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Introduction

» Compatible Discretization Methods/Mimetic spectral element
De Rahm Sequences, Differential Geometry, Exterior Calculus

» Mimetic Finite Difference Methods
Summation By Parts - Scherer and Kreiss, 1974, generalized
inner product, Nodal grids, Diagonal Norm 2-4-2

Support Operators Methods -Samarskii/Shaskov, 1985,
-Second Order, Staggered Grid

Castillo-Grone 2003, Corbino-Castillo 2018 - 4-4-4
Staggered Grids, Generalized inner products, Diagonal Norm



Motivation

» Most PDE's in Mathematical Physics are written using 1st
order Operators gradient, divergence and curl.

» Mimetic discrete operators mimic the continuum ones by
satisfying, in the discrete sense, the same properties that
make them more faithful to the physics of the problem.



Our Mimetic operators have the same order of approximation
in the interior of the domain as at the boundary.

Our mimetic operators have been used in many applications in
a very successful way, making the schemes based on these
operators competitive with the established ones.

Staggered grids

Time Discretizations

Curvilinear Coordinates



Mimetic Discretization Methods

Mimetic operators are derived by constructing discrete analogs of
the continuum operators from vector calculus, V-, Vx and V2.

v

Are discrete analogs of the continuum operator

v

Satisfy vector calculus identities

v

Satisfy global and local conservation laws

v

Provide uniform order of accuracy



Mimetic Discretization Methods

These operators not only provide an uniform order of accuracy (all
the way to the boundaries), but they also satisfy fundamental
identities from vector calculus:

v

v

v

v

Gradient of a constant
Free stream preservation
Curl of the gradient
Divergence of the curl

Divergence of the gradient

Gfconst = 0
Dveonst =0
CGf =0
DCv =0
DG=1L



Extended Gauss Divergence Theorem

Mimetic operators

Y N
<Dv,f>Q+<v, :<Bv,f>

G),
N/

Mimetic weight matrices



3D Uniform Staggered Grid

2 Ax Ax Az



MOLE (Mimetic Operators Library Enhanced)

MOLE is a software library that allows users to easily solve
differential equations using mimetic discretization methods.

» Full support for sparse matrices operations

> It is available in C4++ and MATLAB, and it only depends on
Armadillo (An open source C++ linear algebra library)

All functions in MOLE return a sparse matrix representation of the
corresponding mimetic operator.



Test Cases: 1D Wave



Test Cases: 2D Wave



Test Cases: Richards 1D



Test Cases: Membrane 2D



Compact Operators

Let D, and Gy be the second order divergence and gradient.
Let Rk and Ly be matrices appropriate for (CGM) operators.

My = DoR and M, = L, G, are mimetic difference operators of
order k.

Then, explicit high-order accurate derivatives are

(au> = D2 Rku or @ = Lk GQU7
Ox

ox

Explicit R4G and R4D are given by
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Having

< Du,v>q+<u,Gv>p=<Bu,v>

and letting v = KGv
we get

< DKGv,v >q + < KGv, Gv >p = < BKGv, v >,

< DKGv,v >q + < Gv, Gv >pk = < BKGv, v > .



Now if
—DKGf = F,

using fourth order operators D4, G4 we have

—Dys KG4 f = F.

D4 = D2 R4 and G4 = L4 Gz,

we get
—Dy KGy = —Dy Ry KLy G

Here we have
—-D,SG f=F

with
S = Ry Kl,.

What is S?



) A*
A" =P, AP,
P, are permutation matrices

for K =1,

S has non negative eigenvalues with only one zero eigenvalue and
the rest positive eigenvalues.



Time Space

The standard continuous PDE is

d2u d%u
To { [8X2(X,y7 t)dx} dy + [W(x,y, t)dy] dx} =

2%u
pO(vav )dXdyﬁ(vaa t)’



first order system for the unknowns U j(t), V;;(t)

du; ;
@ (t) = Vi,j(t)

dVi;
dtrj(t) = %DGU,',J'(t)
Ui j(t) approximates U(x;, y;j, t) at (x;, y;), which is the center of
(7,/)-th cell. The initial conditions are

{U,-J-(O) = sin(x) sin(y)
Vii(0) = 0

To solve in time, discretize, calling t, = nAt, and At = k, and
have position Verlet (2nd order) and Forest-Ruth (4th Order).
Also, retain BC: Ujj(t) = 0, for cells sharing edge with 0%2.



Table 1: Error for both the Position-Verlet and the Forest-Ruth

algorithms.
m=n | dx = dy | Position-Verlet | log,(E1/E>) | Forest-Ruth | log,(
[1E[l2 1E]l2
51 0.2941 0.07724 — 0.0068
101 0.1485 0.0221 2 0.0006
201 0.0746 0.0049 2 4.9e -5
401 0.0374 0.0014 2 29e—-6




3D-acoustic waves

Here, we transformed the linearized first order system which is not
Hamiltonian into an equivalent first order systems which is
Hamiltonian in nature. Then, we combine the space discretization
using the uniformly accurate Mimetic difference operators with a
high-order discrete time scheme based upon symplectic
considerations.



We have the following manufactured solution at (x, v, z, t):

p =sinx siny sinz cost
U= —cosx siny sinz sint
v = —sinx cosy sinz sint

W= —sinx siny cosz sint



The first order system, not in Hamiltonian formulation, can be
UNCOUPLED, yielding second order wave equations for each
scalar unknown.



uncoupled for pressure

Initial Conditions for p are:
p (x,y,z,0) =sinx siny sinz

ap .
a —P(X7y,270) =0

Boundary Condition:
p(x,y,z,t) =0 on all six faces of the cube [0, 7] x [0, 7] x [0, 7]
for all t > 0.



Uncouple for velocity:

so that each scalar component of the velocity vector satisfies the
scalar wave equation. In this case, we have a Robin Boundary
Value Problem for each of these unknowns.

Consider for example the x-component of velocity, i.e. u(x,y, z, t).
Since % =sinx siny sinz cost,we see that on the pair of
opposite faces x = 0 and x = 7, the normal derivative of u
vanishes there (so, a Neumann type on these faces).

But the function u = —cosx siny sinz sint has a vanishing value
on the other four faces of the cube:

u=0forz=0andz=m
u=0fory=0andy=m



3D Acoustic Wave - Pressure



3D Acoustic Wave - Velocity



Extended Gauss Divergence Theorem

Mimetic operators

Y N
<Dv,f>Q+<v, :<Bv,f>

G),
N/

Mimetic weight matrices



Mimetic Quadratures

1.0: INTRODUCTION

The numerical solution of partial differential equations (PDEs) obtained by preserving the properties of the original
continuum differential operators is widely referred to as the Mimetic discretization methods. The spatial coordinates of
the PDE can be discretized as divergence, gradient and curl that satisfy the underlying theorems of vector calculus (such
as the Gauss Divergence theorem). These discretizations can then be used to solve higher order PDEs, Castillo et al [1].
Castillo [1] observed that the coefficient weights obtained for the 2" order divergence Mimetic discretization method
at the boundaries resemble those obtained from the Newton-Cotes formulation of numerical integration for ODE’s.
Navarro [2] compares the coefficients of higher order Newton-Cotes methods alongside with the equivalent Mimetic

orders
Method Source  Newton Navars "
Cotes Castillo etal
Method Name | Newton | Mimetic Mimetic Newton Newton Mimetic Mimetic
Reference Name A B C D E B1 C1
1759/5586, 308/1123, 43531/138240,
348/985, | 1224/877, | 1073/3527, [ 1499/880, 407/1152, 192937/138240,
Coefficients 3/8, 473/384, | 588/953, 810/559, -729/1783, 473/384, 42647/69120,
9/8; ... 343/384, | 2073/1657, | 343/640, 1899/596, 343/384, 86473/69120,
612/599,... | 339/374, 649/536,... | -2716/2241, | 1177/1152... | 125303/138240,
746/735,... 1998/1021,... 140309/138240,...
# of function 4 8 12 8 12 8 12
evaluations
Gradient order 2 4 6 4 6 4 6
Mimetic
quadrature 3 5 7 5 7 5 7
order

Table 1: shows the coefficients of the weights comparing the Newton-Cotes and Mimetic methods




The coefficients of the diagonal Weight matrix P associated to the
high order mimetic gradient operator G, also satisfy the
“exactness” sufficient conditions involving the Bernoulli numbers
appearing in the Euler-Maclaurin Summation formula.



The classical divergence theorem states that the flux of a vector
field v across the sectionally smooth boundary of a compact
domain in two or three dimensions, equals the surface or volume
integral of div v, and this integral, can then be regarded as a
functional.



When dealing with quadrature approximations for integrals, we
would then have a functional estimate for the domain integral, and
it will be said to mimic the divergence theorem, when this estimate

is accurate and also turns out to be equal to the quadrature over
the domain's boundary.



2D Flux operator

2D Poisson Problem:
—div K grad u = f, (x,y) eV, K= { oo oy }
Ky

2D Mimetic Gradient Operator:

|

G"=—-Kgrad= —-KG = —

OHH

Mimetic Flux Operator:

KG,
KG,

Where:

KGX = kxxGx+ kxyIX(Gy),
KGy = ky Gy + kyly (GX)



Problem 1: Full Tensor

- Problem 1:
—div K grad v = f, (x,y) e V Q=10,1]x[0,1],

K =
9 13

11 9}

F0x,y) = ~[22(y — %) — 26(x — x?) + 18(1 —~ 2x)(1 — 2y)],
True solution (Dirichlet BC): u(x,y) = (x — x*)(y — y?)



Problem 1: Results

mmmmmmmmmm

Figure 5: Computed solution for Problem 1. —div K grad u = f

Table 1: Numerical results for problem 2, (using L> norm)

n  Mim. (2nd) Mim. (4th) Huy Vu  Supp. Operator

17 1.75E-04 4.38E-05 2.08E-04 8.09E-03
33  4.70E-05 6.31E-06 5.67E-05 2.15E-03
65 1.20E-05 8.49E-07 1.48E-05 5.54E-04




Problem 2: Full and Discontinuous Tensor

- Problem 2:
—div K grad v = f, (x,y) e Q
Q= [-1,1]x[-1,1]
10
0
9 -
2 1
e L 5 x:2 0
—2siny —cosy)ax +siny, x<0
Fingea & ROy cesn) y
—2a exp(x) cos y, x>0

2si i 0
True solution: u(x,y) = (2siny + cosy)ax +siny, x <
exp(x) cos y, x>0



Figure 6: Computed solution for Problem 2: —div K grad v = f

Numerical results for Problem 2: —div K grad u = f

New mimetic flux

| Huy Vu

| Supp. Oper.

n Ly norm Max norm | Ly norm Max norm | Ly norm
10 | 4.47E-04 1.10E-03 1.04E-02 1.02E-02
14 | 2.07E-04 4.92E-04 5.30E-03  5.90E-03
16 | 1.53E-04 3.51E-04 4.00E-03  4.70E-03 7.06E-03
20 | 9.33E-05 1.97E-04 2.50E-03  3.40E-03
32 | 3.46E-05 6.74E-05 9.75E-04  1.60E-03 1.73E-03
64 | 8.75E-06 1.70E-05 2.39E-04  5.30E-04 3.96E-04

10



Overlapping Grids

A set of structured grids that overlap.

e Efficient for high-order methods.
o Efficiency of Cartesian grids with the accuracy of boundary fitted
grids.

High quality grids under large displacements.

Smooth grids for accuracy at boundaries.

Figure 7: Overlapping Grid System for two intersecting pipes generated by
Overture



Components of an Overlapping Grid System

Backgroud cartesian grid G.
Annular boundary fitted grid G,
Overlapping grid in physical space P.
Grids in computational space C.

e o o o

os points
O Unused points
A A Ghost points
Physical boundary

r— be(22)

Ceseseeedes

be(t 1) — [1] #—bezt)

|

=N be(1.2)

Figure 8: Simple Overlapping Grid System
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Interpolation

Schemes: bilinear, biquadratic, trilinear, Lagrange, spline cubic.

Interpolation polynomial in the Lagrange form:

k
L) = Zyj(j(x). Where: /j(x) := H &
j=0 0<m<k Xj = Xm

m7j

Implicit Interpolation

Figure 9: Implicit/Explicit Interpolation scheme for a one-dimensional
overlapping grid system

13



Overlapping Grid System for Problem 2

Q= [0, 1]X[O 1] = Ql U QQ,

(X y) c Q, if (Xfxf-‘)2+ (y 7}’c)2 B
’ Q,, otherwise

.
=

Figure 10: Overlapping grid system generated using Overture (Ogen) &

3XC:yC:OA5;r:O,25 i



Results for Problem 2, Full and Orthotropic Tensor

Numerical results for Problem 2: —div K grad v = f

n*  L-norm Order(L2)  Max-norm  Order(Max)
11 4.6893E-04 3.7857E-04

16 1.0460E-04 3.1922 9.9572E-05 2.8415

32 1.3832E-05 2.9188 1.4216E-05 2.8082

64 1.7784E-06 2.9593 1.9257E-06  2.8841

80 9.1575E-07 2.9745 1.0056E-06 2.9116

4n=n(Q1) + n(Q)

15



Richards Equation: Problem Formulation, Background

¢ Flow in the vadose zone has many complications as the parameters
that control the flow are dependent on the saturation of the media,
leading to a non-linear problem. This flow is referred as unsaturated
flow and is described by Richards equation.

¢ Also known as the groundwater flow equation has a diffusion and an
advection term.

o The advection term that is related to gravity and only acts in the
z-direction.

¢ The Richards equation is a highly nonlinear problem.

16



Nonlinear functions: K, 6

Water content and hydraulic conductivity:

) a(bs —6,)
K@) = Ks————, () =—"7-+86
TA+ |y a+ )
£ H

Figure 11: Van Genuchten curves for hydraulic conductivity and water content.

Parameters from [Celia et al., 1990]: o = 1.611x10°, 0, = 0.287,
0, =0.075, 5 = 3.96, A = 1.175x10°, v = 4.74, K, = 9.44x10~3 18



The initial conditions of a 40cm high 1D soil column are initially dry with
a pressure head ¢g(x,0) = 61.5 cm. The boundary conditions applied are
inhomogeneous Dirichlet with the top of the soil column

1(40cm, t) = 20.7cm, and the bottom of the soil column

(0cm, t) = 61.5cm.

Numerical results by Cocket, R.5:

Presure Heam (cm)

Depth (em)

Figure 12: Solution of Richards Equation (FD, 1st order in general) at t =
360s

5Cockett, R. Simulation of Unsaturated Flow Using Richards Equation -



Numerical Results

The obtained results showed excellent agreement between mimetic and
finite difference approach presented by [Cocket, R\ at fixed At.

The discretization scheme (2¢ order in time, 4t order space) was fully
implicit and involved the use of Newtons iteration in order to deal with
non-linearity.

Solution at t = 360s, A t = 30s.

Pressure head (cm)

*,
e

o B 0 15 20 25 30 35 40
Depth (cm)

Figure 13: Richards Equation: MDM on Overlapping Grids
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Extended Gauss-Divergence Theorem in Curvilinear
Coordinates

(Du, V>Q +(u, Gv)p = (Bu, v) (1)

Let D and G denote the divergence and gradient in curvilinear
coordinates. So, we have that,

D= JpDand G = J;G, (2)

Where Jp is the Jacobian corresponding to the divergence and Jg
is the Jacobian corresponding to the gradient.

Hence,

D=J,"Dand G=J' 6

Using (2) in (1), we get

<J515 u, V>Q + <u7JEIGv>P = (Bu,v)



We have [?] that

Q" = JpQc and PT = JgP.c, where Q. and P are the
corresponding weights for the operators in curvilinear coordinates.
So we get,

<J515 u, v>[J

50, Qe JE Ip*D u.v) + (u, Poc T J5*6v) = (B u,v).

T+<u,J(Elév> = (B u,v).

DQcc] [JGPCC]T

Which is, <D u, V>Q + <u, GV>P = (B u,v).

Since B = B as was demonstrated in [?],
we have <D u, v> + <u, G v> = (Bec U, V).

cc PCC



So, we have demonstrated that the mimetic operators D, G in
curvilinear coordinates satisfies the extended Gauss-Divergence
Theorem and the corresponding “exactness condition” for the
curvilinear discrete divergence.



Summary

Mimetic Finite Difference with Symplectic Integrators produce time
and space accurate stable High Order Schemes for wave equations

Discrete energy conservation for 2D wave motion,2016
Discrete energy conservation for 3D acoustic waves 2018

The coefficients of the diagonal weight matrix P for the mimetic
high order mimetic gradient operator G, satisfy the “exactness”
sufficient conditions involving the Bernoulli numbers appearing in
the Euler-MacLaurin summation formula.

The Mimetic Quadratures satisfy the Divergence theorem. Mimetic

operators in curvilinear coordinates satisfy the Extended
Gauss-Divergence Theorem



Current and future work

* Polygonal grids

* Unstructured grids

* Overlapping grids

* Time space mimetic differences

@ ®  Interpolation points

Physical boundaries

* Compact Operators




José E. Castillo
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