The interplay of Deep Learning and Control Theory

Borjan Geshkovski

AG "Mathematics of Deep Learning", FAU Erlangen-Nurnberg
December 9th, 2020

' . . , Fundacion
U 5 Universidad Autonoma ¢ a:’::;;‘;m
de Madrid



Supervised learning

2/43



Supervised learning Empirical risk minimization Augmented empirical risk minimization Extensions

(@) olelelelelolololololelele) 00000000000 0000
9000000000

Supervised learning

Goal: Find an approximation of a function f(-) from a dataset
—_  — — N
{%,vi = f(%)}i_y
drawn from an unknown probability distribution p = p(x, y) on RY x R™,

® Classification: f : RY — {1,..., m}, thus labels y: € {1,..., m}.
® Regression: f : RY — R™, thus labels y; € R™.

Boosted Decision Tree Regression

- —— n_estimators=1

Positive Negative LY i
g

154 ® training samples

target
o
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Figure: Classification — f : R%%*® — {—1,+1}

Figure: Regression — f : [0,6] — R
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How to solve such tasks?

Suppose we are looking for f : R — {—1,1}, thus given data X; € R? and
yi € {—1,1} for i < N.

X2 A H KHB
® A simple idea:
N o ¢ /
. . T — — &
min sign(w ' X;) — Vi ®
i - H gn( i) YI) o ©®
=1
00 |
and x +— sign(w " x) will be approximation o © ‘O
candidate;
. . . o Op
® But data is not linearly separable in general!
y X
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Neural networks

Neural network: for any i < N

{xk"'l = o(w*x¥ + b*)  for k € {0,..., Niayers — 1} (NNy)
1

;
x) =% e RY,

® wk € RI%+1%dk and bk € R% are controls;
® Niayers > 1 given depth; di > 1 called widths with dp = d and dNIayers == M.

® g € Lip(R) & o(0) = 0 defined componentwise:

lic tangent 5 Rectifled Linear Unit (RelU)

17

0.8 45

06}

= 0 1 =25

0.2 ¢ 1 2

Figure: Sigmoid: tanh(x) and ReLU: max{x, 0}

® ML jargon: multilayer perceptron / fully-connected.
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Universal approximation

® Neural networks are universal approximators!: if o not polynomial, the set

n
H:=<f:f(x)= Zajo(ﬁ;x—i—'yj); a€R",BeR™X ~eR" ' n>1
J=1

is dense in C9([—1, 1]9). So here width n is large.
® Plethora of extensions?; Dual view of large depth has also been studied3.

® Maiorov and Pinkus '99: 3o such that f € C%([—1, 1]9) may approximated by a
two-hidden layer NN with (2d + 1)(4d + 3) neurons in layer 1 and 4d + 3 neurons
in layer 2. Uses Kolmogorov-Arnold rpz:

f(X)—Z"’ (Zaqﬁ x,+'ru)+1)

Jj=0 j=1

® Results do not say how to find the parameters.

al.

1Cybenko '89

2Hornik '89, Barron '90s, Pinkus '99, Burger et al. '01, deVore, Daubechies et al. '19, Kutyniok et
'19, etc..

3Kidger & Lyons '19: "Universal Approximation with Deep Narrow Networks" and references 6/43
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"Training" a NN

Training <= Optimization: )\ > 0 fixed,

N
. 1| N . p
min — E loss (Px,- fayers,)’i) +A ”{wk, bk}
k wnk Nfayers N 4 kllgp
{w ,b }k=0 < i=1 , ~ n 7
g regularization

training error
1. Regression: y; € R™, and
Px — WNIayersX 4 beayers c Rm, loss(x,y) = ||x — y||2

2. Classification:
® 2 classes: y; € {—1,1},

N N 2
loss(Px,y) — Htanh(w layers x + b Iayers) = yH
N N
or Px = w layersx | players £ R and
loss(Px, y) = log (1 + exp (—yPx))

® m > 2: cross-entropy loss.

We shall assume that P is given, possibly picked at random.

Extensions
0000
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Residual neural networks

ResNets: fix dy = d; forany i < N

k+1 k k k k
Xt =x: 4+ ho(w"x’ + b for k € {0,..., N —1
i i ( i ) { layers } (ResNet)
x! =%
where h = 1.
layer = timestep?; h = N!T for given T > 0:
ayers
x;(t) = o(w(t)x;(t) + b(t fort € (0, T
() = o (w(B)xi(1) + b() ©,7) -
X,‘(O) = X;.

For (nODE;), we shall henceforth assume o(Ax) = Ao(x) for A > 0 (positive
homogeneity).

4\Weinan E '17 8/43
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Residual neural networks

In addition to (nODEj), one can also consider variants:

(1) = w(t)o(xi(t)) +b(t) for t€ (0, T) (nODE;)
xi(0) = X
® Also
{x,g)) i T(t)a(WzXf(t) +b2) + bi(t) fort € (0,T) (nODE3)

where wy € R9X% y, € RAXd
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Training is optimal control

Given T, A > 0:

N
1
inf -2 loss(Px;(T), yi) +X||[w, b]||? .
[W,b]EHk(O,T;]Rd”) N ; ( ( ) ) ”[ ]”Hk(O,T,Rd )

L. -

=&(x(T))

® k=0 for (nODE), k = 1 for (nODE;), (nODE3) (L?-regularization may not

be enough for compactness)

Extensions
0000
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Why ODEs?

ODE formulation has been used to great effect..

Neural ordinary differential equations [PDF] nips.cc
RTQ Chen, Y Rubanova, J Bettencourt... - Advances in neural ..., 2018 - papers.nips.cc

... at 3 Replacing residual networks with ODEs for supervised learning In this section, we
experimentally investigate the training of neural ODEs for supervised learning. Software ...

Y 99 Cited by 729 Related articles All 20 versions 99

® adaptive schemes, solvers (Chen et al. '18, Dupont et al. '19, Benning et al.
'19)

® PMP-based training algos (E et al. '19)
¢ Stability to adversarial perturbations (Haber, Ruthotto et al. '18)

Artificial intelligence / Machine learning

A radical new neural
network design could
overcome big challenges
in Al

Researchers borrowed equations from calculus to redesign the
core machinery of deep learning so it can model continuous
processes like changes in health.

by Karen Hao December 12, 2018

“panda” “gibbon” .
57.7% confidence 09.3% confidence MIT TQCh Rewew, 2018
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Why ODEs?

I' 500 ~  Npaygers — 0.

® Setx? =[x1,...,Xn], u = [w, b], and put both (nODE;) and (nODE>) in the form

x(t) = f(x(t),u(t)) in (0, T)
{X(O) _ xo c Rdx. (NODE)
® And so
inf E(x(T)) + A |Iu||[2-[k(O,T;Rdu) (SL1)

ueH*(0, T;R%)
subject to (nODE)

Question: What happens to a minimizer u” solving (SL1), and corresponding state
x” to (nODE) when T — +00?

qa= Ja=
..L:’.f’..‘f a3
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Scaling
: 2
inf EX(T)) + Mullko, 7:reu) (SL1)

ue H (0, T;R)
subject to (nODE)

Key idea: Time-Scaling.

® Assumptions on o entail f(x, u) positively homogeneous w.r.t. u, i.e.
f(x,au) = af(x, u) for a > 0.

® Hence, given u’ (t) and the solution x' (t) to

xT(t) =f (xT(t), uT(t)) in (0, T)

%' (0} =2,

(1)

then ul(t) := Tu” (¢tT) is such that x*(t) := x" (¢tT) solves (1) for t € [0, 1].

14/43
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Classification
® For simplicity: y; € {—1,+1};
loss(Px;(T), ;) := log (1 + e iPxi(T)), (2)

® Denote -
) u
ul =

J

=
u ”Hk(o,T;Rdu)
let x denote the associated solution to (1).

® The margin of u':

A e &
Yo7 = min ¥ Px: (T) (3)
® Max-margin: L 24 b
; ’ V2
V= sup Vu- @ /A4 "2
”u”Hk(o,l,RdU)Sl . ; ’
x solves (1) S
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Theorem (Classification): Consider x° € R% where
X? — [)_(}’1, Ce e )_(},d, 0] = RO+1

for any i < N. Let XA > 0 be fixed, and let P : R¥tl — R be any non-zero matrix

such that Px? =0fori <N. Forany T >0, let u” € H*(0, T;R%) be any global
minimizer. Assume v* > 0.

1. There exists a constant C > 0 independent of T > 0 such that

E(xr(T) < =

\ *

2. Moreover, v5 >
Ve T—>+o00 7

3. HTh ::13 with T, > 0 and T, — oo such that

Tat’o(-T5)
| TauTr(- Ty

_.u*

— 0
n— o0

Hk(0,1;Rd9u)

)“Hk(o,l;Rdu)
along some subsequence, where [w*, b*] =: u* are such that

Yux = sup Yu=7".
||u||Hk(011;Rdu)Sl

x solves (1)
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Theorem (Regression?): Fix A > 0, let P : R? — R™ be any surjective affine map.
For any T > 0, let u” be minimizer in (SL;), x” associated solution to (nODE).

Assume that {& = 0} is reachable by (nODE). Then
1. 3C > 0 independent of T such that

c

E((T)) < 7

2. Moreover, 3{T,} % positive times and 3x, € R%, &(x,) = 0, such that

||xT”(Tn) —Xo|| — 0 as n — +o0.
3. Moreover
|iu—r” (;)—u* — 0 as n = +o0o
Th Th Hk (0,1;Rdu)
where u* solves
inf ”””Hk(o 1;R%)

ueH*(0,1;R%)
subject to (nODE) with T=1
and

E(x(1))=0

@Carlos Esteve et al. “Large-time asymptotics in deep learning”. In: arXiv preprint arXiv:2008.02491
(2020).

00000e®0000000 00000000000 0000
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T s00<=A—>0
Back to
T [T NIE: T L [ -
&(x (T))+A/ Hu (t)H dt = &(x (T))+?/ Tu (sT)H ds
0 0

1
— E(XT(T)) + %_-/0 ul(s)”2 ds

=&(x}(1)) + %/0 Hul(s)szs.

Corollary: All of the conclusions of both Theorems remain true when T > 0 is fixed

and A \, 0.

19/43
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Discussion

® For solution w” to

min Z log (1 + exp ( —yiw x,)) + wl}

wERd

shown® that

-~

w *
Ao [lwx] ~

where w* is maximum margin separator:

x _ o T o
w” = argmax|,, || —1 milny,w Xi.

® Compared to other convergence results of generalization nature: implicit
regularization of gradient descent®:

"In the overparametrized regime, after training a neural network with
gradient-based methods until zero training error, with A = 0, among the many
classifiers which overfit on the training dataset, the algorithm selects the one
which performs best on the test dataset.”

5Rosset, Hu, Hastie '04
6Zhang et al. '16, Soudry et al. '18, Gunasekar et al. '18, Chizat & Bach '20 20/43
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Proof of Theorem (Regression)

For simplicity, suppose k = 0.

Part 1). We first show that
eE(x™(T)) ST L

1 By controllability, 3u! € L?(0,1) such that &(x*(1)) = 0.

2 Since u' is a minimizer,

2 2

e (x"(T)) +A Hu"'

pon SECM 74 (3)
A

2
— - ||”1||L2(o,1)

L2(0,T)
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Part 2). Now show that 3{T,}! 5 of positive times and Ix, € R%, £(xo) = 0 such
that

HXT”(Tn)—XO — 0 as n — +00.

1 Gronwall + scaling:
<"1 = S VT o

o 6 20,1 &P (16l 20.1))

p(ﬁHuT

Lz(O,T))

L2(0,T)

Thus {x"(T)} ;. is bounded (subset of R%);

2 — I Th}' 2% of positive times and Ix, € R% such that

HxT”(Tn)——xo — 0 as n — +o0.

3 By Part 1), € (x""(T,)) — 0. We conclude by continuity of €.
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Part 3). We finally show that us(t) := + T"( 7-) for t € [0, Th] satisfies
where u™* solves
inf | ul|?2
uel?(0,1) L(0,1)

subject to (nODE) with T=1
and

1 Assume ||unl[;2(0,1) < ||u0||;_2(0,1) for every n > 1; u® solution of above.
> Ju* € L?(0,1) such that
up — u* weakly in L2(0,1)
compactness of ODE:
Xp — X* strongly in C°[0, 1]
3 But x"7(T,) = x,(1) thus x*(1) = x, by Part 1), so &(x*(1)) =
a Weak lower semicontinuity of L2—norm:

0112 2 i 2 . 2 0|2
||U “;_2(0’1) < ||U*||L2(o,1) < 'L’E,'(Qf ||”n||1_2(o,1) < ]‘;lsolép ||”n||:_2(0,1) = ”“ ||L2(o,1)

so strong L?—convergence and u* solves the desired problem.



Supervised learning Empirical risk minimization Augmented empirical risk minimization Extensions

(®) 0000000000080 00000000000 0000
0000000000

Proof of Theorem (Classification)

N
Jr(u) == log (1 + e_y"Px"(T)) + )\““”fz-;k(o,T)'
i=1

We will concentrate on showing
min y: Px/(T) — sup min y; Px;(1)
I I

- 7 [lu”}4k(0,1) f;l
=Y T

L - o

e

as T — +o0.
® Choice of P = S7(x%, au) = aS7(x%, u) = ax(T) for a > 0.

® For a > 0, u given:

Ir(au) < log (1+e (~amingiPr(T) ) + 2 ulluor, ()
and

1 i 3
Jr(au) > % log (1+exp (—a m,_my,-Px,-(T))) 22 ulZue 1y (6)

24 /43
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® Let [|u*||yk(o,1) Such that v+ =~*; u} rescaled on [0, T]:

Ir (VTlurlieut) < tog (1+exp (VTllurllmr®)) + Murllf.

Also
1
JT(UT) > N Iog (1 + exp (_”uT“Hk'YET)) + A””Tnf{k(o’-r)-

® Thus

log (1 + exp (ﬁ”UT”Hk’Y*)) > % log (1 + exp (—||uT || yxvz7))

® Since \/T”UT“Hk(O’ 7y — +00, we can Taylor and conclude..

25/43
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Enhancing the decay rate

Question: Better quantitative estimates for the time T required to approach the zero
training error regime E(x(7)) = 07

® Consider loss(x,y) = ||x — y||* and so we recall

€(x(T)) Z 1Pxi(T) — ¥ill?

® We shall suppose P : R — R™ surjective, Lipschitz, but arbitrary
® and let X € R% s.t. X; € P~1({y:}) for i < N be fixed.

® Augmented problem:

i
ot ST+ [ Ix(e) =Rt + Ao gy (SL)
subject to (nODE)
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Exponential decay

Theorem?: Fix A > 0, and suppose that (nODE) is controllable with linear
estimate of the cost. There exist T* > 0 such that for any T > T7%, any
solution (u”,x") to (SL*)-(nODE) satisfies

Ix" () —X|| £ Cre vVt € [0, T]
and
5 (xT(t)) < Ge Kt vVt € [0, T]
and
”uT(t)H < CGze Mt for a.e. t € [0, T]

for some C1, Co, C3, 1 > 0, all independent of T.

@Carlos Esteve et al. “Large-time asymptotics in deep learning”. In: arXiv preprint arXiv:2008.02491
(2020), Carlos Esteve et al. “Turnpike in Lipschitz-nonlinear optimal control”. In: arXiv preprint
arXiv:2011.11091 (2020).

® Akin to universal approximation: given tolerance € > 0, there exists T, > 0
(number of layers) and control parameters u® such that the neural network
output is e—close to the desired target.

® One difference with universal approximation is that our parameters may be
computed explicitly via a training procedure.
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A related problem

Take any loss(+,-) and consider

v
. 2

uGHkr(?l”;':RdU) /o e A ”u”H“(O,T:Rd“) BL9)
subject to (nODE)

® For instance, if y; € {1,..., m}, then Px;(T) € R™ and consider cross-entropy
loss

e_Pxi( T)_}"/}
loss(Px;(T), y;) := — log mPx(T) |-
j=1¢ 7

® Do we still have stabilizatiion/turnpike?

30/43
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Turnpike property

® Theorem is a special manifestation of the

Augmented empirical risk minimization
O000000e000

well-known turnpike property in optimal
control and economics.

For suitable optimal control problems in a
sufficiently large T, any optimal solution
(uT,xT) remains, during most of the time,
O(e~t + e~ (T—1))—close to the optimal
solution of a corresponding ‘static” optimal
control problem.

Optimal static solution is referred to as the
turnpike — the name stems from the idea that
a turnpike is the fastest route between two
points which are far apart, even if it is not the
most direct route.

Since f(x,0) = 0 for all x, X; may be seen as
the turnpike for Px;. Since this is a steady
state, we do not see an exit from the turnpike
and we stabilize.

NCLOA

Universidad Autonoma
W-60;
M-61Z
/M 11 min
14.2 km VALVERDE
> A
/ f M-607
&= 14 min
15.6 km
/= 16 min

14.4 km

TETUAN
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University of Madrid

Google
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Proof of &(x7(t)) + ||x"(¢t) —x|| S et
k=0, N =1 for simplicity. Then &(x"(t)) = ||Px"(t) — )7'”2
Part 1). For T > 1, we first prove that

2 2

HxT(t) — in + ”xT — X |x0 - 2”2

o7

Se |
L2(0,T) 12(0,T)

for all t € [0, T] uniformly in T.
1 Ju* € L2(0,1) such that x*(1) = x and ||u*||;2 < |[x® — X||.

2 Gronwall: ||x*(t) — x|| So |[x® —x

3 Set )

*(t) forte (0,1

U™ (t) =« u(t) ' (0,1)

0 fort € (1, T).
Then x¥"(t) =x for t € [1, T].
4 u' minimizer, so
2 2
T =, Y & * —2 * 112
|x" - 12(0,) | 2.y = X = Xlliz0,1) + 1720,

So < —x][-

s Conclude by Gronwall.

Extensions

0000

(7)
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Part 2). Fix 7> C2+1,and let T > 27+ 1.
1 For t € [0, 7 + 1], desired estimate follows from (7):

Ix7(5) =% So 1° = Rl So,r € IX° I

2 (7) + contradiction argument:

I -
Ix"(t) = ¥l < \/—;le—yll

for t € [1, T].
3 Bootstrap: for n < 2l

||xT(t)—x||<(j;) % - |

for t € [nT, T].
4 Suppose t € [T+ 1, T]. Set n(t) = L 7]. Then t € [n(t)T, T], so

7 (0) ] < exp (~nteytoe (5 ) ) 1x° I

S.rr,a eXp | — —=it “xo_i”°
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Proof of [[u”(t)|| S et
lett€[0,7T)and 0< h<1lst. t+2he |0, T].

1 Set
(u' (s) for s € (0, t)
U (5) = « %uT (t-l- Sgt) for s € (t,t + 2h)
LuT (s — h) for s € (t +2h, T).
2 Since u” minimizer, by J7(uT) < Jr(u3¥¥), we will find

1 t+h 2 t+h .
> / ||uT(s)H ds < / HxT(s) - )7” ds.
t t

3 Combined with ||xT(s) - )7“2 <e f,
t+h 2 t+h
/ HuT(s)H ds < / e °ds < he "
t t

a Lebesgue differentiation theorem: for a.e. t € [0, T],

H.-f(t)“2 ~ lim %/Hh HuT(s)szs,ﬁ et.
t

h—0+
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Variable width

Variable width ResNets via integro-differential equation: for i < N
O0rzi(t,x) =0 (/ w(t, x, &)z;(t,&)dE + b(t,x)) in (0, T) x Q.
Q

® e.g. O =image x (0,1) C R3;
® All previous asymptotics theorems apply here;

® Variable width ResNets can be obtained by semi-discretizing via time-dependent
mesh.
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Switched systems: Changing widths over layers as switched systems over time:

x(t) = fo1)(x(t), u(t))
given M vector fields fi,. .., fyy and switching signal p: [0, T] — {1,..., M};

Quasi-turnpike strategy:
#1 increase the dimension to the "optimal system" f;x,
#2 use the stabilization/turnpike for fixed width

The optimal system fjx? — optimal with respect to cost.
What are the switching times? How many?
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Outlook

Open problems..
® Asymptotics remain to be proven when P : RY — R™ is optimizable variable
® Proof of turnpike for functional integrating £(x(t)) over [0, T]
® Statistical complexity bounds for asymptotic limits?

Extensive bibliography can be found in

LARGE-TIME ASYMPTOTICS IN DEEP LEARNING
CARLOS ESTEVE, BORJAN GESHKOVSKI, DARIO PIGHIN, AND ENRIQUE ZUAZUA

ABSTRACT. It is by now well-known that practical deep supervised learning may
roughly be cast as an optimal control problem for a specific discrete-time, nonlinear
dynamical system called an artificial neural network. In this work, we consider the

https://arxiv.org/abs/2008.02491

Stability of norms Decay of training error
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Thank you for your attention!

Collaborators:

® C. Esteve (UAM/Deusto), D. Pighin (PhD @ UAM, 2020), E. Zuazua (FAU/
Deusto/UAM).

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 765579.

e Conflex

www.conflex.org

e
ta

R — —
- [ A 1 ] ]
Nxander > === = = FRIEDRICH-ALEXANDER
== e =m == UNIVERSITAT
von Humboldt == = wm wmmm= o) ANGEN-NURNBERG

Stiftung/Foundation DYNAMIC CONTROL

41/43



Supervised learning Empirical risk minimization Augmented empirical risk minimization Extensions

O lolololololololeleloolele] 00000000000 (o] leole)
0000000000

['—regularization

Theorem (Esteve, G., Pighin, Zuazua, '20): Fix M > 0 and assume {& = 0} # @.
Suppose (nODE3) is controllable. Consider

-
inf [ e(e)dt + Alulliao, )
uel'(0,TR%) Jo
esssup||u|| <M
subject to (nODE3)

Then there exists Ty; > 0 such that for any T > T, any optimal u” and corre-
sponding state x', unique solution to (nODEy), satisfy

Ex" (£)) =0, forall te[T*, T]
and

ul(B)|| = M, fora.e. t € (0, 77)

ul ()|l = o, forae. te (T*, T).

forsome 0 < T* < Tpy.

-~ I
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Controllability

Theorem (Esteve et al. '20): Let T > 0 and assume that N < d. Fix x! € R%
and assume that o € C1(R) is such that

{0 o) om0 (38 e o0 (3] |

is a system of linearly independent vectors in RY.
There exists r > 0 such that for any x? € R% satisfying ||x® — x!|| < r, there exists

weights w € L*°(0, T; Rdz) s.t. the solution x to

x(t) = diag(w(t))o(x(t)) in (0, T)
{X(O) =x’,
satisfies
x(T) = x',
and the estimate -
”W”LC’O(O,T;Rdz) = T Ix° — x|,

holds for some C > 0 independent of T.



