The inverse problem for Hamilton-Jacobi equations and semiconcave envelopes

Carlos Esteve Yagüe

Universidad Autónoma de Madrid/Fundación Deusto joint work with Enrique Zuazua

Workshop on Mathematical Analysis at Universidad de Alicante

–

January 2020

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 694126-DYCON).

Hamilton-Jacobi equations

We consider the following initial-value problem

$$\begin{cases} \partial_t u + H(D_x u) = 0, & (t, x) \in (0, T) \times \mathbb{R}^n \\ u(0, x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$
 (HJ)

where $u_0 \in \text{Lip}(\mathbb{R}^n)$ is the initial condition and

$$H: \mathbb{R}^n \longrightarrow \mathbb{R}$$

is a C2 Hamiltonian satisfying

$$D^2H(x) > 0, \ \forall x \in \mathbb{R}^n \text{ and } \frac{H(|x|)}{|x|} \underset{|x| \to \infty}{\longrightarrow} +\infty.$$
 (H)

A problem in calculus of variations

We are given T > 0 and two cost functions:

Running cost: $L: \mathbb{R}^n \longrightarrow \mathbb{R}$ **Initial cost:** $u_0: \mathbb{R}^n \longrightarrow \mathbb{R}$

For any $(t, x) \in]0, T[\times \mathbb{R}^n$, we introduce the set of **admissible arcs**

$$\mathcal{A}(t,x):=\{\alpha\in C^1([0,t];\mathbb{R}^n);\ \alpha(t)=x\},\$$

and consider the following minimization problem:

minimize
$$\int_0^t L(\alpha'(s))ds + u_0(\alpha(0))$$
 over all arcs $\alpha \in A(t,x)$.

We define the value function:

$$u(t,x) = \inf_{\alpha(\cdot) \in \mathcal{A}(t,x)} \left\{ \int_0^t L(\alpha'(s)) ds + u_0(\alpha(0)) \right\}.$$

This function satisfies the equation

$$\partial_t u + H(D_x u) = 0$$

at all points of differentiability of u. Here, H is given by

$$H(v) = \sup_{z \in \mathbb{R}^n} \{z \cdot v - L(z)\}.$$

We remark that u is Lipschitz in $[0, T] \times \mathbb{R}$ provided $u_0 \in \text{Lip}(\mathbb{R})$ and H satisfies (H).

A problem in calculus of variations

We are given T > 0 and two cost functions:

Running cost: $L: \mathbb{R}^n \longrightarrow \mathbb{R}$ **Initial cost:** $u_0: \mathbb{R}^n \longrightarrow \mathbb{R}$

For any $(t, x) \in]0, T[\times \mathbb{R}^n$, we introduce the set of **admissible arcs**

$$\mathcal{A}(t,x) := \{ \alpha \in C^1([0,t]; \mathbb{R}^n); \ \alpha(t) = x \},$$

and consider the following minimization problem:

minimize
$$\int_0^t L(\alpha'(s))ds + u_0(\alpha(0))$$
 over all arcs $\alpha \in A(t,x)$.

We define the value function:

$$u(t,x) = \inf_{\alpha(\cdot) \in \mathcal{A}(t,x)} \left\{ \int_0^t L(\alpha'(s)) ds + u_0(\alpha(0)) \right\}.$$

This function satisfies the equation

$$\partial_t u + H(D_x u) = 0$$

at all points of differentiability of u. Here, H is given by

$$H(v) = \sup_{z \in \mathbb{R}^n} \{z \cdot v - L(z)\}.$$

We remark that u is Lipschitz in $[0, T] \times \mathbb{R}$ provided $u_0 \in \text{Lip}(\mathbb{R})$ and H satisfies (H).

A problem in calculus of variations

We are given T > 0 and two cost functions:

Running cost: $L: \mathbb{R}^n \longrightarrow \mathbb{R}$ **Initial cost:** $u_0: \mathbb{R}^n \longrightarrow \mathbb{R}$

For any $(t, x) \in]0, T[\times \mathbb{R}^n$, we introduce the set of **admissible arcs**

$$\mathcal{A}(t,x):=\{\alpha\in C^1([0,t];\mathbb{R}^n);\ \alpha(t)=x\},\$$

and consider the following minimization problem:

minimize
$$\int_0^t L(\alpha'(s))ds + u_0(\alpha(0))$$
 over all arcs $\alpha \in A(t,x)$.

We define the value function:

$$u(t,x) = \inf_{\alpha(\cdot) \in \mathcal{A}(t,x)} \left\{ \int_0^t L(\alpha'(s)) ds + u_0(\alpha(0)) \right\}.$$

This function satisfies the equation

$$\partial_t u + H(D_x u) = 0$$

at all points of differentiability of *u*. Here, *H* is given by

$$H(v) = \sup_{z \in \mathbb{R}^n} \{z \cdot v - L(z)\}.$$

We remark that u is Lipschitz in $[0, T] \times \mathbb{R}$ provided $u_0 \in \text{Lip}(\mathbb{R})$ and H satisfies (H).

Viscosity solutions

$$\begin{cases} \partial_t u + H(D_x u) = 0, & (t, x) \in (0, T) \times \mathbb{R}^n \\ u(0, x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$
 (HJ)

In general we cannot expect to have C^1 solutions. Therefore, we need to consider **generalized solutions**:

$$u \in W_{\text{loc}}^{1,\infty}$$
, satisfying (HJ) a.e.

We have no uniqueness of generalized solutions.

Viscosity solutions

$$\begin{cases} \partial_t u + H(D_x u) = 0, & (t, x) \in (0, T) \times \mathbb{R}^n \\ u(0, x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$
(HJ)

Definition

We say $u \in C([0, T] \times \mathbb{R}^n)$ is a <u>viscosity solution</u> if

$$u(0,x)=u_0(x)$$

and for any $(t, x) \in (0, T) \times \mathbb{R}^n$ we have

$$p_t + H(p_x) \le 0$$
 for all $(p_t, p_x) \in D^+u(t, x)$
 $p_t + H(p_x) \ge 0$ for all $(p_t, p_x) \in D^-u(t, x)$

where the super- and sub-differentials are defined by

$$D^{+}u(t,x) = \{(p_{t},p_{x}) : p_{t} = \varphi_{t}(t,x), p_{x} = D\varphi(t,x), \exists \varphi \in C^{1}, u - \varphi \leq 0, (u - \varphi)(t,x) = 0\}, \\ D^{-}u(t,x) = \{(p_{t},p_{x}) : p_{t} = \varphi_{t}(t,x), p_{x} = D\varphi(t,x), \exists \varphi \in C^{1}, u - \varphi \geq 0, (u - \varphi)(t,x) = 0\}.$$

Viscosity solutions

$$\begin{cases} \partial_t u + H(D_x u) = 0, & (t, x) \in (0, T) \times \mathbb{R}^n \\ u(0, x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$
 (HJ)

Theorem: Crandall-P.L. Lions, 1980's

Let T>0, $u_0\in \operatorname{Lip}(\mathbb{R}^n)$ and H satisfy (H). The problem (HJ) admits a unique viscosity solution and coincides with the value function of the problem in calculus of variations.

We define the following nonlinear operator:

$$\begin{array}{cccc} S_T^+: & \mathsf{Lip}(\mathbb{R}) & \longrightarrow & \mathsf{Lip}(\mathbb{R}) \\ & u_0 & \longmapsto & S_T^+u_0 := u(T,\cdot) \end{array}$$

Consider the nonlinear operator:

$$\begin{array}{cccc} S_T^+: & \mathsf{Lip}(\mathbb{R}) & \longrightarrow & \mathsf{Lip}(\mathbb{R}) \\ & u_0 & \longmapsto & S_T^+u_0 := u(T,\cdot) \end{array}$$

where u is the viscosity solution of (HJ).

The inverse problem: for a given target $u_T \in \text{Lip}(\mathbb{R}^n)$ and T > 0 fixed,

• Study the reachability of u_T , i.e. determine if the set

$$I_{\mathcal{T}}(u_{\mathcal{T}}) := \left\{ u_0 \in \mathsf{Lip}(\mathbb{R}) \, ; \; \mathcal{S}_{\mathcal{T}}^+ u_0 = u_{\mathcal{T}} \right\}$$

is empty or not.

- If u_T is reachable, construct all the initial conditions in $I_T(u_T)$.
- If u_T is not reachable, define a projection of u_T on the set of reachable targets and study its geometrical properties.

Long-time behavior: for a given initial condition $u_0 \in \text{Lip}(\mathbb{R}^n)$, set the target $u_T := S_T^+ u_0$ and the set of initial conditions $I_T(u_T) \neq \emptyset$, for each T > 0.

- Describe the evolution of $I_T(u_T)$ as T increases.
- Study the behavior of $I_T(u_T)$ as T goes to infinity.

Definition

A uniformly continuous function $w:[0,T]\times\mathbb{R}^n\to\mathbb{R}$ is called a **backward viscosity solution** of (HJ) if the function v(t,x):=w(T-t,x) is a viscosity solution of

$$\partial_t v - H(D_x v) = 0$$
, in $[0, T] \times \mathbb{R}^n$.

Lemma

We say $w \in C([0, T] \times \mathbb{R}^n)$ is a backward viscosity solution if and only if for any $(t, x) \in (0, T) \times \mathbb{R}^n$ we have

$$p_t + H(p_x) \ge 0$$
 for all $(p_t, p_x) \in D^+w(t, x)$
 $p_t + H(p_x) \le 0$ for all $(p_t, p_x) \in D^-w(t, x)$

Definition

A uniformly continuous function $w:[0,T]\times\mathbb{R}^n\to\mathbb{R}$ is called a **backward viscosity solution** of (HJ) if the function v(t,x):=w(T-t,x) is a viscosity solution of

$$\partial_t v - H(D_x v) = 0$$
, in $[0, T] \times \mathbb{R}^n$.

Lemma

We say $w \in C([0, T] \times \mathbb{R}^n)$ is a backward viscosity solution if and only if for any $(t, x) \in (0, T) \times \mathbb{R}^n$ we have

$$p_t + H(p_x) \ge 0$$
 for all $(p_t, p_x) \in D^+w(t, x)$
 $p_t + H(p_x) \le 0$ for all $(p_t, p_x) \in D^-w(t, x)$

Using similar arguments as for (forward) viscosity solutions, for any terminal condition $u_T \in \operatorname{Lip}(\mathbb{R}^n)$, the problem

$$\begin{cases} \partial_t w + H(\partial_x w) = 0, & \text{in } [0, T] \times \mathbb{R}^n, \\ w(T, x) = u_T(x), & \text{in } \mathbb{R} \end{cases}$$
(BHJ)

admits a unique backward viscosity solution.

We define the following nonlinear operator

$$S_T^-: \operatorname{Lip}(\mathbb{R}) \longrightarrow \operatorname{Lip}(\mathbb{R})$$

 $u_T \longmapsto S_T^- u_T := w(0,\cdot)$

where *w* is the backward viscosity solution of (BHJ).

Hopf formula

$$S_T^+ u_0(x) = \min_{y \in \mathbb{R}^n} \left[u_0(y) + T H\left(\frac{x - y}{T}\right) \right]$$

$$S_T^- u_T(x) = \max_{y \in \mathbb{R}^n} \left[u_T(y) - T H\left(\frac{y-x}{T}\right) \right]$$

Using similar arguments as for (forward) viscosity solutions, for any terminal condition $u_T \in \text{Lip}(\mathbb{R}^n)$, the problem

$$\begin{cases} \partial_t w + H(\partial_x w) = 0, & \text{in } [0, T] \times \mathbb{R}^n, \\ w(T, x) = u_T(x), & \text{in } \mathbb{R} \end{cases}$$
(BHJ)

admits a unique backward viscosity solution.

We define the following nonlinear operator:

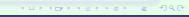
$$egin{array}{lll} S_{\mathcal{T}}^-: & \mathsf{Lip}(\mathbb{R}) & \longrightarrow & \mathsf{Lip}(\mathbb{R}) \ u_{\mathcal{T}} & \longmapsto & S_{\mathcal{T}}^- u_{\mathcal{T}} := w(0,\cdot) \end{array}$$

where w is the backward viscosity solution of (BHJ).

Hopf formula

$$S_T^+ u_0(x) = \min_{y \in \mathbb{R}^n} \left[u_0(y) + T H\left(\frac{x - y}{T}\right) \right]$$

$$S_T^- u_T(x) = \max_{y \in \mathbb{R}^n} \left[u_T(y) - T H\left(\frac{y-x}{T}\right) \right]$$



Using similar arguments as for (forward) viscosity solutions, for any terminal condition $u_T \in \text{Lip}(\mathbb{R}^n)$, the problem

$$\begin{cases} \partial_t w + H(\partial_x w) = 0, & \text{in } [0, T] \times \mathbb{R}^n, \\ w(T, x) = u_T(x), & \text{in } \mathbb{R} \end{cases}$$
(BHJ)

admits a unique backward viscosity solution.

We define the following nonlinear operator:

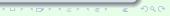
$$egin{array}{lll} S_{\mathcal{T}}^-: & \mathsf{Lip}(\mathbb{R}) & \longrightarrow & \mathsf{Lip}(\mathbb{R}) \ u_{\mathcal{T}} & \longmapsto & S_{\mathcal{T}}^- u_{\mathcal{T}} := w(0,\cdot) \end{array}$$

where w is the backward viscosity solution of (BHJ).

Hopf formula

$$S_T^+ u_0(x) = \min_{y \in \mathbb{R}^n} \left[u_0(y) + T H\left(\frac{x-y}{T}\right) \right]$$

$$S_T^- u_T(x) = \max_{y \in \mathbb{R}^n} \left[u_T(y) - T H\left(\frac{y-x}{T}\right) \right]$$



Semiconcavity and semiconvexity

Definition

• We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is semiconcave with linear modulus if it is continuous and there exists $C \ge 0$ such that

$$f(x+h)+f(x-h)-2f(x)\leq C\,h^2,\qquad \text{for all }x,h\in\mathbb{R}^n.$$

The constant *C* above is called a semiconcavity constant of *f*.

② We say that f is semiconvex with linear modulus and constant C > 0 if the function g = -f is semiconcave with linear modulus and constant C.

Lemma

Let T > 0 and $u_0, u_T \in Lip(\mathbb{R})$. Then,

- the function $S_T^+ u_0$ is semiconcave with linear modulus;
- 2 the function $S_{\tau}^{-}u_{T}$ is semiconvex with linear modulus.



Semiconcavity and semiconvexity

Definition

• We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is semiconcave with linear modulus if it is continuous and there exists $C \ge 0$ such that

$$f(x+h)+f(x-h)-2f(x)\leq C\,h^2,\qquad \text{for all }x,h\in\mathbb{R}^n.$$

The constant *C* above is called a semiconcavity constant of *f*.

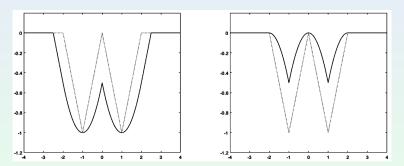
② We say that f is semiconvex with linear modulus and constant C > 0 if the function g = -f is semiconcave with linear modulus and constant C.

Lemma

Let T > 0 and $u_0, u_T \in Lip(\mathbb{R})$. Then,

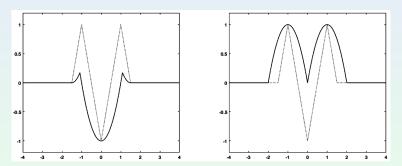
- the function $S_{\tau}^+ u_0$ is semiconcave with linear modulus;
- 2 the function $S_T^- u_T$ is semiconvex with linear modulus.

$$u_1(x) := \left\{ \begin{array}{ll} |x+1|-1 & \text{if } -2 < x \leq 0 \\ |x-1|-1 & \text{if } 0 < x < 2 \\ 0 & \text{else.} \end{array} \right.$$



For T = 1, the function $S_T^+ u_1$ at the left and the function $S_T^- u_1$ at the right.

$$u_2(x) := \left\{ \begin{array}{ll} 1 - 2|x+1| & \text{if } -1,5 < x \leq 0 \\ 1 - 2|x-1| & \text{if } 0 < x < 1,5 \\ 0 & \text{else.} \end{array} \right.$$



For T = 0.5, the function $S_T^+ u_2$ at the left and the function $S_T^- u_2$ at the right.

Reachability condition

Lemma

Let T > 0 and $u_0 \in \text{Lip}(\mathbb{R}^n)$. Set the function

$$\tilde{u}_0(x) := S_T^-(S_T^+ u_0)(x), \quad \text{for all } x \in \mathbb{R}^n.$$

Then it holds

$$S_T^+ u_0 = S_T^+ \tilde{u}_0, \qquad ext{and} \qquad u_0(x) \geq \tilde{u}_0(x), \quad ext{for all } x \in \mathbb{R}^n.$$

Reachability condition

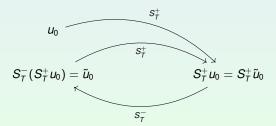
Lemma

Let T > 0 and $u_0 \in \text{Lip}(\mathbb{R}^n)$. Set the function

$$\tilde{u}_0(x) := S_T^-(S_T^+ u_0)(x), \quad \text{for all } x \in \mathbb{R}^n.$$

Then it holds

$$S_T^+ u_0 = S_T^+ \tilde{u}_0, \qquad ext{and} \qquad u_0(x) \geq \tilde{u}_0(x), \quad ext{for all } x \in \mathbb{R}^n.$$



Reachability condition

Lemma

Let T > 0 and $u_0 \in \text{Lip}(\mathbb{R}^n)$. Set the function

$$\tilde{u}_0(x) := S_T^-(S_T^+ u_0)(x), \qquad \text{for all } x \in \mathbb{R}^n.$$

Then it holds

$$S_{\mathcal{T}}^+ u_0 = S_{\mathcal{T}}^+ \tilde{u}_0, \qquad \text{and} \qquad u_0(x) \geq \tilde{u}_0(x), \quad \text{for all } x \in \mathbb{R}^n.$$

Theorem (reachability condition)

Let $u_T \in \text{Lip}(\mathbb{R}^n)$ and T > 0. Then, the set $I_T(u_T)$ is nonempty if and only if $S_T^+(S_T^-u_T) = u_T$.

Initial data construction

Theorem (initial data construction)

Let T > 0 and consider $u_T \in \text{Lip}(\mathbb{R}^n)$ such that $I_T(u_T) \neq \emptyset$. Define the function

$$\tilde{u}_0 := \mathcal{S}_T^- u_T.$$

For any $u_0 \in Lip(\mathbb{R}^n)$, the two following statements are equivalent:

- ② $u_0(x) \ge \tilde{u}_0(x), \ \forall x \in \mathbb{R}^n$ and $u_0(x) = \tilde{u}_0(x), \ \forall x \in X_T(u_T),$ where $X_T(u_T)$ is the subset of \mathbb{R} defined by

 $X_T(u_T) := \left\{ z - T \, \nabla_x u_T(z); \,\, \forall z \in \mathbb{R}^n \,\, ext{such that} \,\, u_T(\cdot) \,\, ext{is differentiable at} \,\, z
ight\}.$

Remark: Observe that, by the reachability condition,

$$I_{\mathcal{T}}(u_{\mathcal{T}}) \neq \emptyset$$
, implies $\tilde{u}_0 \in I_{\mathcal{T}}(u_{\mathcal{T}})$.

In view of this theorem, we can write

 $I_T(u_T) = \{\tilde{u}_0 + \varphi ; \varphi \in \text{Lip}(\mathbb{R}) \text{ such that } \varphi \geq 0 \text{ and } \text{supp}(\varphi) \subset \mathbb{R} \setminus X_T(u_T)\}$

Initial data construction

Theorem (initial data construction)

Let T > 0 and consider $u_T \in \text{Lip}(\mathbb{R}^n)$ such that $I_T(u_T) \neq \emptyset$. Define the function

$$\tilde{u}_0 := \mathcal{S}_T^- u_T.$$

For any $u_0 \in Lip(\mathbb{R}^n)$, the two following statements are equivalent:

- ② $u_0(x) \ge \tilde{u}_0(x), \ \forall x \in \mathbb{R}^n$ and $u_0(x) = \tilde{u}_0(x), \ \forall x \in X_T(u_T),$ where $X_T(u_T)$ is the subset of \mathbb{R} defined by

 $X_T(u_T) := \left\{ z - T \, \nabla_x u_T(z); \; \forall z \in \mathbb{R}^n \text{ such that } u_T(\cdot) \text{ is differentiable at } z
ight\}.$

Remark: Observe that, by the reachability condition,

$$I_T(u_T) \neq \emptyset$$
, implies $\tilde{u}_0 \in I_T(u_T)$.

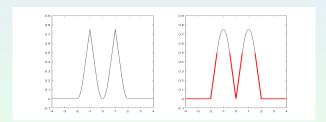
In view of this theorem, we can write

$$I_T(u_T) = \{\tilde{u}_0 + \varphi \, ; \, \varphi \in \operatorname{Lip}(\mathbb{R}) \text{ such that } \varphi \geq 0 \text{ and } \operatorname{supp}(\varphi) \subset \mathbb{R} \setminus X_T(u_T) \}$$
.

Consider T = 0.5 and the target function

$$u_{\mathcal{T}}(x) := S_{\mathcal{T}}^+ u_3(x), \quad \text{where} \quad u_3(x) := \left\{ \begin{array}{ll} 1 - |x+1| & \text{if } -2 < x \leq 0 \\ 1 - |x-1| & \text{if } 0 < x < 2 \\ 0 & \text{else.} \end{array} \right.$$

$$X_T(u_T) = \mathbb{R} \setminus ([-1,5,-0,5] \cup [0,5,1,5]).$$

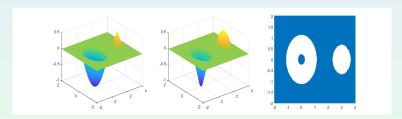


The function u_T is represented at the left. The function \tilde{u}_0 is represented at the right. The restriction of \tilde{u}_0 to the set $X_T(u_T)$ is marked by a red line.

Examples

Consider T = 0.5 and the target function

$$u_T(x) := S_T^+ u_4(x), \quad \text{where} \quad u_4(x) := \left\{ egin{array}{ll} -(1-4|x|^2) & \text{if } |x| < rac{1}{2} \\ 1-4|x-(3,0)|^2 & \text{if } |x-(3,0)| < rac{1}{2} \\ 0 & \text{else.} \end{array}
ight.$$



From left to right we have: the function u_T , the function \tilde{u}_0 and the set $X_T(u_T)$ in blue.

For a given function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, the **concave envelope** f^* is the smallest concave function which stays above f.

$$f^*(x) := \inf\{v(x); \ v \text{ is concave and } v(x) \ge f(x), \ \forall x \in \mathbb{R}^n\}.$$

Theorem: (Oberman in 2007) Let $f \in \text{Lip}(\mathbb{R}^n)$, then f^* is the viscosity solution of the following fully nonlinear obstacle problem:

$$\min\{v(x) - f(x), -\lambda_n[D^2v(x)]\} = 0.$$

Here, $\lambda_n[D^2v(x)]$ denotes the biggest eigenvalue of the Hessian matrix $D^2v(x)$.

For a given function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, the **concave envelope** f^* is the smallest concave function which stays above f.

$$f^*(x) := \inf\{v(x); \ v \text{ is concave and } v(x) \ge f(x), \ \forall x \in \mathbb{R}^n\}.$$

Theorem: (Oberman in 2007) Let $f \in \text{Lip}(\mathbb{R}^n)$, then f^* is the viscosity solution of the following fully nonlinear obstacle problem:

$$\min\{v(x)-f(x), -\lambda_n[D^2v(x)]\}=0.$$

Here, $\lambda_n[D^2v(x)]$ denotes the biggest eigenvalue of the Hessian matrix $D^2v(x)$.

For a given function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, the **concave envelope** f^* is the smallest concave function which stays above f.

$$f^*(x) := \inf\{v(x); \ v \text{ is concave and } v(x) \ge f(x), \ \forall x \in \mathbb{R}^n\}.$$

Theorem: (Oberman in 2007) Let $f \in \text{Lip}(\mathbb{R}^n)$, then f^* is the viscosity solution of the following fully nonlinear obstacle problem:

$$\min\{v(x)-f(x), -\lambda_n[D^2v(x)]\}=0.$$

Here, $\lambda_n[D^2v(x)]$ denotes the biggest eigenvalue of the Hessian matrix $D^2v(x)$.

This kind of operators, and its connection with geometry and game theory, have been largely studied during the past 10 year by many authors: A.M Oberman, L. Silvestre, I. Birindelli, F.R. Harvey, H.B. Lawson, H. Ishii, M. Parviainen, P. Blanc, J.D. Rossi...

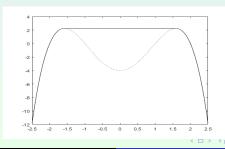
For a given function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, the **concave envelope** f^* is the smallest concave function which stays above f.

$$f^*(x) := \inf\{v(x); \ v \text{ is concave and } v(x) \ge f(x), \ \forall x \in \mathbb{R}^n\}.$$

Theorem: (Oberman in 2007) Let $f \in \text{Lip}(\mathbb{R}^n)$, then f^* is the viscosity solution of the following fully nonlinear obstacle problem:

$$\min\{v(x)-f(x), -\lambda_n[D^2v(x)]\}=0.$$

Here, $\lambda_n[D^2v(x)]$ denotes the biggest eigenvalue of the Hessian matrix $D^2v(x)$.



What if the target u_T is not reachable?

Consider the composition operator

$$S_T^+ \circ S_T^- : \operatorname{Lip}(\mathbb{R}^n) \longrightarrow \operatorname{Lip}(\mathbb{R}^n)$$

 $u_T \longmapsto S_T^+(S_T^- u_T)$

Note the function $u_T^* := S_T^+(S_T^-u_T)$ satisfies $I_T(u_T) \neq \emptyset$.

The operator $S_T^+ \circ S_T^-$ can be viewed as a projection of $Lip(\mathbb{R}^n)$ onto the set of reachable targets.

Theorem

Let $H(p) = \frac{|p|^2}{p}$ and $u_T \in \text{Lip}(\mathbb{R}^n)$. Then, the function $u_T^* := S_T^+(S_T^-u_T)$ is the viscosity solution of the obstacle problem

$$\min\{v(x) - u_T(x), -\lambda_n[D^2v(x)] + \frac{1}{T}\} = 0$$

What if the target u_T is not reachable?

Consider the composition operator

$$\begin{array}{cccc} \mathcal{S}_{\mathcal{T}}^{+} \circ \mathcal{S}_{\mathcal{T}}^{-} : & \mathsf{Lip}(\mathbb{R}^{n}) & \longrightarrow & \mathsf{Lip}(\mathbb{R}^{n}) \\ & u_{\mathcal{T}} & \longmapsto & \mathcal{S}_{\mathcal{T}}^{+}(\mathcal{S}_{\mathcal{T}}^{-}u_{\mathcal{T}}) \end{array}$$

Note the function $u_T^* := S_T^+(S_T^-u_T)$ satisfies $I_T(u_T) \neq \emptyset$.

The operator $S_T^+ \circ S_T^-$ can be viewed as a projection of $Lip(\mathbb{R}^n)$ onto the set of reachable targets.

Theorem

Let $H(p) = \frac{|p|^2}{p}$ and $u_T \in \text{Lip}(\mathbb{R}^n)$. Then, the function $u_T^* := S_T^+(S_T^-u_T)$ is the viscosity solution of the obstacle problem

$$\min\{v(x) - u_T(x), -\lambda_n[D^2v(x)] + \frac{1}{T}\} = 0$$

What if the target u_T is not reachable?

Consider the composition operator

Note the function $u_T^* := S_T^+(S_T^-u_T)$ satisfies $I_T(u_T) \neq \emptyset$.

The operator $S^+_{\mathcal{T}} \circ S^-_{\mathcal{T}}$ can be viewed as a projection of $\operatorname{Lip}(\mathbb{R}^n)$ onto the set of reachable targets.

Theorem

Let $H(p) = \frac{|p|^2}{p}$ and $u_T \in \text{Lip}(\mathbb{R}^n)$. Then, the function $u_T^* := S_T^+(S_T^-u_T)$ is the viscosity solution of the obstacle problem

$$\min\{v(x)-u_T(x), -\lambda_n[D^2v(x)]+\frac{1}{T}\}=0.$$

Observe that, the inequality $\lambda_n[D^2u_T^*(x)] \leq \frac{1}{T}$ implies that the function u_T^* is semiconcave with linear modulus and constant $C = \frac{1}{T}$.

What if the target u_T is not reachable?

Consider the composition operator

Note the function $u_T^* := S_T^+(S_T^-u_T)$ satisfies $I_T(u_T) \neq \emptyset$.

The operator $S^+_T \circ S^-_T$ can be viewed as a projection of $\mathrm{Lip}(\mathbb{R}^n)$ onto the set of reachable targets.

Theorem

Let $H(p) = \frac{|p|^2}{p}$ and $u_T \in \text{Lip}(\mathbb{R}^n)$. Then, the function $u_T^* := S_T^+(S_T^-u_T)$ is the viscosity solution of the obstacle problem

$$\min\{v(x)-u_T(x), -\lambda_n[D^2v(x)]+\frac{1}{T}\}=0.$$

In analogy with the concave envelope, we refer to the function u_T^* as the $\frac{1}{T}$ -semiconcave envelope of u_T in \mathbb{R}^n .

What if the target u_T is not reachable?

Consider the composition operator

Note the function $u_T^* := S_T^+(S_T^-u_T)$ satisfies $I_T(u_T) \neq \emptyset$.

The operator $S_{\mathcal{T}}^+ \circ S_{\mathcal{T}}^-$ can be viewed as a projection of $\mathrm{Lip}(\mathbb{R}^n)$ onto the set of reachable targets.

Theorem

Let $H(p) = \frac{|p|^2}{p}$ and $u_T \in \text{Lip}(\mathbb{R}^n)$. Then, the function $u_T^* := S_T^+(S_T^-u_T)$ is the viscosity solution of the obstacle problem

$$\min\{v(x)-u_T(x), -\lambda_n[D^2v(x)]+\frac{1}{T}\}=0.$$

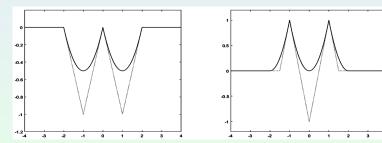
Corollary (reachability condition)

Let $u_T \in \operatorname{Lip}(\mathbb{R}^n)$ and T > 0, then the set $I_T(u_T)$ is nonempty if and only if u_T satisfies the inequality $\lambda_n[D^2u_T(x)] \leq \frac{1}{T}$ in a viscosity sense.

Examples

$$u_1(x) := \left\{ \begin{array}{ll} |x+1|-1 & \text{if } -2 < x \leq 0 \\ |x-1|-1 & \text{if } 0 < x < 2 \\ 0 & \text{else.} \end{array} \right.$$

$$u_2(x) := \left\{ \begin{array}{ll} 1 - 2|x+1| & \text{if } -1,5 < x \leq 0 \\ 1 - 2|x-1| & \text{if } 0 < x < 1,5 \\ 0 & \text{else.} \end{array} \right.$$



Here can see the $\frac{1}{T}$ —semiconcave envelopes of u_1 and u_2 respectively and the functions u_1 and u_2 represented by dotted lines.

Thanks for the attention!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 694126-DYCON).

