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Turnpike Control Motivation

Sonic boom
Francisco Palacios, Boeing, Long Beach, California, Project Manager and Aerodynamics Engineer

Goal: the development of supersonic aircrafts, sufficiently quiet to be allowed to fly
supersonically over land.

The pressure signature created by the aircraft must be such that, when reaching ground, (a)
it can barely be perceived by humans, and (b) it results in admissible disturbances to
man-made structures.

This leads to an inverse design or control problem in long time horizons.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization with Applications to
Sonic-Boom Minimization, Annu. Rev. Fluid Mech. 2012, 44:505 – 526.

Many other challenging problems of high societal impact raise similar issues: climate change,
sustainable growth, chronically deseases, design of long lasting devices and infrastructures...
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Turnpike Control Motivation

Deep learning

Residual neural networks (ResNets) (He et al. ’15) have become the building blocks of
modern deep learning;

Recent work (E ’17, Haber & Ruthotto ’17, Chen et al. ’18) has reinterpreted ResNets as
continuous-time controlled nonlinear dynamical systems:

ẋ(t) = f (x(t), u(t)) t ∈ (0,T )

where T > 0 plays the role of the number of layers in the discrete-time setting, f has very
specific form (sigmoid);

Controls u = u(t), corresponding to the free parameters of the ResNet, found by minimizing
an appropriate nonnegative cost function JT (training);
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What happens when T →∞, i.e. in the deep, high number of layers regime?1

1Suggested by our FAU colleague Daniel Tenbrinck.
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Turnpike Control Origins and Foundations of Turnpike theory

Origins

Although the idea goes back to John von Neumann in 1945, Lionel W. McKenzie traces the term
to Robert Dorfman, Paul Samuelson, and Robert Solow’s ”Linear Programming and Economics
Analysis” in 1958, referring to an American English word for a Highway:

... There is a fastest route between any two points; and if the origin and destination
are close together and far from the turnpike, the best route may not touch the turnpike.
But if the origin and destination are far enough apart, it will always pay to get on to the
turnpike and cover distance at the best rate of travel, even if this means adding a little
mileage at either end.
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Turnpike Control Origins and Foundations of Turnpike theory

Substantiation and preliminary conclusion

We implement turnpike (or nearby) strategies most often. And it is indeed a good idea to do it!

But this requires that the system under consideration to be controllable/stabilisable.
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Turnpike Control The PDE-Turnpike Paradox

Wave propagation: Why do not we see the turnpike?

Typical controls for the wave equation exhibit an oscillatory behaviour, and this
independently of the length of the control time-horizon.

Nobody would be surprised about this fact that seems to be intrinsically linked to the
oscillatory (even periodic in some particular cases) nature of the wave equation solutions.

Waves propagate with finite speed and it is natural to control them through anti-waves when
they reach the actuator location.
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Turnpike Control The PDE-Turnpike Paradox

Heat and diffusion processes: Why do not we see the turnpike either?Some PDE examples of lack of turnpike

The heat equation
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Typical controls for the heat equation exhibit unexpected oscillatory and
concentration e↵ects. This was observed by R. Glowinski and J. L. Lions
in the 80’s in their works in the numerical analysis of controllability
problems for heat and wave equations.
Why?
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Typical controls for the heat equation exhibit unexpected oscillatory and concentration effects.
This was observed by R. Glowinski and J. L. Lions in the 80’s in their works in the numerical
analysis of controllability problems for heat and wave equations.

Why? Lazy controls?
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Turnpike Control The PDE-Turnpike Paradox

Optimal controls are normally characterised as boundary traces of solutions of the adjoint
problem through the optimality system or the Pontryagin Maximum Principle, and solutions of
the adjoint system of the heat equation

−pt −∆p = 0

look precisely this way.

Large and oscillatory near t = T they decay and get smoother when t gets down to t = 0. And
this is independent of the time control horizon [0,T ]. The same occurs to wave-like equations

where controls are given by the solutions of the adjoint system

ptt −∆p = 0

that exhibit endless oscillations.

First conclusion:
Typical control problems for wave and heat equations do not seem to exhibit the turnpike
property.
Note however that these are the controls of L2-minimal norm. There are many other possibilities
for successful control strategies.
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Turnpike Control Linear PDE revisited

The control problem for diffusion : A closer look

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain of Rn with smooth boundary Γ,
Q = (0,T )× Ω and Σ = (0,T )× Γ: yt −∆y = f 1ω in Q

y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(1)

1ω = the characteristic function of ω of Ω where the control is active.

We know that y0 ∈ L2(Ω) and f ∈ L2(Q) so that (9) admits a unique solution

y ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

y = y(x , t) = solution = state, f = f (x , t) = control

Goal: Drive the dynamics to equilibrium by means of a suitable choice of the control

y(·,T ) ≡ y∗(x).
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Turnpike Control Linear PDE revisited

We address this problem fro a classical optimal control / least square approach:

min
1

2

[∫ T

0

∫
ω
|f |2dxdt +

∫
Ω
|y(x ,T )− y∗(x)|2dx

]
.

According to Pontryagin’s Maximum Principle the Optimality System (OS) reads

yt −∆y = ϕ1ω in Q

−ϕt −∆ϕ = 0 in Q

y = 0 on Σ

y(x , 0) = y0(x) in Ω

ϕ(x ,T ) = y(x ,T )− y∗(x) in Ω

ϕ = 0 on Σ.

And the optimal control is:
f (x , t) = ϕ(x , t) inω × (0,T ).
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Turnpike Control Linear PDE revisited

The minimizer ϕT saturates the regularity properties required to assure the well-posedness of the
functional:

H = {ϕT : ϕ(x , 0) ∈ L2(Ω)}

This is a huge space, allowing an exponential increase of Fourier coefficients at high frequencies.
And, because of this, we observe the tendency of the control to concentrate all the action in the
final time instant t = T , incompatible with turnpike effects2
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2A. Münch & E. Z., Inverse Problems, 2010
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Turnpike Control Linear PDE revisited

Remedy: Better balanced controls

Let us now consider the control f minimising a compromise between the norm of the state and
the control among the class of admissible controls:

min
1

2

[∫ T

0

∫
Ω
|y |2dxdt +

∫ T

0

∫
ω
|f |2dxdt +

∫
Ω
|y(x ,T )− y∗(x)|2

]
.

Then the Optimality System reads

yt −∆y = −ϕ1ω in Q

−ϕt −∆ϕ = y in Q

y = ϕ = 0 on Σ

y(x , 0) = y0(x) in Ω

ϕ(x ,T ) = y(x ,T )− y∗(x) in Ω

We now observe a coupling between ϕ and y on the adjoint state equation!

x

y

x
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Turnpike Control Linear PDE revisited

New Optimality System Dynamics

What is the dynamic behaviour of solutions of the new fully coupled OS?
For the sake of simplicity, assume ω = Ω.

The dynamical system now reads
yt −∆y = −ϕ
ϕt + ∆ϕ = −y

This is a forward-backward parabolic system.

A spectral decomposition exhibits the characteristic values

µ±j = ±
√

1 + λ2
j

where (λj )j≥1 are the (positive) eigenvalues of −∆.

Thus, the system is the superposition of growing + diminishing real exponentials.

x

y

x

y
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Turnpike Control Linear PDE revisited

The turnpike property for the heat equation

This new dynamic behaviour, combining exponentially stable and unstable branches, is
compatible with the turnpike behavior.
Controls and trajectories exhibit the expected dynamics:

The turnpike behaviour is ensured by modifying the optimality criterion for the choice of the
control, to weight both state and control and provided T � 1.

The same occurs for wave propagation:
M. Gugat, E. Trélat, E. Zuazua, Systems and Control Letters, 90 (2016), 61-70.

[Controllability] + [Coercive in state + control cost] → Turnpike
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Turnpike Control Linear PDE revisited

Mainly motivated by applications to economic models and game theory there was a literature
concerned with this kind of stationary behavior in the transient time for long horizon control
problems. In that context, such type of result goes under the name of turnpike theory which was
mostly investigated in the finite dimensional case.

A. J. Zaslavski, Turnpike properties in the calculus of variations and optimal control. Nonconvex
Optimization and its Applications, 80. Springer, New York, 2006.

L. Grüne, Economic receding horizon control without terminal constraints Automatica, 49,
725-734, 2013

But our main motivation originated from the optimal shape design in aeronautics and other PDE
problems.

In recent years a number of model cases have been well understood in the infinite dimensional
PDE context. But there is still a long way to go...

Dakar 2019
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Turnpike Control General theory

Linear theory. Joint work with A. Porretta, SIAM J. Cont. Optim., 2013.

The same methods apply in the inifinite-dimensional context, covering in particular linear heat
and wave equations

Consider the finite dimensional dynamics{
xt + Ax = Bu

x(0) = x0 ∈ RN
(2)

where A ∈ M(N,N), B ∈ M(N,M), with control u ∈ L2(0,T ;RM).
Given a matrix C ∈ M(N,N), and some x∗ ∈ RN , consider the optimal control problem

min
u

JT (u) =
1

2

∫ T

0
(|u(t)|2 + |C(x(t)− x∗)|2)dt .

There exists a unique optimal control u(t) in L2(0,T ;RM), characterized by the optimality
condition

u = −B∗p ,
{
xt + Ax = −BB∗p
x(0) = x0

,

{
−pt + A∗p = C∗C(x − x∗)

p(T ) = 0
(3)
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Turnpike Control General theory

The steady state control problem

The same problem can be formulated for the steady-state model

Ax = Bu.

Then there exists a unique minimum ū, and a unique optimal state x̄ , of the stationary control
problem

min
u

Js(u) =
1

2
(|u|2 + |C(x − x∗)|2) (4)

which is nothing but a constrained minimization in RN .
The optimal control ū and state x̄ satisfy

ū = −B∗p̄ , Ax̄ = Bū , and A∗p̄ = C∗C(x̄ − x∗) .
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Turnpike Control General theory

We assume that
(A,B) is controllable, (5)

or, equivalently, that the matrices A, B satisfy the Kalman rank condition

Rank
[
B AB A2B . . . AN−1B

]
= N . (6)

Concerning the cost functional, we assume that the matrix C is such that (void assumption when
C = Id)

(A,C) is observable (7)

which means that the following algebraic condition holds:

Rank
[
C CA CA2 . . . CAN−1

]
= N . (8)

xt + Ax = Bu

JT (u) =
1

2

∫ T

0
(|u(t)|2 + |C(x(t)− x∗)|2)dt{

xt + Ax = Bu

−pt + A∗p = C∗Cx
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Turnpike Control General theory

Under the above controllability and observability assumptions, we have the following result.

Theorem

For some γ > 0 for T > 0 large enough we have

||xT (t)− x̄ ||+ ||uT (t)− ū|| ≤ C [exp(−µt) + exp(−µ(T − t))].

Note the presence of the two boundary layers at t = 0 and t = T and that the state and control
xT and uT are defined in [0,T ], that varies as T →∞.
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Turnpike Control General theory

Proofs

Proof # 1: Dissipativity

d

dt
[(x − x̄)(p − p̄)] = −

[
B∗(p − p̄)|2 + |C(x − x̄)|2

]
That is the starting point of a turnpike proof. Note however that it is much trickier than the
classical Lyapunov stability: Two boundary layers at t = 0 and t = T , moving time-horizon
[0,T ]...

Proof #2 : Riccati
First consider the infinite horizon Linear Quadratic Regulator (LQR) problem for
0 ≤ t < +∞ with null target x∗ ≡ 0.
Employ Riccati theory to describe the optimal trajectory in a feedback manner.
Take the cut-off of this optimal Riccati trajectory from [0,∞) into [0,T ].
Correct the boundary layer at t = T to match the terminal conditions of the Optimality
System in [0,T ].

Proof # 3: Singular perturbations Implement the change of variables t → sT so that the time
variable t ∈ [0,T ] becomes s ∈ [0, 1]. Then the control problem

xt + Ax = Bu, t ∈ [0,T ]

becomes
1

T
xs + Ax = Bu, t ∈ [0, 1]

As T →∞ this indicates the trend towards steady state control.
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Turnpike Control General theory

Hyperbolicity

It is a direct consequence of the hyperbolicity of the underlying dynamics, whose steady state
solutions are characterised by the system

Ax̄ + BB∗p̄ = 0

−A∗p̄ + C∗Cx̄ = C∗Cx∗

generated by the operator matrix

Ã =

(
A BB∗

C∗C −A∗
)

Note however that the hyperbolicity of this matrix operator needs of controllability/observability
conditions.
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Turnpike Control Nonlinear theory

A major technical difficulty for nonlinear problems

Consider now the semilinear heat equation: yt −∆y + y3 = f 1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω

(9)

min
f

[
1

2

∫ T

0

∫
Ω
|y − yd |2dxdt +

∫ T

0

∫
ω
f 2dxdt

]
.

The optimality system reads:
yt −∆y + y3 = −ϕ1ω in Q

y = 0 on Σ

y(x , 0) = y0(x) in Ω

−ϕt −∆ϕ+ 3y2ϕ = y − yd in Q

ϕ = 0 on Σ

ϕ(x ,T ) = 0 in Ω.
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Turnpike Control Nonlinear theory

Linearisation of the OS

And the linearised optimality system, around the optimal steady solution (ȳ , ϕ̄) is as follows:

zt −∆z + 3(ȳ)2z = −ψ1ω in Q

z = 0 on Σ

z(x , 0) = 0 in Ω

−ψt −∆ψ + 3(ȳ)2ψ = (1− 6ȳ ϕ̄)z in Q

ψ = 0 on Σ

ψ(x ,T ) = 0 in Ω.

This is the optimality system for a LQ control problem of the model

zt −∆z + 3(ȳ)2z = f 1ω

and the cost

min
f

[
1

2

∫ T

0

∫
Ω
|z|2dxdt+

∫ T

0

∫
ω
ρ(x)f 2dxdt

]
ρ(x) = 1− 6ȳ(x)ϕ̄(x).

And the turnpike property holds as soon as

ρ(x) ≥ δ > 0.

This holds if ȳ and ϕ are small enough, and this requires the smallness of the target.
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Turnpike Control Perspectives and Bibliography

Heuristic explanation and Tip

In applications and daily life we use a quasi-turnpike principle that is very robust and universal
too, even in the context of multiple steady optima (local or global).
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Turnpike Control Perspectives and Bibliography

Simulations for nonlinear heat equations with arbitrary targets (S. Volkwein)

Numerical simulations show that the turnpike property is quite robust and the smallness of the
target does not seem to be needed.
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Turnpike Control Perspectives and Bibliography

Warning! Long time numerics plays a key role: Geometric/Symplectic
integration; Well balanced numerical schemes...
Numerical integration of the pendulum (A. Marica)
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Turnpike Control Perspectives and Bibliography

An open problem and biblio

Further extend the turnpike theory for nonlinear PDE, getting rid of the smallness condition on
the target, which in numerical simulations seems to be unnecessary.

A. Porretta, E. Z., SIAM J. Control. Optim., 51 (6) (2013), 4242-4273.
A. Porretta, E. Z., Springer INdAM Series ”Mathematical Paradigms of Climate Science”, F.
Ancona et al. eds, 15, 2016, 67-89.
E. Trélat, E. Z., JDE, 218 (2015) , 81-114.
M. Gugat, E. Trélat, E. Z., Systems and Control Letters, 90 (2016), 61-70.
E. Z., Annual Reviews in Control, 44 (2017) 199-210.
E.Trélat, C. Zhang, E. Z., SIAM J. Control Optim. 56 (2018), no. 2, 1222–1252.
V. Hernández-Santamaria, M. Lazar, E.Z. Numerische Mathematik (2019) 141:455-493.
D. Pighin, N. Sakamoto, E. Z., IEEE CDC Proceedings, Nice, 2019.
G. Lance, E. Trélat, E. Z., Systems & Control Letters 142 (2020) 104733.
J. Heiland, E. Z., arXiv:2007.13621, 2020.
C. Esteve, H. Kouhkouh, D. Pighin, E. Z., arxiv.org/pdf/2006.10430, 2020.
M. Gugat, M. Schuster and E. Z., SEMA/SIMAI Springer Series, 2020.

And further interesting work by collaborators: S. Zamorano (NS), M. Warma & S. Zamorano,
Fractional heat,...

Our thanks to our FAU colleague Daniel Tenbrinck. He suggested to us to explore turnpike for
Neural Networks.
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Deep learning Continuous-time deep learning

Supervised learning..

Goal: Find an approximation of a function fρ : Rd → Rm from a dataset{
~xi , ~yi

}N
i=1
⊂ Rd×N × Rm×N

drawn from an unknown probability measure ρ on Rd × Rm.

Classification: match points (images) to respective labels (cat, dog).

−→ Popular method: training a neural network.
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Deep learning Continuous-time deep learning

..via neural networks

1 A neural network is a scheme: for any i ≤ N{
xk+1
i = σ(wkxki + bk ) for k ∈ {0, . . . ,Nlayers − 1}

x0
i = ~xi ∈ Rd ,

(NN)

where
wk ∈ Rdk+1×dk and bk ∈ Rdk are controls
σ(x) = tanh(x) or σ(x) = max{x, 0}
Nlayers ≥ 1 depth

2 Training: minimize cost:

inf
{wk ,bk}Nlayers

k=0

1

N

N∑
i=1

loss
(
ϕ
(

x
Nlayers

i

)
, ~yi

)
︸ ︷︷ ︸

:=φ
(

x
Nlayers

)
+
α

2

∥∥∥{wk , bk
}
k

∥∥∥2

`2

where
e.g. loss(x, y) = ‖x − y‖p

`p
for p = 1, 2;

ϕ : Rd → Rm (possibly nonlinear)

ϕ(x) = wNlayers x + bNlayers .
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Deep learning Continuous-time deep learning

Residual neural networks

ResNets3: for any i ≤ N{
xk+1
i = xki + hσ(wkxki + bk ) for k ∈ {0, . . . ,Nlayers − 1}

x0
i = ~xi ∈ Rd ,

(ResNet)

where h = 1, width dk ≡ d is constant, .

”layer = timestep”4; h = T
Nlayers

for given T > 0:{
ẋi (t) = σ(w(t)xi (t) + b(t)) for t ∈ (0,T )

xi (0) = ~xi .
(nODE)

Supervised Learning is an optimal control problem:

inf
[w,b]>∈L2(0,T ;Rdu )

φ(x(T )) +
α

2

∥∥∥[w , b]>
∥∥∥2

L2(0,T ;Rdu )
(SL)

where
x(t) = [x1(t), . . . , xN (t)]> solutions to (nODE)

3He et al. ’15
4E, Haber & Ruthotto ’17
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Deep learning Continuous-time deep learning

Objective

x0 := [~x1, . . . , ~xN ]>, u := [w , b]>

φ continuous & nonnegative

Asssume σ glob. Lipschitz & σ(0) = 0 and put (nODE) in the form{
ẋ(t) = f(x(t), u(t)) in (0,T )

x(0) = x0 ∈ Rdx .
(nODE)

Question: What happens to a global minimizer uT solving (SL), and corresponding state xT to
(nODE) when T →∞?

Interest:
T →∞ ∼ Nlayers →∞.
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Deep learning Continuous-time deep learning

Regularization

Caution before proceeding..

For (nODE) −→ L2–regularization may not be enough for existence of minimizers.
Due to the nonlinearity σ and lack of compactness.

−→ enhance to Sobolev regularization:

inf
[w,b]>∈H1(0,T ;Rdu )

φ(x(T )) +
α

2

∥∥∥[w , b]>
∥∥∥2

H1(0,T ;Rdu )
(SL)

Not a problem for the ”simpler” version{
ẋi (t) = w(t)σ(xi (t)) + b(t) for t ∈ (0,T )

xi (0) = ~xi ,
(nODE2)

motivated by equivalent definition of NN:{
xk+1
i = wkσ(xki ) + bk for k ∈ {1, . . . ,Nlayers − 1}

x0
i = w0~xi .

All results to follow also hold for (nODE2) with H1 replaced by L2.
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Deep learning Asymptotics without tracking

Time-scaling

Key idea: Time-Scaling.

1 Given some u1(t) and solution x1(t) to{
ẋ1(t) = f(x1(t), u1(t)) in (0, 1)

x1(0) = x0,

then uT (t) := 1
T
u1( t

T
) is such that xT (t) := x1( t

T
) solves (nODE) for t ∈ [0,T ].

2 Then:

inf
uT∈L2(0,T ;Rdu )

φ(xT (T )) +
α

2

∫ T

0

∥∥∥uT (t)
∥∥∥2

dt

=
1

T
inf

uT∈L2(0,T ;Rdu )
Tφ(xT (T )) +

α

2

∫ 1

0

∥∥∥TuT (sT )
∥∥∥2

ds

=
1

T
inf

u1∈L2(0,1;Rdu )
Tφ(x1(1)) +

α

2

∫ 1

0

∥∥u1(s)
∥∥2

ds.
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Deep learning Asymptotics without tracking

Zero training error asymptotics

Recall:
x† ∈ arg min(φ) ⇐⇒ φ(x†) = min

Rdx
φ.

Theorem (Esteve et al. ’20): For any T > 0, let uT be minimizer in (SL), xT associated solution
to (nODE).
Under controllability/reachability assumptions, there exist a sequence {Tn}+∞

n=1 of positive times

and x† ∈ arg min(φ), such that∥∥∥xTn (Tn)− x†
∥∥∥ −→ 0 as n→∞.

Setting un(t) = 1
Tn

uTn ( t
Tn

) for t ∈ [0,Tn], we also have∥∥un − u1
∥∥
H1(0,1;Rdu )

−→ 0 as n→∞

where u1 solves
inf

u∈H1(0,1;Rdu )
subject to

x(1) ∈arg min(φ)

α

2
‖u‖2

H1(0,1;Rdu )
.

−→ Not a turnpike result!
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Deep learning Asymptotics without tracking

Figure: Here Nlayers =
⌊
T

3
2

⌋
and thus h = 1√

T
, and we consider α = 1.
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Deep learning Asymptotics with tracking = Turnpike control

Turnpike

Recall training error, assuming loss(x , y) = ‖x − y‖2:

φ(x(T )) :=
1

N

N∑
i=1

‖ϕ(xi (T ))− ~yi‖2 ; (10)

ϕ : Rd → Rm not surjective a priori!

Question: Can we have quantitative estimates for the time T required to reach the zero training
error regime?

−→ Consider enhanced cost

JT (u) :=
1

2

∫ T

0
φ(x(t))dt +

α

2
‖u‖2

H1(0,T ;Rdu )
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Deep learning Asymptotics with tracking = Turnpike control

The optimal steady states

The steady optimal control/learning problem associated to JT consists in minimizing

Js(us) :=
1

2
φ(xs) +

α

2
‖us‖2

over us ∈ Rdu , where xs ∈ Rdx is a steady state of (nODE):

f(xs , us) = 0.

Due to
1 form of controls u = [w , b]> and f(x, u) = σ(wx + b);
2 σ(0) = 0

−→ optimal steady-state pair is

(us , xs) = (0Rdu , x
†)

for some x† ∈ Rdx such that
φ(x†) = min

Rdx
φ,

i.e. x† ∈ arg min(φ).
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Deep learning Asymptotics with tracking = Turnpike control

Turnpike property

Theorem (Esteve et al. ’20): Under controllability/reachability assumptions, for any
sufficiently large T > 0, consider a solution uT to

inf
u∈H1(0,T ;Rdu )

1

2

∫ T

0
φ(x(t))dt +

α

2
‖u‖2

H1(0,T ;Rdu )

and let xT be the associated state, solution to (nODE).
Then ∥∥∥uT∥∥∥

H1(0,T ;Rdu )
≤ C

and there exists x† ∈ arg min(φ) such that∥∥∥xT (t)− x†
∥∥∥ ≤ γ (e−µt + e−µ(T−t)

)
∀t ∈ [0,T ] and for some C > 0, γ > 0 and µ > 0, all independent of T .

Due to the absence of final time cost:

Corollary (Esteve et al. ’20): In fact,∥∥∥xT (t)− xd

∥∥∥ ≤ γ e−µt
∀t ∈ [0,T ] and for some γ > 0 and µ > 0 independent of T .
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Deep learning Asymptotics with tracking = Turnpike control
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Figure: Optimal trajectories of solutions to the above learning problem: a simple flow separates the points and
ensures the turnpike property. Here T = 20, Nlayers = 50, α = 2.
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Deep learning Extensions

Variable width

Variable width ResNets: view width as auxiliary continuous variable

1 Integro-differential equation5

∂txi (t, ζ) = σ

(∫
Ω

w(t, ζ, ξ)xi (t, ξ)dξ + b(t, ζ)

)
in (0,T )× Ω.

e.g. Ω = image× (0, 1) ⊂ R3; asymptotics theorems apply here;

2 Switched systems: Changing widths over layers as switched systems over time:

ẋ(t) = fρ(t)(x(t), u(t))

given M vector fields f1, . . . , fM and switching signal ρ : [0,T ]→ {1, . . . ,M};

−→ Quasi-turnpike strategy:
#1 increase the dimension to the ”optimal system” fj∗ ,
#2 use the turnpike for fixed width
#3 switch back.

The optimal system fj∗? −→ optimal with respect to cost.
What are the switching times? How many?

5Liu & Markowich ’19
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Deep learning Extensions

Outlook

1 Long-time behavior depends on the cost functional to be minimized.

2 Results should be complemented by ML subfields (e.g. CNN design, training algorithms..)

Many other open problems and extensive bibliography can be found in our paper:

https://arxiv.org/abs/2008.02491
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Thank you for your attention.

Zuazua, Geshkovski (FAU - AvH) Turnpike Control and Deep Learning August 2020 45 / 45


	Turnpike Control
	Motivation
	Origins and Foundations of Turnpike theory
	The PDE-Turnpike Paradox
	Linear PDE revisited
	General theory
	Nonlinear theory
	Perspectives and Bibliography

	Deep learning
	Continuous-time deep learning
	Asymptotics without tracking
	Asymptotics with tracking = Turnpike control
	Extensions

	

