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Machine Learning

Example

Interested in approximating a relation between spatial position x € R?
and altitude y € R.
This relation is given by continuous function f : R? — R.
We don't know this function explicitly.
We know its values {Y;}¥; C R at N distinct points {X;}¥, C R
Machine learning consists in approximating f by:
© Proposing a candidate approximation function f7(0,-) : R? — R,
depending on a set of parameters © and some L > 1;
@ Optimizing the parameters © so that (0, -) fits the data
{(X;,Y;) Y, (minimize the discrepancy between f1.(0, X;) and Y;)
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Machine Learning

Example

Describe relation between any picture (vector z € RY, d > 1) and the
category to which it belongs (y € {cp,c1} C R).
Relation given by a function f : R? — {cg,c;}.
We don't know this function explicitly.
We know its values {Y;}, for N pictures {X;}¥, C R9.
Machine learning consists in approximating f by:
@ Proposing a candidate approximation function f7(0,-) : R* — R,
depending on a set of parameters © and some L > 1;

@ Optimizing the parameters © so that f1(O,-) fits the data
{(Xi, Vi) HL,
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Machine Learning (in general)

o Interested in approximating a function f : R? — R™, of some class,
which we don’t know explicitly.

@ We have data: its values {Y;}Y; C R™ at N distinct points
{Xi}iL, CRY
@ Machine learning consists in approximating f by:
© Proposing a candidate approximation function fz(©,-) : R* — R™,
depending on a set of parameters © and some L € N;
@ Optimizing the parameters O so that f1(0,-) fits the data
{(Xszi) fV:u
@ Neural Networks: a way of constructing f1,(0©, ), done by L
successive compositions of a specified nonlinear function o and
linear transformations depending on parameters
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Neural networks: Activation function

@ Idea behind NN: approximate the unknown function f by (say
L > 2) successive compositions of a specified nonlinear function and
a parametrized affine transformation of the input.

@ This nonlinear function o : R — R is referred to as the activation

function
o Examples include o(x) = max{0,z} ("ReLU") and o(z) = /=
("sigmoid")

e o generally applied to vectors in R? so meant component-wise

sigmoid RelU

" o(z)= | R(z)=mazx(0, z)

T+e

Figure: The sigmoid and ReLU activation functions.
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Neural Networks

Definition (Neural network)

A neural network of depth L > 2, with input dimension d > 1, and
output dimension m > 1, is a tuple

© = {(Ar, o)}y
of matrix-vector pairs, where
Ap e RV>Ne—1 gnd b, e RV fork=1,...,L.

The numbers {Ny}._, € N with Ny = d and N;, = m are given, and
called widths.

@ The parameters (Ay, by) are called weights and biases.
o Sometimes N, =d for all k =0, ..., L (ResNets)
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Neural Networks

Let o € CO(R) be a fixed activation function.

Definition (Layers)

Let © = {(Ay,bx)}L_, be a neural network of depth L > 2, with input
dimension d > 1, and output dimension m > 1.
For kK =1,..., L define the affine map

Ap: RVe=1 s RV

r— Apx + by

We call (A (+)) the kt-layer of the neural network ©.

@ Idpa is the input layer.

@ 0(A1),...,0(AL_1) are the hidden layers.

o o(Ayp) is the output layer.

o L =2 — shallow network; L > 3 — deep network.
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Neural Networks

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Figure: Graphical representation of a neural network of depth L = 4. The input
layer has d = 8 nodes (one for each component of a data point X; € R?), the
output layer has m = 4 nodes; the width of the hidden layers equals 9.
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Neural Networks

Definition (Realization of a neural network)

Let o € CO(R) be fixed activation function.

Let © = {(Ay,br)}-_, be a neural network of depth L > 2, with input
dimension d > 1, and output dimension m > 1.

The realization of © w.r.t. ¢ is the function

fu(©,): R* — R™
x+— 0(AL (0(Ap—1(oco---00(A1(x)))))) -

@ fr.(©,-) depends on the depth L > 1, and the width max; N > 1;

e Oftentimes the realization f(©, ) itself is called neural network.
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Universal approximation theorem(s)

Theorems generally of the form: The class of neural networks is dense
with respect to some topology in some function class C.

Theorem (Cybenko '89, MCSS)

Let o : R — R be a nonconstant, bounded and continuous function. Let
d > 1. Given any ¢ > 0 and any f € C°([0,1]%), there exists m € N,
constants vy, by, € R and vectors A, € R? for k=1, ..., m such that F
defined by

F(x) = Z vpo (AL + by)
k=1

satisfies

sup |f(z) — F(z)| <e.
z€[0,1]¢

Ingredients of the proof: Contradiction argument 4+ Hahn Banach +
Riesz-Representation + properties of o.
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Universal approximation theorem(s)

More recent results for ReLU networks include

Theorem (Hanin '17)

Let d > 1 and let f : [0,1]* — R be a positive and continuous function
with || fllcc = 1. Then for any € > 0, there exists a realization g of a

Rel U network of depth
2d!

wy(e)?
and width max;, N, < d + 3 such that

L =

Hf_g”oo <e.

Here wy : § — sup{|f(z) — f(y)|: | —y| < d} denotes the modulus of
continuity of f.

Improved results for functions f : R? — R™ can be found in Miiller '20.
The proofs are more constructive than Cybenko '89.
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Training phase (Optimization)

o We are given data {(X;,Y;)}}L, € R? x R (training set);

@ Training consists in solving the optimization problem:

J\Y
min Y; — f0(8, X)) |* + aR(©); (1)
O={(Ar,br)}E_, ;
« > 0 is a regularization parameter, R convex;
@ Non-convex optimization problem because of fr;
@ Existence of a minimizer may be shown by a direct method
(o € CY;

Once training is done:

o Given a minimizer ©, we set f(z) := f1(©, z) (regression) or

co+cC1

co if fr(©,2) < 5

c; else

(classification).
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Computing the minimizer

The functional to be minimized is of the form
N
J(©) =) Ji(®). (2)
i=1

We could do gradient descent:
o"tl .= " —nv.J(en),

7) is step-size. But often N > 1.
@ Stochastic gradient descent:

@ pick i € {1,..., N} uniformly at random
Q o'l .= 0" —yVvJ,(e™)

o Use adjoints to compute these gradients ("backpropagation")

@ Issues: might not converge to global minimizer; also how does one
initialize the weights in the iteration?
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A discretized dynamical system

Recall the realization of the neural network © = {(Ay, by)} ;-

fL(0,x) :==c(Ar(co...00(A1(2)))).

We can define a scheme: for z € RY,

ZM = (A1 ZF 4 bpyy) fork=0,...,L—1
2 . (3)

@ We recognize a discrete-time dynamical system;

@ Training can thus be rewritten as a constrained optimization

problem:
N

min Y; — Z"* + aR(O
@2{(Ak,bk)}£:1iz:;| z | ( )

with ZE = ZE(0, X;), subject to (3) with Z° = X;.

@ In this case, deep learning may be seen as discretized optimal control
(the parameters © play the role of controls).
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Residual Neural Networks (ResNets)

Back to neural networks.
A different architecture (He et al. '15, Weinan E et al. '17, '18, '19):

(4)

Zk+1 :Zk+AfO'(Aka+bk) fork:l,...L*l
ZO :IGR(I

with At = % and T' > 0 given time horizon.

@ requires uniform widths N, = d at each layer k (can be prohibitive
for applications)

@ Recognize explicit Euler scheme for ODE

2(t) = o(A(t)z(t) + b(t)) fort € (0,7)
2(0) =z € R%

@ The limit L — 400 is treated in Thorpe et al. '19.
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The continuous Optimal Control Problem

@ In view of what precedes, can be advantageous (lightens the
notations) to consider the continuous-time optimal control problem:

f Y; — 2(T)|?
u(ltnEUZ| z2(T)]* + aR(w) (6)

subject to

Z(t) = F(u(t),z(t)) in(0,7)
2(0) = X; € R%

o We wrote u(t) = (A(¢t),b(t)) and F(u,z) = o(Az +b).

@ o globally Lipschitz; existence of a minimizer is more tricky (see
Trélat '05); here U C L°°(O T'Rd)

o An example: R(u fo (t))dt.

o Easier to write optlmallty system (E et al. '18), can use different
algorithms for training (shooting method);

@ Other schemes for ODE to obtain new architectures (Runge-Kutta)
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Questions, perspectives

Many questions persist:

How can one quantify/describe the stability of the deep learning
process with respect to perturbations in the data?

What about the choice of the activation function o7 Can, depending
on the application, a better o be deduced as the nonlinearity from a
PDE?

How does one best choose the length L and widths N}, of the neural
network?

Can ResNets formulated with non-uniform widths N7

What mathematical control results does one transfer to deep
learning?

Many other architectures were not presented (Convolutional Neural
Networks..)
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