
Mathematical Control and Deep Learning

Borjan Geshkovski
Universidad Autónoma de Madrid & Fundación Deusto

CAA Seminar, FAU Erlangen-Nürnberg
January 21, 2020

Borjan Geshkovski Mathematical Control and Deep Learning

Machine Learning

Example

Interested in approximating a relation between spatial position x ∈ R2

and altitude y ∈ R.
This relation is given by continuous function f : R2 → R.
We don’t know this function explicitly.
We know its values {Yi}Ni=1 ⊂ R at N distinct points {Xi}Ni=1 ⊂ R2.
Machine learning consists in approximating f by:

1 Proposing a candidate approximation function fL(Θ, ·) : R2 → R,
depending on a set of parameters Θ and some L ≥ 1;

2 Optimizing the parameters Θ so that fL(Θ, ·) fits the data
{(Xi, Yi)}Ni=1 (minimize the discrepancy between fL(Θ, Xi) and Yi)

Borjan Geshkovski Mathematical Control and Deep Learning 2 / 18

Machine Learning

Example

Describe relation between any picture (vector x ∈ Rd, d ≫ 1) and the
category to which it belongs (y ∈ {c0, c1} ⊂ R).
Relation given by a function f : Rd → {c0, c1}.
We don’t know this function explicitly.
We know its values {Yi}Ni=1 for N pictures {Xi}Ni=1 ⊂ Rd.
Machine learning consists in approximating f by:

1 Proposing a candidate approximation function fL(Θ, ·) : Rd → R,
depending on a set of parameters Θ and some L ≥ 1;

2 Optimizing the parameters Θ so that fL(Θ, ·) fits the data
{(Xi, Yi)}Ni=1

Borjan Geshkovski Mathematical Control and Deep Learning 3 / 18

Machine Learning (in general)

Interested in approximating a function f : Rd → Rm, of some class,
which we don’t know explicitly.
We have data: its values {Yi}Ni=1 ⊂ Rm at N distinct points
{Xi}Ni=1 ⊂ Rd.
Machine learning consists in approximating f by:

1 Proposing a candidate approximation function fL(Θ, ·) : Rd → Rm,
depending on a set of parameters Θ and some L ∈ N;

2 Optimizing the parameters Θ so that fL(Θ, ·) fits the data
{(Xi, Yi)}Ni=1;

Neural Networks: a way of constructing fL(Θ, ·), done by L
successive compositions of a specified nonlinear function σ and
linear transformations depending on parameters

Borjan Geshkovski Mathematical Control and Deep Learning 4 / 18

Neural networks: Activation function

Idea behind NN: approximate the unknown function f by (say
L ≥ 2) successive compositions of a specified nonlinear function and
a parametrized affine transformation of the input.
This nonlinear function σ : R → R is referred to as the activation
function
Examples include σ(x) = max{0, x} ("ReLU") and σ(x) = 1

1+e−x

("sigmoid")
σ generally applied to vectors in Rd, so meant component-wise

Figure: The sigmoid and ReLU activation functions.

Borjan Geshkovski Mathematical Control and Deep Learning 5 / 18

Neural Networks

Definition (Neural network)

A neural network of depth L ≥ 2, with input dimension d ≥ 1, and
output dimension m ≥ 1, is a tuple

Θ = {(Ak, bk)}Lk=1

of matrix-vector pairs, where

Ak ∈ RNk×Nk−1 and bk ∈ RNk for k = 1, . . . , L.

The numbers {Nk}Lk=0 ∈ N with N0 = d and NL = m are given, and
called widths.

The parameters (Ak, bk) are called weights and biases.
Sometimes Nk = d for all k = 0, . . . , L (ResNets)

Borjan Geshkovski Mathematical Control and Deep Learning 6 / 18

Neural Networks

Let σ ∈ C0(R) be a fixed activation function.

Definition (Layers)

Let Θ = {(Ak, bk)}Lk=1 be a neural network of depth L ≥ 2, with input
dimension d ≥ 1, and output dimension m ≥ 1.
For k = 1, . . . , L define the affine map

Λk : RNk−1 −→ RNk

x 7−→ Akx+ bk.

We call σ(Λk(·)) the kth-layer of the neural network Θ.

IdRd is the input layer.
σ(Λ1), . . . , σ(ΛL−1) are the hidden layers.
σ(ΛL) is the output layer.
L = 2 −→ shallow network; L ≥ 3 −→ deep network.

Borjan Geshkovski Mathematical Control and Deep Learning 7 / 18

Neural Networks

Figure: Graphical representation of a neural network of depth L = 4. The input
layer has d = 8 nodes (one for each component of a data point Xi ∈ Rd), the
output layer has m = 4 nodes; the width of the hidden layers equals 9.

Borjan Geshkovski Mathematical Control and Deep Learning 8 / 18

Neural Networks

Definition (Realization of a neural network)

Let σ ∈ C0(R) be fixed activation function.
Let Θ = {(Ak, bk)}Lk=1 be a neural network of depth L ≥ 2, with input
dimension d ≥ 1, and output dimension m ≥ 1.
The realization of Θ w.r.t. σ is the function

fL(Θ, ·) : Rd −→ Rm

x 7−→ σ(ΛL (σ(ΛL−1(σ ◦ · · · ◦ σ(Λ1(x)))))) .

fL(Θ, ·) depends on the depth L ≥ 1, and the width maxk Nk ≥ 1;
Oftentimes the realization fL(Θ, ·) itself is called neural network.

Borjan Geshkovski Mathematical Control and Deep Learning 9 / 18

Universal approximation theorem(s)

Theorems generally of the form: The class of neural networks is dense
with respect to some topology in some function class C.

Theorem (Cybenko ’89, MCSS)

Let σ : R → R be a nonconstant, bounded and continuous function. Let
d ≥ 1. Given any ε > 0 and any f ∈ C0([0, 1]d), there exists m ∈ N,
constants vk, bk ∈ R and vectors Ak ∈ Rd for k = 1, . . . ,m such that F
defined by

F (x) =
m∑

k=1

vkσ(A
T
k x+ bk)

satisfies
sup

x∈[0,1]d
|f(x)− F (x)| < ε.

Ingredients of the proof: Contradiction argument + Hahn Banach +
Riesz-Representation + properties of σ.

Borjan Geshkovski Mathematical Control and Deep Learning 10 / 18

Universal approximation theorem(s)

More recent results for ReLU networks include

Theorem (Hanin ’17)

Let d ≥ 1 and let f : [0, 1]d → R be a positive and continuous function
with ∥f∥∞ = 1. Then for any ε > 0, there exists a realization g of a
ReLU network of depth

L =
2 d!

wf (ε)d

and width maxk Nk ≤ d+ 3 such that

∥f − g∥∞ ≤ ε.

Here wf : δ 7→ sup{|f(x)− f(y)| : |x− y| ≤ δ} denotes the modulus of
continuity of f .

Improved results for functions f : Rd → Rm can be found in Müller ’20.
The proofs are more constructive than Cybenko ’89.

Borjan Geshkovski Mathematical Control and Deep Learning 11 / 18

Training phase (Optimization)

We are given data {(Xi, Yi)}Nj=1 ⊂ Rd × Rm (training set);
Training consists in solving the optimization problem:

min
Θ={(Ak,bk)}L

k=1

N∑
i=1

|Yi − fL(Θ, Xi)|2 + αR(Θ); (1)

α > 0 is a regularization parameter, R convex;
Non-convex optimization problem because of fL;
Existence of a minimizer may be shown by a direct method
(σ ∈ C0);

Once training is done:

Given a minimizer Θ̂, we set f(x) := fL(Θ̂, x) (regression) or

f(x) :=

c0 if fL(Θ̂, x) ≤ c0 + c1
2

c1 else

(classification).
Borjan Geshkovski Mathematical Control and Deep Learning 12 / 18

Computing the minimizer

The functional to be minimized is of the form

J(Θ) =

N∑
i=1

Ji(Θ). (2)

We could do gradient descent:

Θn+1 := Θn − η∇J(Θn),

η is step-size. But often N ≫ 1.
Stochastic gradient descent:

1 pick i ∈ {1, . . . , N} uniformly at random
2 Θn+1 := Θn − η∇Ji(Θ

n)

Use adjoints to compute these gradients ("backpropagation")
Issues: might not converge to global minimizer; also how does one
initialize the weights in the iteration?

Borjan Geshkovski Mathematical Control and Deep Learning 13 / 18

A discretized dynamical system

Recall the realization of the neural network Θ = {(Ak, bk)}Lk=1:

fL(Θ, x) := σ(ΛL(σ ◦ . . . ◦ σ(Λ1(x)))).

We can define a scheme: for x ∈ Rd,{
Zk+1 = σ(Ak+1Z

k + bk+1) for k = 0, . . . , L− 1

Z0 = x
(3)

We recognize a discrete-time dynamical system;
Training can thus be rewritten as a constrained optimization
problem:

min
Θ={(Ak,bk)}L

k=1

N∑
i=1

|Yi − ZL|2 + αR(Θ)

with ZL = ZL(Θ, Xi), subject to (3) with Z0 = Xi.
In this case, deep learning may be seen as discretized optimal control
(the parameters Θ play the role of controls).

Borjan Geshkovski Mathematical Control and Deep Learning 14 / 18

Residual Neural Networks (ResNets)

Back to neural networks.
A different architecture (He et al. ’15, Weinan E et al. ’17, ’18, ’19):{

Zk+1 = Zk +∆t σ(AkZ
k + bk) for k = 1, . . . L− 1

Z0 = x ∈ Rd,
(4)

with ∆t = T
L and T > 0 given time horizon.

requires uniform widths Nk = d at each layer k (can be prohibitive
for applications)
Recognize explicit Euler scheme for ODE{

z′(t) = σ(A(t)z(t) + b(t)) for t ∈ (0, T)

z(0) = x ∈ Rd.
(5)

The limit L → +∞ is treated in Thorpe et al. ’19.

Borjan Geshkovski Mathematical Control and Deep Learning 15 / 18

The continuous Optimal Control Problem

In view of what precedes, can be advantageous (lightens the
notations) to consider the continuous-time optimal control problem:

inf
u(t)∈U

N∑
i=1

|Yi − z(T)|2 + αR(u) (6)

subject to {
z′(t) = F (u(t), z(t)) in (0, T)

z(0) = Xi ∈ Rd.

We wrote u(t) = (A(t), b(t)) and F (u, z) = σ(Az + b).
σ globally Lipschitz; existence of a minimizer is more tricky (see
Trélat ’05); here U ⊂ L∞(0, T ;Rd)

An example: R(u) =
∫ T

0
ℓ(z(t), u(t))dt.

Easier to write optimality system (E et al. ’18), can use different
algorithms for training (shooting method);
Other schemes for ODE to obtain new architectures (Runge-Kutta)

Borjan Geshkovski Mathematical Control and Deep Learning 16 / 18

Questions, perspectives

Many questions persist:
How can one quantify/describe the stability of the deep learning
process with respect to perturbations in the data?
What about the choice of the activation function σ? Can, depending
on the application, a better σ be deduced as the nonlinearity from a
PDE?
How does one best choose the length L and widths Nk of the neural
network?
Can ResNets formulated with non-uniform widths Nk?
What mathematical control results does one transfer to deep
learning?
Many other architectures were not presented (Convolutional Neural
Networks..)

Borjan Geshkovski Mathematical Control and Deep Learning 17 / 18

Thank you for your attention.

This project has received funding from the European Research Council (ERC) under the European Unions Horizon
2020 research and innovation programme (grant agreement No 694126 - DyCon)

Borjan Geshkovski Mathematical Control and Deep Learning 18 / 18

