) = \frac{\varepsilon^{2s}}{2} \iint_{Q_{\Omega}} \frac{|\mathbf{u}(\mathbf{x}) - \mathbf{u}(\mathbf{y})|^2}{|\mathbf{x} - \mathbf{y}|^{n+2s}} \, d\mathbf{x} \, d\mathbf{y} + \int_{\Omega} W(\mathbf{u}) \, d\mathbf{x},$$

where $Q_{\Omega} = (\mathbb{R}^n \times \mathbb{R}^n) \setminus (\Omega^c \times \Omega^c)$ and $s \in (0, 1)$.

Up to an appropriate scaling in ε , we have:

Theorem (Savin & Valdinoci, 2012)

Assume the energies $J_{\varepsilon}(u_{\varepsilon}; \Omega)$ are uniformly bounded. Then, there exists a subsequence $\varepsilon_k \to 0$ such that $u_{\varepsilon_k} \to \chi_E - \chi_{E^{\varepsilon}}$ in $L^1(\Omega)$. Moreover, let u_{ε} be a sequence of minimizers.

- If s ∈ (0, 1/2) and u_ε → χ_{E0} in Ω^c, then E minimizes a fractional perimeter among all the sets {F ⊂ ℝⁿ : F ∩ Ω^c = E₀}.
- If $s \in [1/2, 1)$, then E is a set with minimal classical perimeter.

Juan Pablo Borthagaray

Minimal sets

• Classical perimeter:

$$\mathsf{P}(\mathsf{E};\mathbb{R}^n) = |\chi_{\mathsf{E}}|_{\mathsf{BV}(\mathbb{R}^n)} \quad "=" |\chi_{\mathsf{E}}|_{\mathsf{W}^{1,1}(\mathbb{R}^n)}.$$

• Fractional perimeter: (Imbert, 2009; Caffarelli, Roquejoffre & Savin, 2010)

$$\mathsf{P}_{\mathsf{s}}(\mathsf{E};\mathbb{R}^n) = |\chi_{\mathsf{E}}|_{\mathsf{W}^{2s,1}(\mathbb{R}^n)} = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|\chi_{\mathsf{E}}(\mathsf{x}) - \chi_{\mathsf{E}}(\mathsf{y})|}{|\mathsf{x} - \mathsf{y}|^{n+2s}} d\mathsf{x} d\mathsf{y}, \quad \mathsf{s} \in (0, 1/2).$$

• Fractional perimeter of in Ω:

$$P_{s}(E;\Omega) = \iint_{Q_{\Omega}} \frac{|\chi_{E}(\mathbf{x}) - \chi_{E}(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|^{n+2s}} d\mathbf{x} d\mathbf{y}.$$

Minimal sets

• Classical perimeter:

$$P(E;\mathbb{R}^n) = |\chi_E|_{BV(\mathbb{R}^n)} \quad "=" |\chi_E|_{W^{1,1}(\mathbb{R}^n)}.$$

• Fractional perimeter: (Imbert, 2009; Caffarelli, Roquejoffre & Savin, 2010)

$$\mathsf{P}_{\mathsf{s}}(\mathsf{E};\mathbb{R}^n) = |\chi_{\mathsf{E}}|_{\mathsf{W}^{2s,1}(\mathbb{R}^n)} = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|\chi_{\mathsf{E}}(\mathsf{x}) - \chi_{\mathsf{E}}(\mathsf{y})|}{|\mathsf{x} - \mathsf{y}|^{n+2s}} d\mathsf{x} d\mathsf{y}, \quad \mathsf{s} \in (0, 1/2).$$

• Fractional perimeter of in Ω:

$$\mathsf{P}_{\mathsf{s}}(\mathsf{E};\Omega) = \iint_{\mathsf{Q}_{\Omega}} \frac{|\chi_{\mathsf{E}}(\mathsf{x}) - \chi_{\mathsf{E}}(\mathsf{y})|}{|\mathsf{x} - \mathsf{y}|^{n+2s}} \mathsf{d}\mathsf{x}\mathsf{d}\mathsf{y}.$$

Problem: given E₀ ⊂ Ω^c and s ∈ (0, ¹/₂), find a set E that

- minimizes the fractional perimeter P_s(E; Ω) and
- satisfies $E \cap \Omega^c = E_0$.

Juan Pablo Borthagaray

Minimal sets

• Classical perimeter:

$$P(E;\mathbb{R}^n) = |\chi_E|_{BV(\mathbb{R}^n)} \quad "=" |\chi_E|_{W^{1,1}(\mathbb{R}^n)}.$$

• Fractional perimeter: (Imbert, 2009; Caffarelli, Roquejoffre & Savin, 2010)

$$\mathsf{P}_{\mathsf{s}}(\mathsf{E};\mathbb{R}^n) = |\chi_{\mathsf{E}}|_{\mathsf{W}^{2s,1}(\mathbb{R}^n)} = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|\chi_{\mathsf{E}}(\mathsf{x}) - \chi_{\mathsf{E}}(\mathsf{y})|}{|\mathsf{x} - \mathsf{y}|^{n+2s}} d\mathsf{x} d\mathsf{y}, \quad \mathsf{s} \in (0, 1/2).$$

• Fractional perimeter of in Ω:

$$\mathbf{P}_{\mathsf{s}}(\mathsf{E};\Omega) = \iint_{\mathsf{Q}_{\Omega}} \frac{|\chi_{\mathsf{E}}(\mathsf{x}) - \chi_{\mathsf{E}}(\mathsf{y})|}{|\mathsf{x} - \mathsf{y}|^{\mathsf{n} + 2\mathsf{s}}} d\mathsf{x} d\mathsf{y}.$$

Problem: given E₀ ⊂ Ω^c and s ∈ (0, ¹/₂), find a set E that

- minimizes the fractional perimeter P_s(E; Ω) and
- satisfies $E \cap \Omega^c = E_0$.

Juan Pablo Borthagaray

Fractional minimal graphs

• **Problem:** find a locally *s*-minimal set *E* in $\widetilde{\Omega} = \Omega \times \mathbb{R} \in \mathbb{R}^{n+1}$ s.t. $E \cap \widetilde{\Omega}^c = \widetilde{E}_0$, where

$$\widetilde{\mathsf{E}}_0 = \{ \widetilde{\mathsf{x}} = (\mathsf{x}, \mathsf{x}_{\mathsf{n}+1}) \in \mathbb{R}^{\mathsf{n}+1} \colon \mathsf{x}_{\mathsf{n}+1} < \mathsf{g}(\mathsf{x}) \},\$$

for a given bounded continuous function $g: \Omega^c \to \mathbb{R}$.

• In this setting, there exists a unique minimal set *E*, and is actually a subgraph (Dipierro, Savin & Valdinoci, 2016, Lombardini, 2016).

Fractional minimal graphs

• **Problem:** find a locally *s*-minimal set *E* in $\widetilde{\Omega} = \Omega \times \mathbb{R} \in \mathbb{R}^{n+1}$ s.t. $E \cap \widetilde{\Omega}^{c} = \widetilde{E}_{0}$, where

$$\widetilde{\mathsf{E}}_0 = \{ \widetilde{\mathsf{x}} = (\mathsf{x}, \mathsf{x}_{n+1}) \in \mathbb{R}^{n+1} \colon \mathsf{x}_{n+1} < \mathsf{g}(\mathsf{x}) \},\$$

for a given bounded continuous function $g: \Omega^c \to \mathbb{R}$.

- In this setting, there exists a unique minimal set *E*, and is actually a subgraph (Dipierro, Savin & Valdinoci, 2016, Lombardini, 2016).
- Fractional perimeter *P*_s(*E*; Ω) in terms of *u*:

$$P_{s}(E;\Omega) = \iint_{Q_{\Omega}} F_{s}\left(\frac{u(x) - u(y)}{|x - y|}\right) \frac{1}{|x - y|^{n+2s-1}} dxdy =: I_{s}[u],$$

where

$$F_{s}(a) = \int_{0}^{a} \frac{a-r}{(1+r^{2})^{(n+1+2s)/2}} dr.$$

• Classical perimeter: this extends surface area $I[u] = \int_{\Omega} \sqrt{1 + |\nabla u(x)|^2} dx$.

Juan Pablo Borthagaray

Variational formulation

Consider the spaces

$$\mathbb{V}^{\mathbf{g}} = \{\mathbf{v} \colon \mathbb{R}^{n} \to \mathbb{R} \ \colon \ \mathbf{v}\big|_{\Omega} \in \mathbf{W}^{2s,1}(\Omega), \ \mathbf{v} = \mathbf{g} \text{ in } \Omega^{\mathbf{c}} \}, \quad \mathbb{V}^{0} = \mathbb{V}^{\mathbf{g}} \text{ for } \mathbf{g} \equiv 0.$$

Taking first variation of $I_s[u]$ gives: find $u \in \mathbb{V}^g$ such that

$$\iint_{Q_{\Omega}} \widetilde{G}_{s}\left(\frac{u(x)-u(y)}{|x-y|}\right) \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+1+2s}} dx dy = 0$$

for every $\textbf{v} \in \mathbb{V}^0$, where

$$\widetilde{G}_{s}(a) = \frac{1}{a}G_{s}(a) = \int_{0}^{1} (1 + a^{2}r^{2})^{-(n+1+2s)/2} dr, \quad G_{s}(a) = F'_{s}(a).$$

Importantly, $\widetilde{\mathsf{G}}_{\mathsf{s}}(a) \to 0$ as $a \to \infty$.

Juan Pablo Borthagaray

Variational formulation

Consider the spaces

$$\mathbb{V}^{\mathbf{g}} = \{\mathbf{v} \colon \mathbb{R}^{\mathbf{n}} \to \mathbb{R} \ \colon \ \mathbf{v}\big|_{\Omega} \in \mathbf{W}^{2\mathrm{s},1}(\Omega), \ \mathbf{v} = \mathbf{g} \text{ in } \Omega^{\mathrm{c}} \}, \quad \mathbb{V}^{0} = \mathbb{V}^{\mathrm{g}} \text{ for } \mathbf{g} \equiv 0.$$

Taking first variation of $I_s[u]$ gives: find $u \in \mathbb{V}^g$ such that

$$\iint_{Q_{\Omega}} \widetilde{G}_{s}\left(\frac{u(x)-u(y)}{|x-y|}\right) \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+1+2s}} dx dy = 0$$

for every $\textbf{v} \in \mathbb{V}^0,$ where

$$\widetilde{G}_{s}(a) = \frac{1}{a}G_{s}(a) = \int_{0}^{1} (1 + a^{2}r^{2})^{-(n+1+2s)/2} dr, \quad G_{s}(a) = F'_{s}(a).$$

Importantly, $\widetilde{\mathsf{G}}_{\mathsf{s}}(\mathsf{a}) \to 0$ as $\mathsf{a} \to \infty$.

Finding a *s*-minimal graph in \mathbb{R}^{n+1} becomes a nonhomogeneous problem in \mathbb{R}^n for a nonlinear, degenerate diffusion operator of order $s + \frac{1}{2}$.

Juan Pablo Borthagaray

Discretization

• Finite element space: let

 $\mathbb{V}_h^g = \{ \mathbf{v} \in \mathbf{C}(\mathbb{R}^n) \colon \ \mathbf{v}|_{\mathsf{T}} \in \mathcal{P}_1 \ \forall \mathsf{T} \in \mathcal{T}, \ \mathbf{v}|_{\Omega^c} = \Pi_h g \}, \quad \mathbb{V}_h^0 = \mathbb{V}_h^g \text{ for } g \equiv 0,$

where Π_h is a quasi-interpolation operator.

• **Discrete problem:** find $u_h \in \mathbb{V}_h^g$ such that for all $v_h \in \mathbb{V}_h^0$,

$$\iint_{Q_\Omega} \widetilde{G}_s\left(\frac{u_h(x)-u_h(y)}{|x-y|}\right) \frac{(u_h(x)-u_h(y))(v_h(x)-v_h(y))}{|x-y|^{n+1+2s}} \, dx dy = 0.$$

 Solve discrete problems using either a semi-implicit L²-gradient flow or a damped Newton method.

Juan Pablo Borthagaray

Convergence

- Interior regularity: minimizer satisfies u ∈ C[∞](Ω). (Barrios, Figalli, & Valdinoci, 2014; Cabré & Cozzi, 2017; Figalli & Valdinoci, 2017)
- Stickiness phenomenon: boundary datum may not be attained continuously!

(Dipierro, Savin & Valdinoci, 2017)

Convergence

 Interior regularity: minimizer satisfies u ∈ C[∞](Ω). (Barrios, Figalli, & Valdinoci, 2014; Cabré & Cozzi, 2017; Figalli & Valdinoci, 2017)

• Stickiness phenomenon: boundary datum may not be attained continuously!

(Dipierro, Savin & Valdinoci, 2017)

Theorem

Let u be the solution of the continuous problem and u_h be the discrete solutions, then

$$\lim_{h\to 0}I_s[u_h]=I_s[u],$$

and

$$\lim_{h\to 0} \|\boldsymbol{u}-\boldsymbol{u}_{h}\|_{W^{2\sigma,1}(\Omega)} = 0, \quad \forall \sigma \in [0,s).$$

Juan Pablo Borthagaray

Experiments

- Stickiness in 1d: $\Omega = (-1, 1)$, g(x) = sign(x) and s = 0.01: 0.01: 0.49.
 - For the classical minimal surface problem, the minimizer is $u(x) = x, x \in (-1, 1)$.
- Effect of $s \in (0, 1/2)$: $\Omega = B(0, 1)$, $g = \chi_{B(0,3/2)}$ and s = 0.01: 0.01: 0.49.

► For the classical minimal surface problem, the minimizer is flat.

- Effect of $\gamma \in [0, 1]$: $\Omega = B(0, 1) \setminus B(0, 1/2)$, $g = \gamma \chi_{B(0, 1/2)}$, where $\gamma = 0.02$: 0.02: 1, and s = 0.25.
 - $\blacktriangleright\,$ For the classical minimal surface problem, when $\gamma>\gamma^*\approx 0.66,$ there is no classical solution.

Juan Pablo Borthagaray

Graphs with prescribed nonlocal mean curvature

• Prescribed classical mean curvature:

$$\int_{\Omega} \frac{1}{\sqrt{1+|\nabla \mathbf{u}|^2}} \, \nabla \mathbf{u} \cdot \nabla \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathbf{f} \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{H}^1_0(\Omega).$$

• Prescribed nonlocal mean curvature:

$$\frac{1-2s}{\alpha_d}\iint_{Q_\Omega}\widetilde{\mathsf{G}}_{\mathsf{s}}\left(\frac{\mathsf{u}(\mathsf{x})-\mathsf{u}(\mathsf{y})}{|\mathsf{x}-\mathsf{y}|}\right)\frac{(\mathsf{u}(\mathsf{x})-\mathsf{u}(\mathsf{y}))(\mathsf{v}(\mathsf{x})-\mathsf{v}(\mathsf{y}))}{|\mathsf{x}-\mathsf{y}|^{d+1+2s}}d\mathsf{x}d\mathsf{y}=\int_\Omega\mathsf{f}\mathsf{v},$$

for all $v \in \mathbb{V}^0$.

The scaling factor $\frac{1-2s}{d\alpha_d}$ makes the nonlocal mean curvature converge to the classic one when s $\to 1/2.$

Juan Pablo Borthagaray

Experiment: prescribed nonlocal mean curvature

Stickiness inside the domain: let $\Omega = (-1, 1) \subset \mathbb{R}$, s = 0.01, g = 0 and

 $f(\mathbf{x}) = 1.5 * \operatorname{sign}(\mathbf{x}).$

Plot of u_h in (-1, 1).

Zoom-in near the origin.

Juan Pablo Borthagaray

Concluding remarks

- Fractional Laplacian (−∆)^s: nonlocal operator of order 0 < 2s < 2.
 - Computational challenges: non-integrable singularities, unbounded domains;
 - Analytical challenges: nonlocality, boundary singularity;
 - Energy error estimate: weighted Sobolev spaces, localization of fractional norms, graded meshes.
- BPX preconditioning: mesh-independent condition number.
 - Separation of scales (SCS inequality): via Fourier analysis in \mathbb{R}^d ;
 - Duality argument: lift property for Lipschitz domains.

Fractional obstacle problem:

- ► Hölder regularity: C^{1,s} near the free boundary and C^s near domain boundary;
- Energy error estimate: C^{1,s} regularity near the free boundary, weighted Sobolev spaces, graded meshes.
- Fractional minimal graphs: nonlinear, degenerate problem of order $s + \frac{1}{2}$.
 - Solutions may be discontinuous across $\partial \Omega$ (stickiness phenomenon);
 - Convergence (without rates) in $W^{2\sigma,1}(\Omega)$ for $\sigma < s$.

Juan Pablo Borthagaray

Concluding remarks

- Fractional Laplacian (−∆)^s: nonlocal operator of order 0 < 2s < 2.
 - Computational challenges: non-integrable singularities, unbounded domains;
 - Analytical challenges: nonlocality, boundary singularity;
 - Energy error estimate: weighted Sobolev spaces, localization of fractional norms, graded meshes.
- BPX preconditioning: mesh-independent condition number.
 - Separation of scales (SCS inequality): via Fourier analysis in \mathbb{R}^d ;
 - Duality argument: lift property for Lipschitz domains.
- Fractional obstacle problem:
 - ► Hölder regularity: C^{1,s} near the free boundary and C^s near domain boundary;
 - Energy error estimate: C^{1,s} regularity near the free boundary, weighted Sobolev spaces, graded meshes.
- Fractional minimal graphs: nonlinear, degenerate problem of order $s + \frac{1}{2}$.
 - Solutions may be discontinuous across $\partial \Omega$ (stickiness phenomenon);
 - Convergence (without rates) in $W^{2\sigma,1}(\Omega)$ for $\sigma < s$.

Thank you!

Juan Pablo Borthagaray