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⎪⎩
u ≥ ψ a.e. in Ω

−Δu ≥ f a.e. in Ω

−Δu = f a.e. in {u > ψ} ∩ Ω.

where ,
f ∈ L2(Ω) is a given source term,
ψ ∈ H2(Ω) ∩ C 0(Ω) is a given obstacle,
Ω ⊂ R

n is bounded and regular.
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{u = ϕ}
Δu = 0

{u > ϕ}

free boundary

ψ

ψ
f−

Figure: The contact set {u = ψ} and the free boundary ∂{u > ψ} in the
classical obstacle problem.
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Elasticity
The Stefan problem
Finance
Interactions in biology

Elasticity

Consider a membrane (a shape) in a domain whose boundary is
held fixed, with the added constraint that the membrane must lie
above some obstacle ψ(x) inside the domain.
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Elasticity

Consider a membrane (a shape) in a domain whose boundary is
held fixed, with the added constraint that the membrane must lie
above some obstacle ψ(x) inside the domain.
Problem: Find the equilibrium position of the membrane.
Mathematically, ∫

Ω
|∇u|2dx → min

for u ≥ ψ, where u is the vertical displacement of the membrane.
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The Stefan problem

Describe the temperature distribution θ in a homogeneous medium
undergoing a phase change.

Borjan Geshkovski Obstacle problems: theory and numerics 5 / 27



Introduction
Motivation and applications

The classical obstacle problem
The parabolic obstacle problem

Optimal control of obstacle problems
Conclusion

Elasticity
The Stefan problem
Finance
Interactions in biology

The Stefan problem

Describe the temperature distribution θ in a homogeneous medium
undergoing a phase change.
Example: Melting ice submerged in liquid water.

Borjan Geshkovski Obstacle problems: theory and numerics 5 / 27



Introduction
Motivation and applications

The classical obstacle problem
The parabolic obstacle problem

Optimal control of obstacle problems
Conclusion

Elasticity
The Stefan problem
Finance
Interactions in biology

The Stefan problem

Describe the temperature distribution θ in a homogeneous medium
undergoing a phase change.
Example: Melting ice submerged in liquid water.
In the simplest case, θt −Δθ = 0 in {θ > 0} and θ = 0 elswhere.

Borjan Geshkovski Obstacle problems: theory and numerics 5 / 27



Introduction
Motivation and applications

The classical obstacle problem
The parabolic obstacle problem

Optimal control of obstacle problems
Conclusion

Elasticity
The Stefan problem
Finance
Interactions in biology

The Stefan problem

Describe the temperature distribution θ in a homogeneous medium
undergoing a phase change.
Example: Melting ice submerged in liquid water.
In the simplest case, θt −Δθ = 0 in {θ > 0} and θ = 0 elswhere.
It can be shown that this is a special case of the parabolic obstacle
problem.
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Optimal stopping

Let {Xt} be a stochastic process in R
n (price of stocks), and ψ a

given payoff function.
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Optimal stopping

Let {Xt} be a stochastic process in R
n (price of stocks), and ψ a

given payoff function.
Problem: Maximize the expected value of the payoff at the
end point.
It turns out that the maximum expected payoff u solves⎧⎪⎨

⎪⎩
u ≥ ψ in R

n

Lu ≥ 0 in R
n

Lu = 0 in {u > ψ},

where L is the infinitesimal generator of {Xt}.
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Let {Xt} be a stochastic process in R
n (price of stocks), and ψ a

given payoff function.
Problem: Maximize the expected value of the payoff at the
end point.
It turns out that the maximum expected payoff u solves⎧⎪⎨

⎪⎩
u ≥ ψ in R

n

Lu ≥ 0 in R
n

Lu = 0 in {u > ψ},

where L is the infinitesimal generator of {Xt}.
If {Xt} is the Brownian motion, then L = 1

2Δ.
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Let W ∈ L1
loc(R

2) be an interaction potential: repulsive when
particles are near (to avoid colision) and attractive when they are
far (to make a structure or a group).
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Interacting populations

Let W ∈ L1
loc(R

2) be an interaction potential: repulsive when
particles are near (to avoid colision) and attractive when they are
far (to make a structure or a group).
Problem: Minimize∫

R2

∫
R2

W (x − y)dμ(x)dμ(y) → min

over Borel measures μ with mass 1.
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Interacting populations

Let W ∈ L1
loc(R

2) be an interaction potential: repulsive when
particles are near (to avoid colision) and attractive when they are
far (to make a structure or a group).
Problem: Minimize∫

R2

∫
R2

W (x − y)dμ(x)dμ(y) → min

over Borel measures μ with mass 1.
Result: μmin := (−Δ)su where u satisifes

min{(−Δ)su, u − ψ} = 0

for some obstacle ψ depending on W .
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The classical obstacle problem

The problem: Find u ∈ K(ψ) s.t.

J(u) = inf
w∈K(ψ)

J(w), (1)
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The classical obstacle problem

The problem: Find u ∈ K(ψ) s.t.

J(u) = inf
w∈K(ψ)

J(w), (1)

where
J(u) :=

∫
Ω
(|∇u|2 − fu)dx

and
K(ψ) := {u ∈ H1

0 (Ω): u ≥ ψ a.e.}.

Theorem
There exists a unique solution u ∈ K(ψ) to Problem (1).
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Variational inequality

Proposition

Problem (1) is equivalent to: Find u ∈ K(ψ) s.t.∫
Ω
∇u · ∇(v − u)dx ≥

∫
Ω
f (v − u)dx

for all v ∈ K(ψ).
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Euler-Lagrange equations

Choosing "appropriate" variations v and integrating by parts, the
VI implies that the minimizer u solves⎧⎪⎨

⎪⎩
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−Δu ≥ f a.e. in Ω
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Euler-Lagrange equations

Choosing "appropriate" variations v and integrating by parts, the
VI implies that the minimizer u solves⎧⎪⎨

⎪⎩
u ≥ ψ a.e. in Ω

−Δu ≥ f a.e. in Ω

−Δu = f a.e. in {u > ψ} ∩ Ω.

Problem: We need H2(Ω) regularity to integrate by parts and to
have = a.e.
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H2(Ω)-regularity

Penalization method: Fix ε > 0. Find uε ∈ H1
0 (Ω) weak solution

to
−Δuε =

1
ε
β(uε − ψ) + f in Ω. (2)
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H2(Ω)-regularity

Penalization method: Fix ε > 0. Find uε ∈ H1
0 (Ω) weak solution

to
−Δuε =

1
ε
β(uε − ψ) + f in Ω. (2)

Problem: No Lax-Milgram because no linearity!
Solution: Monotone operator theory.

Proposition

There exists a unique solution uε ∈ H1
0 (Ω) ∩H2(Ω) to equation (2)

and
‖uε‖H2(Ω) ≤ C‖f ‖L2(Ω)

for some C = C (Ω, n) independent of ε.

Borjan Geshkovski Obstacle problems: theory and numerics 11 / 27



Introduction
Motivation and applications

The classical obstacle problem
The parabolic obstacle problem

Optimal control of obstacle problems
Conclusion

Existence and uniqueness
Regularity
Numerics

H2(Ω)-regularity

Theorem
Let u be the unique solution to the obstacle problem. Then
u ∈ H2(Ω).
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H2(Ω)-regularity

Theorem
Let u be the unique solution to the obstacle problem. Then
u ∈ H2(Ω).
If f ,max{−Δψ − f , 0} ∈ Lp(Ω) for some p ∈ [2,∞), then
u ∈ W 2,p(Ω),
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H2(Ω)-regularity

Theorem
Let u be the unique solution to the obstacle problem. Then
u ∈ H2(Ω).
If f ,max{−Δψ − f , 0} ∈ Lp(Ω) for some p ∈ [2,∞), then
u ∈ W 2,p(Ω), and if p > n, then u ∈ C 1,α(Ω) for α ≤ 1 − n

p < 1.
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C 1,1
loc (Ω)-regularity

Assume f ∈ L∞(Ω), ψ ∈ C 1,1(Ω) and set u := u − ψ,
f := f −Δψ.
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C 1,1
loc (Ω)-regularity

Assume f ∈ L∞(Ω), ψ ∈ C 1,1(Ω) and set u := u − ψ,
f := f −Δψ. By studying

−Δu = fχ{u>0},

we can show
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C 1,1
loc (Ω)-regularity

Assume f ∈ L∞(Ω), ψ ∈ C 1,1(Ω) and set u := u − ψ,
f := f −Δψ. By studying

−Δu = fχ{u>0},

we can show

Theorem

u ∈ C 1,1(ω) for any ω � Ω.
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Idea: Use the FEM to solve the penalized problem and take ε small
to have a good approximation.
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Idea: Use the FEM to solve the penalized problem and take ε small
to have a good approximation.
Example 1: Ω = [−1, 1]2, f = −10, ψ = "stairs", ε = 10−6,
N = 64:
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Example 2: Ω = B(0, 2.5), f = 0, ψ =
√

1 − |x |2χ{|x |<1},
ε = 10−6, N = 64:
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The problem

Denote Q := (0,T )× Ω, T ∈ (0,∞), Ω as before.
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The problem

Denote Q := (0,T )× Ω, T ∈ (0,∞), Ω as before.
Problem: Find u ∈ K(ψ) s.t.∫

Q

(ut(v − u) +∇u · ∇(v − u))dxdt ≥
∫
Q

f (v − u)dxdt, (3)
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Q
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Problem: Find u ∈ K(ψ) s.t.∫

Q

(ut(v − u) +∇u · ∇(v − u))dxdt ≥
∫
Q

f (v − u)dxdt, (3)

where

K(ψ) := {u ∈ L2(0,T ;H1
0 (Ω)) : ut ∈ L2(Q), u ≥ ψ, u(0) = u0},

with u0 ∈ H1
0 (Ω), f ∈ L2(Q)

Borjan Geshkovski Obstacle problems: theory and numerics 16 / 27



Introduction
Motivation and applications

The classical obstacle problem
The parabolic obstacle problem

Optimal control of obstacle problems
Conclusion

Existence and uniqueness
Numerics

The problem

Denote Q := (0,T )× Ω, T ∈ (0,∞), Ω as before.
Problem: Find u ∈ K(ψ) s.t.∫

Q

(ut(v − u) +∇u · ∇(v − u))dxdt ≥
∫
Q

f (v − u)dxdt, (3)

where

K(ψ) := {u ∈ L2(0,T ;H1
0 (Ω)) : ut ∈ L2(Q), u ≥ ψ, u(0) = u0},

with u0 ∈ H1
0 (Ω), f ∈ L2(Q) and ψ ∈ L2(0,T ;H2 ∩ H1

0 (Ω)),
ψt ∈ L2(Q), ψ(0) = 0.
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Theorem

There exists a unique solution u ∈ K(ψ) ∩ L2(0,T ;H2 ∩ H1
0 (Ω)) to

the parabolic obstacle problem (3).
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Theorem

There exists a unique solution u ∈ K(ψ) ∩ L2(0,T ;H2 ∩ H1
0 (Ω)) to

the parabolic obstacle problem (3).

Idea: For fixed ε > 0, find uε ∈ L2(0,T ;H2 ∩ H1
0 (Ω)), ut ∈ L2(Q),

u(0) = u0 a weak solution of

uεt −Δuε +
1
ε
β(uε − ψ) = f in Ω.
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Theorem

There exists a unique solution u ∈ K(ψ) ∩ L2(0,T ;H2 ∩ H1
0 (Ω)) to

the parabolic obstacle problem (3).

Idea: For fixed ε > 0, find uε ∈ L2(0,T ;H2 ∩ H1
0 (Ω)), ut ∈ L2(Q),

u(0) = u0 a weak solution of

uεt −Δuε +
1
ε
β(uε − ψ) = f in Ω.

If β is uniformly Lipschitz, by a classical result this problem has a
solution for fixed ε.
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Lemma
There exists C > 0 s.t.

ess sup
t∈[0,T ]

‖∇uε(t)‖L2(Ω) + ‖uεt ‖L2(Q) + ‖Δuε‖L2(Q)

≤ C
(‖Δψ‖L2(Q) + ‖ψt‖L2(Q) + ‖f ‖L2(Q) + ‖∇u0‖L2(Ω)

)
for all ε > 0.
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Lemma
There exists C > 0 s.t.

ess sup
t∈[0,T ]

‖∇uε(t)‖L2(Ω) + ‖uεt ‖L2(Q) + ‖Δuε‖L2(Q)

≤ C
(‖Δψ‖L2(Q) + ‖ψt‖L2(Q) + ‖f ‖L2(Q) + ‖∇u0‖L2(Ω)

)
for all ε > 0.

This implies that {uε}, {uεt } and {Δuε} are bounded in
L2(0,T ;H1

0 (Ω)) and L2(Q) respectively. Use a compactness
argument to prove the Theorem.
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Euler’s method

At least formally, we can show existence by discretizing ut via the
implicit Euler scheme: for i ∈ {1, . . . ,N} find ui s.t.∫

Ω

(ui − ui−1

h

)
(v − ui ) +∇ui · ∇(v − ui ) ≥

∫
Ω
f (v − ui ).
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Euler’s method

At least formally, we can show existence by discretizing ut via the
implicit Euler scheme: for i ∈ {1, . . . ,N} find ui s.t.∫

Ω

(ui − ui−1

h

)
(v − ui ) +∇ui · ∇(v − ui ) ≥

∫
Ω
f (v − ui ).

We then "glue" the solutions {ui}Ni=1 to create a suitable
approximation, show estimates and conclude by compactness.
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We again solve the penalized problem by using the FEM.
Example: Ω = [−2, 2]2, f = 0, ψ =

√
1 − |x |2χ{|x |<1}, ε = 10−6,

n = 64, T = 5:
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Conclusion

The classical obstacle problem
The parabolic obstacle problem

Minimize over ψ ∈ Uad the cost

J(ψ, u) := ‖u − ud‖2
L2(Ω) + ‖∇ψ‖2

L2(Ω)

s.t.

u ∈ K(ψ),∫
Ω
∇u · ∇(v − u)dx ≥

∫
Ω
f (v − u)dx ∀v ∈ K(ψ),
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u ∈ K(ψ),∫
Ω
∇u · ∇(v − u)dx ≥

∫
Ω
f (v − u)dx ∀v ∈ K(ψ),

This problem fits in the framework of mathematical programs with
equilibrium constraints (MPEC).
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The parabolic obstacle problem

Minimize over ψ ∈ Uad the cost

J(ψ, u) := ‖u − ud‖2
L2(Q) + ‖ψt‖2

L2(Q) + ‖Δψ‖2
L2(Q)

s.t.

u ∈ K(ψ),∫
Q

ut(v − u) +∇u · ∇(v − u)dx ≥
∫
Q

f (v − u)dx ∀v ∈ K(ψ).
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The parabolic obstacle problem

Minimize over ψ ∈ Uad the cost

J(ψ, u) := ‖u − ud‖2
L2(Q) + ‖ψt‖2

L2(Q) + ‖Δψ‖2
L2(Q)

s.t.

u ∈ K(ψ),∫
Q

ut(v − u) +∇u · ∇(v − u)dx ≥
∫
Q

f (v − u)dx ∀v ∈ K(ψ).

We write

J(ψ) := ‖σ(ψ)− ud‖2
L2(Q) + ‖ψt‖2

L2(Q) + ‖Δψ‖2
L2(Q),

where σ : ψ �→ u is the solution map.
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The parabolic obstacle problem

Theorem
There exists a minimizer ψ ∈ Uad to J.

We now want to deduce an optimality system. But we don’t know
the regularity of σ.
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Theorem
There exists a minimizer ψ ∈ Uad to J.

We now want to deduce an optimality system. But we don’t know
the regularity of σ.
Idea: Consider the penalized problem, show conditions for the
approximations, deduce estimates, conclude by compactness.
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The parabolic obstacle problem

Theorem
There exists a minimizer ψ ∈ Uad to J.

We now want to deduce an optimality system. But we don’t know
the regularity of σ.
Idea: Consider the penalized problem, show conditions for the
approximations, deduce estimates, conclude by compactness.
For fixed ε > 0, consider the approximate cost functional

Jε(ψ) := ‖σε(ψ)− ud‖2
L2(Q) + ‖ψt‖2

L2(Q) + ‖Δψ‖2
L2(Q),

where σε : ψ �→ uε is the solution map for the penalized problem.
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Theorem
For fixed ε > 0, σε has a weak Gâteaux derivative ξε in
L2(0,T ;H1

0 (Ω)). Moreover, ξε satisfies ξεt ∈ L2(0,T ;H−1(Ω)) and{
ξεt −Δξε + 1

εβ
′(uε − ψ)(ξε − v) = 0 in Q

ξε(0) = 0 in Ω.
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The classical obstacle problem
The parabolic obstacle problem

Theorem
For fixed ε > 0, σε has a weak Gâteaux derivative ξε in
L2(0,T ;H1

0 (Ω)). Moreover, ξε satisfies ξεt ∈ L2(0,T ;H−1(Ω)) and{
ξεt −Δξε + 1

εβ
′(uε − ψ)(ξε − v) = 0 in Q

ξε(0) = 0 in Ω.

Lemma
Fix ε > 0. Given a minimizer ψε of Jε, there exists an adjoint state
pε ∈ L2(0,T ;H1

0 (Ω)), p
ε
t ∈ L2(0,T ;H−1(Ω)) s.t.{

−pεt −Δpε + 1
εβ

′(uε − ψε)pε = uε − ud in Q

pε(T ) = 0 in Ω.
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The parabolic obstacle problem

Let W := {w ∈ H1(Q) : w = 0 on Σ,w(0) = 0}.
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The parabolic obstacle problem

Let W := {w ∈ H1(Q) : w = 0 on Σ,w(0) = 0}.
Theorem
For fixed ε > 0, the minimizer ψε satisfies
ψε ∈ L2(0,T ;H3 ∩ H1

0 (Ω)), ψ
ε
t ∈ L2(Q), ψεtt ∈ W′ and⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ψεtt +Δ2ψε + 1
εβ(u

ε − ψε)pε = 0 in Q

ψε(0) = 0 in Ω

ψεt (T ) = 0 in Ω

Δψε = 0 on Σ

in the sense of W′.
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The parabolic obstacle problem

Let W := {w ∈ H1(Q) : w = 0 on Σ,w(0) = 0}.
Theorem
For fixed ε > 0, the minimizer ψε satisfies
ψε ∈ L2(0,T ;H3 ∩ H1

0 (Ω)), ψ
ε
t ∈ L2(Q), ψεtt ∈ W′ and⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ψεtt +Δ2ψε + 1
εβ(u

ε − ψε)pε = 0 in Q

ψε(0) = 0 in Ω

ψεt (T ) = 0 in Ω

Δψε = 0 on Σ

in the sense of W′.

We furthermore deduce adequate estimates on ψε and pε that
allow us to pass to the limit in the above by compactness.
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Geometry of the contact set? (Nirenberg et al. 70s)
Regularity of the solution map σ : ψ �→ u? (Kinderlehrer et al.
70s)
Convergence rates for the FEM approximation, error estimates
for the solution and the free boundary (Nocchetto et al.
2010s).
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More questions and topics

Regularity of the free boundary? (Caffarelli et al. 70s)
Geometry of the contact set? (Nirenberg et al. 70s)
Regularity of the solution map σ : ψ �→ u? (Kinderlehrer et al.
70s)
Convergence rates for the FEM approximation, error estimates
for the solution and the free boundary (Nocchetto et al.
2010s).
Redo everything with (−Δ)s (Caffarelli, Figalli, Ros-Oton et
al. 2010s).
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Thank you for your attention.
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