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: Introduction
; Flow Control Problem I

Feedback Control

Problem: The steady state is unstable: any perturbation —
no matter how small — will trigger a transition into a periodic
regime.
Goal: Stabilizing feedback controller that can handle:

® |imited measurements,

® short evaluation time,

® system uncertainties.
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A Introduction
v @ Flow Control Problem Il

Idea: Linearization-based feedback control for stabilization of the steady state.

[RAYMOND’05/°06, PB&JH'15, BREITEN&KUNISCH 14]

v+ (v-V)v—vAv+Vp = Bu, Linearization & v —Av—J'p=Bu,
V-v=0 Semi-Discretization Jv=0
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A Introduction
Q“‘ g @ Flow Control Problem Il

Idea: Linearization-based feedback control for stabilization of the steady state.

[RAYMOND’05/°06, PB&JH'15, BREITEN&KUNISCH 14]

v+ (v-V)v—vAv+Vp = Bu, Linearization & v —Av—J'p=Bu,

V-v=0 Semi-Discretization Jv=0

Fragility of Observer-Based Controllers

LQG controllers have no guaranteed robustness margins and will likely fail in the
presence of system uncertainties.

LQG-feedback corrupted LQG-feedback
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@ Introduction

In fact: [IEEE TRANSACTION ON AUTOMATIC CONTROL (’78)]:

Guaranteed Margins for LQG Regulators
JOHN C. DOYLE

Abstract—There are none.

Good news: Uncertainties that come from
® [CurtaIN’03]: Galerkin approximations of evolution systems,
® [PB&JH’17]: stable mixed-FEM approximation of the flow equations,
® [THIs TALK, PB&JH'16]: errors in the linearization point,

can be qualified as a coprime factor perturbation of the associated transfer function.

Even better news:

® [tuis TALK]: We can employ robust observer/controller design.
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2. Uncertain Linearization Points are Coprime Factor Uncertainties
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Uncertainties

@ Uncertain Linearization Points are Coprime Factor

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after
Laplace transform of the system.

X = Ax+ Bu (s sX(s) = AX(s) + BU(s)
y = Cx Y(s) = CX(s)
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@ A nominal system has the transfer function
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Uncertainties

@ Uncertain Linearization Points are Coprime Factor

Transfer functions

Mapping of inputs (controls) to outputs (measurements) in frequency domain, i.e., after
Laplace transform of the system.

X = Ax+ Bu (s sX(s) = AX(s) + BU(s)
y = Cx Y(s) = CX(s) = C(sl — A)"'BU(s).
=:G(s)

@ A nominal system has the transfer function
G(s)=C(sl—A)'BeC.
® But uncertainty in the operator gives another transfer function

Ga(s) = C(sl —A— Ap)'BeCo".
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Uncertain Linearization Points are Coprime Factor
Uncertainties

Coprime Factoriza
Given a transfer function G(s) of a linear system,

G(s) = M~L(s)N(s)

is a (left) coprime factorization if there exist X(s), Y(s) such that the Bezout identity
M(s)X(s) + N(s)Y(s) =/

holds. Here, N, M, X, Y are all rational matrix functions with all poles in the open left half of
the complex plane, i.e., they all represent stable linear systems.

Fact: N, M are coprime <= N, M have no common zeros in the right half plane.
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@ Uncertain Linearization Points are Coprime Factor

Uncertainties

Coprime Factorization
Given a transfer function G(s) of a linear system,

G(s) = M~ (s)N(s)
is a (left) coprime factorization if there exist X(s), Y(s) such that the Bezout identity
M(s)X(s) + N(s)Y(s) =/

holds. Here, N, M, X, Y are all rational matrix functions with all poles in the open left half of
the complex plane, i.e., they all represent stable linear systems.

Fact: N, M are coprime <= N, M have no common zeros in the right half plane.

Coprime Factor Perturbation

Ga(s) = [N(s) + Na(s)] [M(s) + Ma(s)]* (s) = G(s) = N(s)M~'(s),
where N + Na, M + M are stable.
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Uncertainties

@ Uncertain Linearization Points are Coprime Factor

Consider a state linear system (A, B, C) with
® A: D(A) C Z — Z a generator of a Co-semigroup
® B: U— Z bounded and C: Z — Y bounded
® U, Y, Z Hilbert spaces, U, Y finite dimensional
and
(Aa,B,C) ~ Ga =~ G~ (A B,C)

with a certain difference in the dynamics which is caused, say, by an inexact linearization.

Theorem (PB&JH ’'16)

If (Aa, B, C) and (A, B, C) are jointly stabilizable (or detectable), i.e., there exists a
state feedback K (or L) that stabilizes (or makes detectable) both (Aa, B, C) (or
(A, B, C))*, then G differs from G through a coprime factor perturbation

A= [Ma Na

with ||Allcc — 0 as A — Aa in the operator norm.

That is, A+ BK and Ap + BK or A+ LC and Ap + LC are all stable.
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3. Robust Controller Design
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@ Robust Controller Design

Robust controllers for coprime factor uncertainty

An admissable controller K stabilizes

Ga = (M + Ma) " (N + Nap)

for all | Allse = [[[Ma Nalllse < €,

if and only if?
® K stabilizes G = M~!N and <

. m (1= GK) "M Y| < 1.

Design of robust controllers
In finite dimensions, the Riccati based H ..-controller with parameter ~y is robustly
stabilizing with € = y~%; see Cor. 3.9 in [MCFARLANE&GLOVER'90].

2See, e.g. [MCFARLANE&GLOVER'Q0] for the finite dimensional case and [CURTAIN&ZwWART'95] for the
infinite dimensional case
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4. Application to Incompressible Flows
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’\%@ Application to Incompressible Flows

We consider V+(V~V)V+VP—VAV=0,
Mw divV =0, inQ,
| |
| r | ”W —nP =0 on Ny,
To Ty C) | Tout V=0onTl,,
E I E V = ngo-aon I,
! r. ! V =ngi-uionly,
V =ng-uon s,
where
° V ... velocity, ® g, g1, & - ..spatial shape functions,
® P ... pressure, ® 1y, Uy ...scalar input functions,
® « ...magnitude of the inflow velocity,
® p ...diffusion parameter, ® n ...normal vector at the boundaries.
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@ Application to Incompressible Flows

To design a controller, we proceed as follows
. _ av
® We relax the Dirichlet control V - Che e(vg, — Pn)

® Let v, be the steady state solution for zero inputs,
and let vs(t) = V/(t) — va the deviation.

©® We consider the linearization
Vs + (Vo - V)Va + (Va - V)vs + Vps —vAvs =0

that is a valid approximation as long as vs is small.
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@ Application to Incompressible Flows

Vs + (Vs - V)Va + (Vo - V)vs + Vps — vAvs =0
divvs =0

Then, with
Hap = {v e L*(Q) :divv=0,v-n=00n T, Nlou}

as the state space, the (orthogonal) Leray-projector
ne £(L2(Q): LX(Q) — Ha,
and x := lMvs the model reads®
x = Aox +MNBu in Hai,
y = Cx

where
® An: D(An) C Hdiv — Haiv is the Oseen operator
® MB: R? — Hg, is the input operator
® C: Hg — R is the output operator

3The pressure p; is gone, since I maps along the orthogonal complement of the gradient
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:@ Application to Incompressible Flows

v The linearized model is a standard (A, B, C) system
® we know: A, is the generator of a Cp-semi group [RAYMOND'06]

® we choose: C to be bounded
® we show below: B is bounded.

= The theory for robust stabilization of linearization errors applies

Robust Control for Flow Problems

J. Heiland, heiland@mpi-magdeburg.mpg.de


mailto:heiland@mpi-magdeburg.mpg.de

@ Application to Incompressible Flows

As for the input on 'y (and similarly for I'»):

® The input operator is defined via

(Biu,w) = —%/ ngiw ds-u, w € Ha,
M

® as it comes from the integration by parts of (—vAV 4+ VP, w)
® and the definition of the Robin conditions.

v This operator is bounded as a map Bi: R — Hay, since:
® supyer,juj1 [IBiullxs < o0 if sup,ex w1 | frl ngiw ds| < oo,
® the trace operator w — nw’l_1 is bounded for X = Hg;y,
® and since Hg;, is a closed subspace of L2(Q) so that Hgi, =~ (Hdi,)*,

— provided that the shape function g is sufficiently smooth.

e Interestingly, B: U — L?(Q) is not bounded, but MB: U — L*(Q) is.
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Numerical Example
: Simulation Setup

0.41

0.25
0.15

0
0 0.2 2.2

Fig.: 2D cylinder wake, discretized by Taylor-Hood (P./P1) finite elements.

Navier-Stokes equation

Stabilize the steady-state and compensate

® Reynolds 90
v perturbations to suppress vertex shedding.

® 9,843 velocity nodes

e distributed observations: ® boundary control:
® 3 sensors in the wake ® 2 outlets at the cylinder periphery
® measuring both v components ® control by injection and suction
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@ Numerical Example

Test setup:
® v, the (exact) steady state

® vy & Vo, computed by ¢ Picard

[[veo —vell -1
¢ vl 1Bl steps starting from the
3 | 0.094 2323 0.103 Stokes-solution
5 0.030 0.579 0.204 ® A:= A(Voo) the exact
6 0.018 0.168 0.233 linearization
7 0.011 0.226 0.237 e A+ Ap := A, the inexact
8 0.006 0.123 0.240 linearization about vy
10 0.002 0.028 0.242

® A, the difference in the
coprime factorizations

® see [PB&JH&SW’19] for how
to compute the norms.
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Numerical Example

Results

no feeback control LQGBT control HINFBT control
% 1 T T T T T T
c
5]
o
$0.5
[0
E o
IS
z | | | | | | | |
0 5 10 15 0 5 10 15
Time Time

® error in linearization: 8%
® reduced-order controller dimension: 7

® trigger of instabilities by input disturbance on time interval [0, 1]:

_ | 0.01sin(2tm)
us(t) = [_0.01 sin(2t7r)]
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@ Conclusions

Summary
Robust controller

® that compensate linearization errors

® can be analysed via coprime factorizations and

® can be designed with Riccati-based Hoo-theory.
The general co-dimensional theory

® applies to control of incompressible flows

® if Dirichlet control is relaxed as Robin control.
In finite dimensional simulations, we can

® compute the errors in the factorization

® and provide controller with guaranteed robustness.

® Quantify the error in the factorizations.

® |ncorporate the discretization error in the controller design.
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7. Misc and Bilbao
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Misc and Bilbao

® We design feedback controls:
u=—B"Xx (1)

For the presented stabilization we base on the steady state Riccati solution X.

® For finite time horizons we would consider the differential Riccati equation

Well known and well observed X(t) — X as t — oo (turnpike)
My plan for Bilbao:

® Theory — combine the Riccati results and turn pike results.
® Practice: exploit the turnpike for efficient solvers for the differential Riccati equation.

101 — T T T — 101 —
5 g — [ Xree (t) = Xecll, |7
g i ] 3 i
2 2
£ Pt ttaaaatitas z
g i
£ q010 | 4 E 1010 | 4
£ 2
: B
2 g
A [Xror (1)l H
Xeet (1)l <
109 — . . n — 100 — | . | P
0 100 200 300 400 464 0 100 200 300 400 464
RAIL, n = 5177, t € [0, 464] RAIL, n = 5177, t € [0,464]
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