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Local jump random walk

Consider a random walk of a particle along the real line.

Let hZ = {hz : z ∈ Z} be the set of possible states of the particle.
Let u(x, t) be the probability of the particle to be at x ∈ hZ at time t ∈ τN.
Local jump random walk: at each time step of size τ , the particle jumps to the
left or right with probability 1/2.

u(x, t + τ) =
1

2
u(x + h, t) +

1

2
u(x − h, t)

If we consider 2τ = h2, then we obtain

u(x, t + τ)− u(x, t)

τ
=
u(x + h, t) + u(x − h, t)− 2u(x, t)

h2

Letting h, τ ↓ 0 yields the heat equation

∂tu−∆u = 0
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Long jump random walk

The probability that the particle jumps from the point hk ∈ hZ to the point
hm ∈ hZ isK(k −m) = K(m− k):

u(x, t+ τ) =
∑
k∈Z

K(k)u(x + hk, t).

Since
∑

k∈Z K(k) = 1, this yields

u(x, t + τ)− u(x, t) =
∑
k∈Z

K(k) (u(x + hk, t)− u(x, t))

IfK(k) ∼ |k|−(1+2s) with s ∈ (0, 1) and τ = h2s, then
K(k)
τ = hK(kh). Letting

h, τ ↓ 0 yields the fractional heat equation

∂tu(x, t) = C

ˆ
R

u(x + y, t)− u(x, t)

|y|1+2s
dy ⇔ ∂tu+ (−∆)su = 0.
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Goal & outline

Consider fractional-order problems on bounded domains. Derive Sobolev

regularity estimates and perform a finite element analysis.

(Linear) Dirichlet problem.

I Finite element discretizations.
I Regularity of solutions.
I A BPX preconditioner.

Fractional obstacle problem.

Fractional minimal graphs.
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Integral definition for Ω ⊂ Rn

Let Ω ⊂ Rn be an open bounded set, and let f : Ω → R be sufficiently smooth.

Boundary value problem: {
(−∆)su = f in Ω,

u = 0 in Ωc.

Integral representation:

(−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x − y|n+2s
dy = f(x), x ∈ Ω.

Boundary conditions: imposed in Ωc = Rn \ Ω

u = 0 in Ωc.

Probabilistic interpretation: it is the same as over Rn except that particles are

killed upon reaching Ωc.
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Setting

Fractional Sobolev spaces in Rn:

Hs(Rn) =
{
v ∈ L2(Rn) : |v|Hs(Rn) < ∞

}
with

(v,w)s =
C(n, s)

2

¨
Rn×Rn

(v(x)− v(y))(w(x)− w(y))

|x − y|n+2s
dydx,

|v|Hs(Rn) =
√
(v, v)s, ‖v‖Hs(Rn) =

(
‖v‖2L2(Rn) + |v|2Hs(Rn)

) 1
2

.

Zero-extension Sobolev spaces in Ω:

H̃s(Ω) =
{
v ∈ Hs(Rn) : supp(v) ⊂ Ω

}
.

We define the norm ‖v‖
H̃s(Ω) := |v|Hs(Rn). (Poincaré inequality in H̃s(Ω))

Weak formulation: given f ∈ H−s(Ω) =
[
H̃s(Ω)

]∗
, find u ∈ H̃s(Ω) such that

(u, v)s = 〈f, v〉 ∀v ∈ H̃s(Ω).

Existence, uniqueness & stability follow from Lax-Milgram.
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Regularity of solutions

Theorem (Vishik & Èskin, 1965; Grubb, 2015)

Let Ω ⊂ Rn with ∂Ω ∈ C∞ and f ∈ Hr(Ω) for some r ≥ −s. Then,

u ∈

{
H2s+r(Ω) if s+ r < 1/2,

Hs+1/2−ε(Ω), ∀ε > 0, if s+ r ≥ 1/2.

Boundary behavior: typically,

u(x) ≈ d(x, ∂Ω)s + v(x),

with v smooth and vanishing on ∂Ω.

Example: if Ω = B(0, 1), f ≡ 1, then

u(x) = C(1− |x|2)s+,

which does not belong to Hs+1/2(Ω).
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Hölder regularity

Assume Ω is Lipschitz but satisfies a uniform exterior ball condition.

Theorem (Ros-Oton & Serra, 2014)

If f ∈ L∞(Ω), then u ∈ Cs(Rn) and

‖u‖Cs(Rn) ≤ C(Ω, s)‖f‖L∞(Ω).

Furthermore, defining δ(x) := dist(x, ∂Ω), the function u/δs can be
continuously extended to Ω.

Boundary behavior: if f ∈ Cβ(Ω) (β < 2− 2s), then

sup
x,y∈Ω

δ(x, y)β+s
|∇u(x)−∇u(y)|
|x − y|β+2s−1

≤ C1, sup
x∈Ω

δ(x)1−s|∇u(x)| ≤ C2,

where δ(x) := dist(x, ∂Ω) and δ(x, y) = min{δ(x), δ(y)}.

Juan Pablo Borthagaray Finite element approximation of fractional diffusion



Weighted fractional Sobolev regularity (Acosta & B., 2017)

Definition of space H1+θ
α (Ω): let α ≥ 0 and θ ∈ (0, 1). Define

‖v‖2
H̃
1+θ
α (Ω)

:= ‖v‖2H1
α(Ω) +

¨
(Rn×Rn)\(Ωc×Ωc)

|∇v(x)−∇v(y)|2

|x − y|n+2θ
δ(x, y)2αdx dy,

with ‖v‖2
H1
α(Ω) = ‖(v +∇v) δ(·)α‖2

L2(Ω) .

Theorem (regularity)

Let f ∈ C1−s(Ω), Ω be a bounded Lipschitz domain satisfying an exterior ball
condition and ε > 0 be small. Then, the solution u of (−∆)su = f which

vanishes in Ωc belongs to H̃
1+s−2ε
1/2−ε (Ω) and satisfies the estimate

‖u‖
H̃
1+s−2ε
1/2−ε

(Ω) ≤
C(Ω, s)

ε
‖f‖

C1−s(Ω).

(Based on results by Ros-Oton & Serra).
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Besov regularity on Lipschitz domains (B. & Nochetto)

Besov estimate: given v ∈ Hs(B) let vh = v(·+ h) be a translation; then

|v|
B
s+σ
2,∞(B) . sup

h∈C

1

|h|σ
|v − vh|Hs(B),

where C = C(x0) is a cone of directions centered at x0.
Functional: if u is a minimizer of F(v) := F2(v)−F1(v) with
F2(v) :=

1
2‖v‖

2
H̃s(Ω)

and F1(v) := 〈f, v〉, then

1

2
‖u− v‖2

H̃s(Ω)
= F(v)−F(u).

Translation operator (Savaré, 1998): let Thv = φvh + (1− φ)v be a convex
combination of vh and v with φ a cut-off function with support of φ ⊂ B2ρ(xj)
and φ = 1 in Bj = Bρ(xj) for xj ∈ Ω. Then

|u− Thu|Hs(B)
|h|σ

. sup
h∈C

F(Thu)−F(u)

|h|σ
.

Localization: if Ω = ∪mj=1Bj is a covering with finite overlap, then

‖v‖Bsp,q(Ω) ≈
m∑
j=1

‖v‖Bsp,q(Bj).
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Besov Regularity on Lipschitz Domains (continued)

Linear part: if γ ∈ (0, 1), then

sup
h∈C

F1(Thv)−F1(v)

|h|γ
≤ ‖f‖L2(B2ρ)|v|Hγ(B3ρ).

Quadratic part: Using the convexity of F2, we obtain

sup
h∈C

F2(Thv)−F2(v)

|h|γ
≤ ‖φ‖W1

∞(Rd)|v|Hγ(B3ρ).

Basic pick-up regularity: Let f ∈ L2(Ω) and take γ = s. Then the pick-up

regularity is s+ γ/2 = 3s/2:

u ∈ B3s/22,∞(Ω).

If s > 2
3 , then B

3s/2
2,∞(Ω) ⊂ H1(Ω) and we can take γ = 1 to conclude

u ∈ Bs+
1
2

2,∞(Ω).

If s ≤ 2
3 , then we need to iterate this argument progressively increasing γ.
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Besov regularity on Lipschitz domains: lift theorems

We deduce the following lift theorems without a uniform exterior ball condition, thus

allowing for reentrant corners.

Lift Theorem 1: Duality argument in the linear part can be modified to get

|u|
B

3s
2
2,∞(Ω)

. ‖f‖
B
− s

2
2,1 (Ω)

.

Interpolating with ‖u‖
H̃s(Ω) . ‖f‖H−s(Ω) yields

‖u‖
H̃s+t(Ω) . ‖f‖H−s+t(Ω) 0 ≤ t ≤ s

2
.

Lift Theorem 2: If f ∈ L2(Ω), then

|u|
B
s+1

2
2,∞(Ω)

≤ C‖f‖L2(Ω) s >
1

2
,

|u|
B
2s−ε
2,∞ (Ω) ≤ Cε‖f‖L2(Ω) s ≤ 1

2
.
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FEM and best approximation

Discrete spaces: let {T } be a sequence of conforming, shape-regular meshes
on Ω, and define

Vh = {vh ∈ C(Ω): v
∣∣
T
∈ P1 ∀T ∈ T }.

Discrete problem: find uh ∈ Vh such that (uh, vh)s = 〈f, vh〉 ∀vh ∈ Vh.

Best approximation: since we project over Vh with respect to the energy norm

| · |
H̃s(Ω) induced by (·, ·)s, we get

‖u− uh‖H̃s(Ω) = min
vh∈Vh

‖u− vh‖H̃s(Ω).

A priori error analysis: must account for nonlocality and boundary behavior.
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Interpolation estimates in H̃s(Ω)
Hardy-type estimates: for every v ∈ H̃s(Ω),

‖v‖
H̃s(Ω) ≤ C(Ω, s)‖v‖Hs(Ω), if s ∈ (0, 1/2),

‖v‖
H̃s(Ω) ≤ C(Ω, s)|v|Hs(Ω), if s ∈ (1/2, 1).

Localized estimates in Hs(Ω) (Faermann, 2002):

|v|2Hs(Ω) ≤
C(n, s)

2

∑
T∈T

[ˆ
T

ˆ
ST

|v(x)− v(y)|2

|x − y|n+2s
dydx +

C(n, σ)

sh2sT
‖v‖2L2(T)

]
,

where ST is the patch associated with T ∈ T and σ is the shape regularity
constant of T .

Quasi-interpolation (Ciarlet Jr., 2013): if Πh is the Scott-Zhang operator,

ˆ
T

ˆ
ST

|(v −Πhv)(x)− (v −Πhv)(y)|2

|x − y|n+2s
dy dx . h

2`−2s
T |v|2H`(SST )

,

where the hidden constant depends on n, σ, ` and blows up as s ↑ 1.
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Quasi-uniform meshes

Error estimate: if ∂Ω ∈ C∞ and f ∈ H1/2−s(Ω), then

‖u− uh‖H̃s(Ω) ≤ C(s, σ)h
1
2 | ln h| ‖f‖H1/2−s(Ω).

Example: let Ω = B(0, 1) ⊂ R2 and f = 1. Then, the solution is given by

u(x) = C(1− |x|2)s+.

s 0.1 0.3 0.5 0.7 0.9
Order (in h) 0.497 0.498 0.501 0.504 0.532

Rate is quasi-optimal. Is it possible to improve the order of convergence?
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Graded meshes

Weighted quasi-interpolation:

ˆ
T

ˆ
ST

|(v −Πhv)(x)− (v −Πhv)(y)|2

|x − y|n+2s
dydx ≤ Ch

2(1+θ−α−s)
T |v|2

H
1+θ
α (SST )

.

Energy error estimate: let d = 2 and T be a graded mesh satisfying

hT ≤ C(σ)

{
h2, T ∩ ∂Ω 6= ∅,

hdist(T, ∂Ω)1/2, T ∩ ∂Ω = ∅,

whence#T ≈ h−2| log h|. Then,

‖u− U‖
H̃s(Ω) . (#T )−

1
2 | log(#T )| ‖f‖

C1−s(Ω).

Improvement: this also reads ‖u− U‖
H̃s(Ω) . h| log h| ‖f‖

C1−s(Ω) and is thus

first order.
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Numerical experiment

Exact solution: if Ω = B(0, 1) ⊂ R2 and f = 1, then u(x) = C(r2 − |x|2)s+.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uniform T 0.497 0.496 0.498 0.500 0.501 0.505 0.504 0.503 0.532

Graded T 1.066 1.040 1.019 1.002 1.066 1.051 0.990 0.985 0.977
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BPX preconditioner (B., Nochetto, Wu & Xu)

Conditioning of the stiffness matrix (Ainsworth, McLean & Tran, 1999):

κ(AAA) ' dim (Vh)
2s/n

(
hmax

hmin

)n−2s

Thus, if n = 2, we have
I uniform meshes: κ(AAA) ' h−2s;
I graded meshes (µ = 2): κ(AAA) ' h−2| log h|s.

Preconditioner: assume we have a hierarchy of discrete spaces

V0 ⊂ V1 ⊂ . . . ⊂ VJ = V, with mesh size hj = γ2j. If
I Boundedness: for every v =

∑J

j=0 vj, |v|2s ≤ c
−1
1

∑J

j=0 h
−2s
j ‖vj‖20;

I Stable decomposition: for every v ∈ V, there exists a decomposition v =
∑J

j=0 vj

such that
∑J

j=0 h
−2s
j ‖vj‖20 ≤ c0|v|2s ;

and ιk : Vk → V is the inclusion operator, then

BBB =

J∑
k=0

h
s−n
k

ιkι
′
k

leads to the condition number for BABABA: κ(BABABA) ≤ c0
c1
.
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Basic Ingredients

Boundedness: strengthened Cauchy-Schwarz inequality.

Let i ≤ j. Then, for every 0 ≤ β < min{s, 3
2 − s},

(vi, vj)s . γ2β|j−i|h−sj |vi|s‖vj‖0 ∀vi ∈ Vi, vj ∈ Vj.

Proof via Fourier analysis in Rd:

Use that (vi, vj)s ≤ |vi|s+β |vj|s−β , and inverse inequalities.

Stable decomposition: lift theorem for Lipschitz domains.

If Ω is Lipschitz, α < s
2 and f ∈ H

−s+α(Ω), then u ∈ H̃s+α(Ω).
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Numerical results

Example: Dirichlet problem in the square [−1, 1]2 and f = 1.

Stopping criterion:
‖b−Ax‖2

‖b‖2
≤ 1× 10−6.

J hJ DOFs
s = 0.9 s = 0.5
CG PCG CG PCG

1 2−1 154 4 4 4 4

2 2−2 383 12 13 8 9

3 2−3 1166 25 16 11 12

4 2−4 3953 46 19 17 14

5 2−5 15302 84 21 24 15

6 2−6 61495 157 23 32 16

Other contributions: H. Gimperlein, J. Stocek, C. Urzúa-Torres (2019);

M. Fautsmann, J. Melenk, M. Parvisi, D. Praetorius (2019).

Extensions: theory extends to graded bisection grids.
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Extensions: theory extends to graded bisection grids.
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Obstacle problem (B., Nochetto & Salgado)

Let Ω ⊂ Rn be a bounded domain and let f, χ : Ω → R be smooth enough data.

Find u : Rn → R, supported in Ω, such that

u ≥ χ in Ω,
(−∆)su ≥ f in Ω,
(−∆)su = f whenever u > χ.

Can be equivalently written as a variational inequality.

Find u ∈ K such that

(u, u− v)s ≤ 〈f, u− v〉 ∀v ∈ K,

whereK denotes the convex set

K = {v ∈ H̃s(Ω): v ≥ χ a.e. in Ω}.
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Assumptions

Domain: ∂Ω is Lipschitz, and satisfies an exterior ball condition.

Data: from now on,

χ ∈ C2,1(Ω), 0 ≤ f ∈ Fs(Ω) =

{
C2,1−2s(Ω), s ∈

(
0, 1

2

)
C1,2−2s(Ω), s ∈

[
1
2 , 1

) .

We assume that χ < 0 on ∂Ω, so that

I the behavior of solutions near ∂Ω is dictated by a linear problem;

I the nonlinearity is constrained to the interior of the domain.

Non-locality: gluing interior and boundary estimates is not straightforward!

If η ≡ 1 in a neighborhood of x0, then it does not follow that

(−∆)s(ηu)(x0) = (−∆)su(x0).
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Regularity for the obstacle problem in Rn

Theorem (Caffarelli, Salsa & Silvestre, 2008)

For the obstacle problem in Rn, if f ∈ Fs(Rn) and χ ∈ C2,1(Rn), then the
solution u belongs to C1,s(Rn).

(In particular, u ∈ H
1+s−ε
loc

(Rn) for all ε > 0.)

Limiting cases: for the classical obstacle problem (s = 1), solutions are C1,1.

If s = 0, then the obstacle problem reduces to min{u− χ, u− f} = 0, so that for
smooth data, solutions are C0,1.

Recall also that for the linear problem, solutions are Cs near ∂Ω.

Moral: free boundary regularity is not any worse than boundary regularity for the

linear problem.
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Regularity for the obstacle problem on Ω

Interior regularity: Caffarelli-Salsa-Silvestre’s theorem + localization argument.

Boundary regularity: adapt the result for the linear Dirichlet problem.

Theorem

Let u ∈ H̃s(Ω) be the solution to the fractional obstacle problem. Then, for
every ε > 0 we have that u ∈ H̃1+s−2ε

1/2−ε (Ω) with the estimate

‖u‖
H̃
1+s−2ε
1/2−ε

(Ω) ≤
C

ε
,

with C > 0 depending on χ, s, n,Ω, ‖f‖Fs(Ω).
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Finite element approximation (n = 2)

Discrete problem: find uh ∈ Kh = {vh ∈ Vh : vh ≥ Ihχ} such that

(uh, uh − vh)s ≤ 〈f, uh − vh〉 ∀vh ∈ Kh.

Here, Ih is a positivity-preserving quasi-interpolation operator (Chen & Nochetto, 2000).

Weighted Sobolev regularity⇒ graded meshes (keep#T ≈ h−2| log h|).

Fractional interpolation estimates: for quasi-interpolation operator Ih.
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Error bound

Since

‖u− uh‖2H̃s(Ω)
= (u− uh, u− Ihu)s + (u− uh, Ihu− uh)s,

we have
1

2
‖u− uh‖2H̃s(Ω)

≤ 1

2
‖u− Ihu‖2H̃s(Ω)

+ (u− uh, Ihu− uh)s.

Interpolation error: ‖u− Ihu‖H̃s(Ω) ≤ Ch1−2ε‖u‖
H̃
1+s−2ε
1/2−ε

(Ω).

Second term in RHS: integrate by parts and use discrete variational inequality,

(u− uh, Ihu− uh)s ≤
ˆ
Ω

(Ihu− uh)((−∆)su− f)

=

ˆ
Ω

[
(u− χ) + (Ihχ− uh) + (Ih(u− χ)− (u− χ))

]
((−∆)su− f)

≤
ˆ
Ω

(Ih(u− χ)− (u− χ)) ((−∆)su− f).
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Therefore,

(u− uh, Ihu− uh)s ≤
∑
T∈T

ˆ
T

(Ih(u− χ)− (u− χ)) ((−∆)su− f).

Using the interior regularity u ∈ C1,s(Ω)
we deduce:

u− χ ∈ C1,s(Ω),
(−∆)su− f ∈ C1−s(Ω).

In the light blue elements we have

|(Ih(u− χ)− (u− χ)) ((−∆)su− f)| ≤ Ch
1+s
T h

1−s
T = Ch2T .
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Convergence rate

Theorem

Let 0 ≤ f ∈ Fs(Ω) and assume that χ ∈ C2,1(Ω) is such that χ < 0 on ∂Ω.
Considering shape-regular graded meshes as before, if h is sufficiently small,

then it holds that

‖u− uh‖H̃s(Ω) ≤ C(#T )1/2| log(#T )|3/2.
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Numerical experiments

Problem: let Ω = B(0, 1) ⊂ R2, and consider f, χ so that the exact solution is

u(x) = (1− |x|2)s+ p
(s)
2 (x),

where p
(s)
2 is a certain Jacobi polynomial of degree two.

log(dim(V
h
))

9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

lo
g
(|

u
-u

h
| H

s
(R

n
))

-4.8

-4.75

-4.7

-4.65

-4.6

-4.55

-4.5

-4.45

-4.4

-4.35

-4.3

s=0.1

dim(V
h
)-1/2

log(dim(V
h
))

9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

lo
g
(|

u
-u

h
| H

s
(R

n
))

-4.05

-4

-3.95

-3.9

-3.85

-3.8

-3.75

-3.7

-3.65

-3.6

-3.55

s=0.9

dim(V
h
)
-1/2

Left: s = 0.1; right: s = 0.9. The rate observed in both cases is≈ (#T )1/2.
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Qualitative behavior

Problem: let Ω = B(0, 1) ⊂ R2, f = 0 and

χ(x1, x2) =
1

2
−

√(
x1 −

1

4

)2

+
1

2
x22.

s = 0.1 s = 0.5 s = 0.9
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Fractional minimal surfaces (B., Li & Nochetto)

A phase transition problem: consider the Ginzburg-Landau energy

Jε(u; Ω) =
ε

2

ˆ
Ω

|∇u|2 dx +
1

ε

ˆ
Ω

W(u) dx,

whereW(t) = 1
4 (1− t2)2.

If Jε( · ; Ω) is uniformly bounded, then there exists a subsequence εk → 0 such
that

uεk → χE − χEc in L
1
loc(Ω),

where E is a set with minimal perimeter in Ω (Modica, 1978).
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A unified framework for minimal surfaces

Consider now

Jε(u; Ω) =
ε2s

2

¨
QΩ

|u(x)− u(y)|2

|x − y|n+2s
dx dy +

ˆ
Ω

W(u) dx,

where QΩ = (Rn × Rn) \ (Ωc × Ωc) and s ∈ (0, 1).

Up to an appropriate scaling in ε, we have:

Theorem (Savin & Valdinoci, 2012)

Assume the energies Jε(uε; Ω) are uniformly bounded. Then, there exists a
subsequence εk → 0 such that uεk → χE − χEc in L

1(Ω).
Moreover, let uε be a sequence of minimizers.

If s ∈ (0, 1/2) and uε ⇀ χE0 in Ω
c, then E minimizes a fractional perimeter

among all the sets {F ⊂ Rn : F ∩ Ωc = E0}.
If s ∈ [1/2, 1), then E is a set with minimal classical perimeter.
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Minimal sets
Classical perimeter:

P(E;Rn) = |χE|BV(Rn) “ = ” |χE|W1,1(Rn).

Fractional perimeter: (Imbert, 2009; Caffarelli, Roquejoffre & Savin, 2010)

Ps(E;Rn) = |χE|W2s,1(Rn) =

¨
Rn×Rn

|χE(x)− χE(y)|
|x − y|n+2s

dxdy, s ∈ (0, 1/2).

Fractional perimeter of inΩΩΩ:

Ps(E; Ω) =

¨
QΩ

|χE(x)− χE(y)|
|x − y|n+2s

dxdy.

Problem: given E0 ⊂ Ωc and s ∈ (0, 1
2 ), find a

set E that

I minimizes the fractional perimeter Ps(E; Ω) and
I satisfies E ∩ Ωc = E0.
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Fractional minimal graphs

Problem: find a locally s-minimal set E in

Ω̃ = Ω× R ∈ Rn+1 s.t. E ∩ Ω̃c = Ẽ0, where

Ẽ0 = {x̃ = (x, xn+1) ∈ Rn+1 : xn+1 < g(x)},

for a given bounded continuous function g : Ωc → R.

In this setting, there exists a unique minimal set E, and is actually a subgraph

(Dipierro, Savin & Valdinoci, 2016, Lombardini, 2016).

Fractional perimeter Ps(E; Ω) in terms of u:

Ps(E; Ω) =

¨
QΩ

Fs

(
u(x)− u(y)

|x − y|

)
1

|x − y|n+2s−1
dxdy =: Is[u],

where

Fs(a) =

ˆ a

0

a− r

(1 + r2)(n+1+2s)/2
dr.

Classical perimeter: this extends surface area I[u] =
´
Ω

√
1 + |∇u(x)|2dx.
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Variational formulation
Consider the spaces

Vg = {v : Rn → R : v
∣∣
Ω
∈ W2s,1(Ω), v = g in Ωc}, V0 = Vg for g ≡ 0.

Taking first variation of Is[u] gives: find u ∈ Vg such that

¨
QΩ

G̃s

(
u(x)− u(y)

|x − y|

)
(u(x)− u(y))(v(x)− v(y))

|x − y|n+1+2s
dxdy = 0

for every v ∈ V0, where

G̃s(a) =
1

a
Gs(a) =

ˆ 1

0

(1 + a2r2)−(n+1+2s)/2dr, Gs(a) = F′s(a).

Importantly, G̃s(a) → 0 as a→ ∞.

Finding a s-minimal graph in Rn+1 becomes a nonhomogeneous problem in Rn

for a nonlinear, degenerate diffusion operator of order s+ 1
2 .

Juan Pablo Borthagaray Finite element approximation of fractional diffusion



Variational formulation
Consider the spaces

Vg = {v : Rn → R : v
∣∣
Ω
∈ W2s,1(Ω), v = g in Ωc}, V0 = Vg for g ≡ 0.

Taking first variation of Is[u] gives: find u ∈ Vg such that

¨
QΩ

G̃s

(
u(x)− u(y)

|x − y|

)
(u(x)− u(y))(v(x)− v(y))

|x − y|n+1+2s
dxdy = 0

for every v ∈ V0, where

G̃s(a) =
1

a
Gs(a) =

ˆ 1

0

(1 + a2r2)−(n+1+2s)/2dr, Gs(a) = F′s(a).

Importantly, G̃s(a) → 0 as a→ ∞.

Finding a s-minimal graph in Rn+1 becomes a nonhomogeneous problem in Rn

for a nonlinear, degenerate diffusion operator of order s+ 1
2 .

Juan Pablo Borthagaray Finite element approximation of fractional diffusion



Discretization

Finite element space: let

Vg

h
= {v ∈ C(Rn) : v|T ∈ P1 ∀T ∈ T , v|Ωc = Πhg}, V0

h = Vg

h
for g ≡ 0,

where Πh is a quasi-interpolation operator.

Discrete problem: find uh ∈ Vg

h
such that for all vh ∈ V0

h ,

¨
QΩ

G̃s

(
uh(x)− uh(y)

|x − y|

)
(uh(x)− uh(y))(vh(x)− vh(y))

|x − y|n+1+2s
dxdy = 0.

Solve discrete problems using either a semi-implicit L2L2L2-gradient flow or a

damped Newton method.
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Convergence

Interior regularity: minimizer satisfies u ∈ C∞(Ω).
(Barrios, Figalli, & Valdinoci, 2014; Cabré & Cozzi, 2017;

Figalli & Valdinoci, 2017)

Stickiness phenomenon: boundary datum may

not be attained continuously!

(Dipierro, Savin & Valdinoci, 2017)

Theorem

Let u be the solution of the continuous problem and uh be the discrete solutions,

then

lim
h→0

Is[uh] = Is[u],

and

lim
h→0

‖u− uh‖W2σ,1(Ω) = 0, ∀σ ∈ [0, s).
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Stickiness phenomenon: boundary datum may

not be attained continuously!

(Dipierro, Savin & Valdinoci, 2017)

Theorem

Let u be the solution of the continuous problem and uh be the discrete solutions,

then

lim
h→0

Is[uh] = Is[u],

and

lim
h→0

‖u− uh‖W2σ,1(Ω) = 0, ∀σ ∈ [0, s).
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Experiments

Stickiness in 1d: Ω = (−1, 1), g(x) = sign(x) and s = 0.01: 0.01: 0.49.
I For the classical minimal surface problem, the minimizer is u(x) = x, x ∈ (−1, 1).

Effect of s ∈ (0, 1/2): Ω = B(0, 1), g = χB(0,3/2) and s = 0.01: 0.01: 0.49.
I For the classical minimal surface problem, the minimizer is flat.

Effect of γ ∈ [0, 1]: Ω = B(0, 1) \ B(0, 1/2), g = γχB(0,1/2), where
γ = 0.02: 0.02: 1, and s = 0.25.

I For the classical minimal surface problem, when γ > γ∗ ≈ 0.66, there is no
classical solution.
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Graphs with prescribed nonlocal mean curvature

Prescribed classical mean curvature:ˆ
Ω

1√
1 + |∇u|2

∇u · ∇v dx =
ˆ
Ω

fv ∀v ∈ H1
0(Ω).

Prescribed nonlocal mean curvature:

1− 2s

αd

¨
QΩ

G̃s

(
u(x)− u(y)

|x − y|

)
(u(x)− u(y))(v(x)− v(y))

|x − y|d+1+2s
dxdy =

ˆ
Ω

fv,

for all v ∈ V0.

The scaling factor 1−2s
dαd

makes the nonlocal mean curvature converge to the classic one

when s→ 1/2.
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Experiment: prescribed nonlocal mean curvature

Stickiness inside the domain: let Ω = (−1, 1) ⊂ R, s = 0.01, g = 0 and

f(x) = 1.5 ∗ sign(x).

Plot of uh in (−1, 1). Zoom-in near the origin.
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Concluding remarks
Fractional Laplacian (−∆)s: nonlocal operator of order 0 < 2s < 2.

I Computational challenges: non-integrable singularities, unbounded domains;
I Analytical challenges: nonlocality, boundary singularity;
I Energy error estimate: weighted Sobolev spaces, localization of fractional norms,

graded meshes.

BPX preconditioning: mesh-independent condition number.
I Separation of scales (SCS inequality): via Fourier analysis in Rd;
I Duality argument: lift property for Lipschitz domains.

Fractional obstacle problem:
I Hölder regularity: C1,s near the free boundary and Cs near domain boundary;
I Energy error estimate: C1,s regularity near the free boundary, weighted Sobolev

spaces, graded meshes.

Fractional minimal graphs: nonlinear, degenerate problem of order s+ 1
2 .

I Solutions may be discontinuous across ∂Ω (stickiness phenomenon);
I Convergence (without rates) inW2σ,1(Ω) for σ < s.

Thank you!
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