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EXISTENCE AND COST OF BOUNDARY CONTROLS FOR A

DEGENERATE/SINGULAR PARABOLIC EQUATION

U. BICCARI, V. HERNÁNDEZ-SANTAMARÍA, AND J. VANCOSTENOBLE

Abstract. In this paper, we consider the following degenerate/singular parabolic equation

ut − (xαux)x −
µ

x2−α
u = 0, x ∈ (0, 1), t ∈ (0, T ),

where 0 ≤ α < 1 and µ ≤ (1− α)2/4 are two real parameters.
We prove the boundary null controllability by means of a H1(0, T ) control acting either at x = 1 or at

the point of degeneracy and singularity x = 0. Besides we give sharp estimates of the cost of controllability
in both cases in terms of the parameters α and µ. The proofs are based on the classical moment method by
Fattorini and Russell and on recent results on biorthogonal sequences.

1. Introduction and main results

The aim of this paper is to prove boundary null controllability for some degenerate/singular parabolic
equation in 1−D and establish sharp estimates of the control cost. More precisely, we focus on the following
degenerate/singular operator:

Pα,µu := ut − (xαux)x − µ

x2−α
u, x ∈ (0, 1).

Observe that, when µ = 0, this operator is purely degenerate:

Pαu := Pα,0u = ut − (xαux)x, x ∈ (0, 1),

whereas, when α = 0, it becomes purely singular with a singularity that takes the form of an inverse square
potential:

Pµu := P0,µu = ut − uxx −
µ

x2
u, x ∈ (0, 1).

Null controllability properties by means of a locally distributed control for such operators have been
investigated in various papers. We refer the reader to the following pioneering contributions:

• Concerning the degenerate operator Pα, the first complete result was obtained in [5] and shows
that null controllability holds true if and only if 0 ≤ α < 2. One distinguishes here the two cases
0 < α < 1 and 1 ≤ α < 2 for well-posedness reasons: in the natural functional setting associated
to the weakly degenerate operator, that is when 0 < α < 1, the trace at x = 0 exists. So one can
consider a Dirichlet condition at x = 0. On the contrary, the trace does not exist when α ≥ 1. Here
the Dirichlet boundary condition needs to be changed by some Neumann-kind one. We also refer to
[1, 4, 6, 21] for various related results.

• Concerning the inverse square singular operator Pµ, the first study was made in [27] and comple-
mented in [11]. In these references, it was shown that null controllability holds true if and only if
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µ ≤ µ⋆ where µ⋆ = 1/4 is the constant appearing in the well-known Hardy inequality

1

4

∫ 1

0

z2

x2
dx ≤

∫ 1

0

z2x dx.

Also here one distinguishes the two cases µ < µ⋆ and µ = µ⋆ again for well-posedness reasons:
the natural functional space in the critical case µ = µ⋆ slighly differs from the one in the general
sub-critical case. Let us refer to [2, 10] for other similar situations.

• Finally, the mixed degenerate/singular operator Pα,µ was studied in [26]. Null controllability here
holds true if and only if

0 ≤ α < 2 and µ ≤ µ(α)

where

µ(α) :=
(1− α)2

4
is the constant appearing in the generalized Hardy inequality

(1− α)2

4

∫ 1

0

z2

x2−α
dx ≤

∫ 1

0

xαz2x dx. (1.1)

See also [14, 17] for other works on this theme.

Dealing with locally distributed controls, all these mentioned contributions are mainly based on a Carle-
man approach, suitably adapted for taking into account the degeneracy/singularity in the equation.

In the present paper, we turn to the case of a boundary control. To our knowledge, the question
has never been studied for the degenerate/singular operator Pα,µ. However, some recent works studied this
problem for the purely degenerate operator Pα and next for the purely singular one Pµ. In more detail:

• In the case of Pα, the first result of boundary controllability was obtained in [15] for a control
acting at x = 0 and in the case of a weak degeneracy 0 ≤ α < 1. It has been complemented in [7]
where sharp estimates of cost of the control have been obtained. Next, in [9], the case of a strong
degeneracy (1 ≤ α < 2) with a control acting at x = 1 has been studied, analyzing again both the
existence and the cost of the control.

• In the case of Pµ, the boundary controllability from x = 1 has been studied in [22] whereas the case
of a control at x = 0 is treated in [3].

When addressing the boundary controlability problem, the approach by Carleman estimates presents some
difficulties. Indeed, the specific weight functions introduced in [5, 26, 27] to deal with the degeneracy and/or
the singularity do not provide suitable boundary terms. For this reson, the approach of the aforementioned
papers is based on decomposition in series and the well-known moment method. This is the methodology
that we will employ also in the present work.

The rest of the paper is organized as follows: in Section 2, we formultate precisely the problems we are
going to study and we present our main theorems. In Section 3, we introduce some preliminary results on
the spectral properties of the operator Pα,µ which will then be at the basis of our proofs. Moreover, we
briefly describe the main procedure of the moment method. Section 4 is devoted to the well-posedness of
our problems. In Section 5 and 6, we present the proof of our main results, Theorem 2.1 and 2.2. Finally,
in Section 7 we give some conclusive remarks and open problems.

2. Problem formulation and main results

2.1. Description of the controllability problem. Let us describe more precisely the controllability
problems we are interested in. First of all, we focus in this work on the case of a weak degeneracy, that is,
0 ≤ α < 1. The case of a strong degeneracy (1 ≤ α < 2) requires a change of boundary condition and it will
be treated in a future work. So throughout the paper, we assume that the parameters α and µ satisfy the
following assumption:

0 ≤ α < 1 and µ ≤ µ(α) =
(1− α)2

4
. (2.1)

Moreover we will consider boundary controls acting either at x = 1 or at the degeneracy/singularity point
x = 0.
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2.1.1. Control acting away from the degenerate/singular point. We will first study the case of a boundary
control acting at x = 1 (that is, away from the degenerate and singular point): let u0 ∈ L2(0, 1), T > 0 and
consider 





ut − (xαux)x − µ

x2−α
u = 0, (x, t) ∈ (0, 1)× (0, T ) := Q

u(0, t) = 0, t ∈ (0, T )

u(1, t) = H(t), t ∈ (0, T )

u(x, 0) = u0(x), x ∈ (0, 1).

(2.2)

Here H represents some control term that aims to steer the solution to zero at time T . Our first goal is to
establish the existence of such control (which could in this case be deduced from the result of controllability
by a locally distributed control via the method of extension of the domain). Moreover, in this work we are
also interested in providing sharp estimates of the cost of such control, in dependence of the parameters α
and µ entering in our problem.

2.1.2. Control acting at the degenerate/singular point. Next we will turn to the case of a control acting at
x = 0 (that is on the point of degeneracy and singularity). In this case, even the existence of a control is
new since it cannot be deduced from the result of controllability by a locally distributed control. Moreover,
as previously, we also aim at estimating precisely the cost of the control. The problem we consider here is:





ut − (xαux)x − µ

x2−α
u = 0, (x, t) ∈ Q

(x−γu)(0, t) = H(t), t ∈ (0, T )

u(1, t) = 0, t ∈ (0, T )

u(x, 0) = u0(x), x ∈ (0, 1).

(2.3)

Due to the presence of the singularity at x = 0, it is not possible to impose a standard non homogeneous
Dirichlet boundary condition. For this reason, as in [3], we use the above weighted Dirichlet condition where
the coefficient γ is defined by

γ = γ(α, µ) :=
1− α

2
− 1

2

√
(1 − α)2 − 4µ =

√
µ(α) −

√
µ(α)− µ. (2.4)

Notice that we have

γ(α, 0) = 0 and γ(0, µ) =
1

2

(
1−

√
1− 4µ

)
,

consistently with [3, 7].

2.2. Main results. We present here the main results of the paper. To this end, we firs need to introduce
the following notion of controllability cost.

For any T > 0, 0 ≤ α < 1, µ ≤ µ(α) and any initial datum u0 ∈ L2(0, 1), we introduce the set of
admissible controls:

Uad(α, µ, T, u0) :=
{
H ∈ H1(0, T )

∣∣∣ u(H)(T ) = 0
}
,

where u(H) denotes the solution of (2.2) or of (2.3) corresponding to the control H . Then we consider the
controllability cost for any u0 ∈ L2(0, 1)

CH1

(α, µ, T, u0) := inf
H∈Uad(α,µ,T,u0)

‖H‖H1(0,T ) ,

which is the minimal energy needed to drive the initial datum u0 to zero. Finally, we define the global
notion of controllability cost:

CH1

bd−ctr(α, µ, T ) := sup
‖u0‖L2(0,1)=1

CH1

(α, µ, T, u0).
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2.2.1. Results for a control acting at x = 1. Our first main result, concerning the existence of a control for
equation (2.2), will be the following.

Theorem 2.1. Let 0 ≤ α < 1 and µ ≤ µ(α). Given any T > 0 and u0 ∈ L2(0, 1), the following assertions
hold :

(i) Existence of a control. There exists a control function H ∈ H1(0, T ) such that the solution of
(2.2) satisfies u(x, T ) = 0.

(ii) Upper bound of the cost. There exists a constant Cu > 0, independent of α, µ and T , such that
the cost of null controllability for (2.2) satisfies

CH1

bd−ctr(α, µ, T ) ≤ Cue
Cu
T

[
1 +

√
µ(α) − µ

]
e
−Cu

[

1+
√

µ(α)−µ
]2

T
.

(iii) Lower bound of the cost. There exists a constant Cu > 0, independent of α, µ and T , such that
the cost of null controllability for (2.2) satisfies:

• in the case

ν(α, µ) ∈
[
0,

1

2

]
, that is, µ ∈

[ α
16

(3α− 4), µ(α)
]
,

then

Cctr−bd ≥ Cue
Cu
T e

−Cu

[

1+
√

µ(α)−µ
]2

T
;

• in the case

ν(α, µ) ∈
[
1

2
,+∞

)
, that is, µ ∈

(
−∞,

α

16
(3α− 4)

]
,

then

Cctr−bd ≥ Cu e
Cu
T e

−Cu

[

1+
√

µ(α)−µ
]2

T
e
−Cu

[√
µ(α)−µ

]4/3(

ln
[√

µ(α)−µ
]

+ln 1
T

)

.

The proof of Theorem 2.1 will be given in Section 5.

2.2.2. Results for a control acting at x = 0. The second main result of our work concerns the existence of a
control for equation (2.3), and it reads as follows.

Theorem 2.2. Let 0 ≤ α < 1 and µ < µ(α). Given any T > 0 and u0 ∈ L2(0, 1), the following assertions
hold:

(i) Existence of a control. There exists a control function H ∈ H1(0, T ) such that the solution of
(2.3) satisfies u(x, T ) = 0.

(ii) Upper bound of the cost. There exists a constant Cu > 0, independent of α, µ and T , such that
the cost of null controllability for (2.3) satisfies

Cctr−bd ≤ Cu
Γ(1 + ν(α, µ))√
µ(α) +

√
µ(α)− µ

e
Cu
T

[
1 +

√
µ(α)− µ

]
e
−Cu

(

1+
√

µ(α)−µ
)2

T
.

(iii) Lower bound of the cost. There exists a constant Cu > 0, independent of α, µ and T , such that
the cost of null controllability for (2.3) satisfies:

• in the case

ν(α, µ) ∈
[
0,

1

2

]
, that is, µ ∈

[ α
16

(3α− 4), µ(α)
]
,

then

Cctr−bd ≥ Cu√
µ(α) +

√
µ(α) − µ

1

T 4
e−Cu(1−α)2T e

Cu
T ;

• in the case

ν(α, µ) ∈
[
1

2
,+∞

)
, that is, µ ∈

(
−∞,

α

16
(3α− 4)

]
,
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then

Cctr−bd ≥ Cu√
µ(α) +

√
µ(α)− µ

e
Cu
T e

−Cu

[

1+
√

µ(α)−µ
]2

T
e
−Cu

[√
µ(α)−µ

]4/3(

ln
[√

µ(α)−µ
]

+ln 1
T

)

.

The proof of Theorem 2.2 will be given in Section 6.

3. Preliminary results

The strategy for proving Theorems 2.1 and 2.2 is based on the moment method (see [12, 13]) and requires
the study of the associated Sturm-Liouville problem: one needs the expressions of the eigenvalues and
eigenfunctions together with suitable estimates on the eigenvalues. We summarize here all these preliminary
results that are useful to transform the controllability problems into moment problems and solve these
questions.

3.1. Spectral properties of the operator Pα,µ. In order to transform the question of null controllability
into a moment problem, we first study the eigenvalue problem associated to the degenerate/singular operator
Pα,µ: {

Pα,µφ = −(xαφ′)′(x) − µ

x2−α
φ(x) = λφ(x), x ∈ (0, 1)

φ(0) = 0 = φ(1).
(3.1)

We prove:

Proposition 3.1. Assume 0 ≤ α < 1 and µ ≤ µ(α) and define

ν(α, µ) :=
2

2− α

√(
1− α

2

)2

− µ =
2

2− α

√
µ(α) − µ. (3.2)

For any ν ≥ 0, we denote by Jν the Bessel function of first kind of order ν and we denote

0 < jν,1 < jν,2 < · · · < jν,k < · · · → +∞ as k → +∞
the sequence of positive zeros of Jν . Then the admissible eigenvalues λ for problem (3.1) are

∀k ≥ 1, λα,µ,k =

(
2− α

2

)2

(jν(α,µ),k)
2 (3.3)

and the corresponding (normalized) eigenfunctions are

∀k ≥ 1, Φα,µ,k(x) =

√
2− α

|J ′
ν(α,µ)(jν(α,µ),k)|

x
1−α

2 Jν(α,µ)

(
jν(α,µ),kx

2−α
2

)
.

Moreover the family (Φα,µ,k)k≥1 forms an orthonormal basis of L2(0, 1).

Proof. Let us first prove that that any admissible eigenvalue λ satisfies λ > 0. Let φ be an eigenfunction.
Multiplying the equation by φ and integrating by parts over (0, 1), we get

∫ 1

0

(
xαφ2x − µ

x2−α
φ2
)
dx = λ

∫ 1

0

φ2 dx.

Using µ ≤ µ(α) and the generalized Hardy inequality (1.1), we have

λ

∫ 1

0

φ2 dx ≥
∫ 1

0

(
xαφ2x − µ(α)

x2−α
φ2
)
dx ≥ 0.

It follows that λ ≥ 0 since φ 6≡ 0. Assume now that λ = 0. Then
∫ 1

0

(
xαφ2x − µ

x2−α
φ2
)
dx = λ

∫ 1

0

φ2 dx = 0.

This implies that φ ≡ 0 since the left hand side of the above relation defines a norm on H1,µ
α,0(0, 1). (It

is a consequence of (1.1) when µ < µ(α) and of [26, Theorem 2.2] when µ = µ(α)). Since φ 6≡ 0, it follows
that λ > 0.
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In view of the above discussion, in what follows we will always assume λ > 0. Now, using the changes of
variables

φ(x) = x
1−α

2 ψ

(
2

2− α

√
λx

2−α
2

)
and y =

2

2− α

√
λx

2−α
2 ,

one can easily see that φ satisfies (3.1) if and only if ψ is solution of




y2ψ′′(y) + yψ′(y) +
(
y2 − ν(α, µ)2

)
ψ(y) = 0, y ∈

(
0,

2
√
λ

2− α

)

ψ(0) = 0 = ψ

(
2
√
λ

2− α

)
.

Hence ψ is a solution of the Bessel equation of order ν(α, µ). A fundamental system of solutions of the
above Bessel equation is given by {Jν(α,µ), Yν(α,µ)}, where Jν(α,µ) and Yν(α,µ) are the Bessel’s functions of
order ν(α, µ), respectively of the first kind and of second kind. So Ψ takes the form:

∀y ∈
(
0,

2
√
λ

2− α

)
, Ψ(y) = CJν(α,µ)(y) + C′Yν(α,µ)(y),

for some C, C′ ∈ R. It is known that Jν(α,µ)(0) = 0 and Yν(α,µ)(0) = −∞ (see [19, sections 5.3 and 5.4]). In
order to satisfy the boundary condition at x = 0, it follows that C′ = 0. Thus

∀y ∈
(
0,

2
√
λ

2− α

)
, Ψ(y) = CJν(α,µ)(y),

with C 6= 0. Then the other boundary condition implies that

Jν(α,µ)

(
2
√
λ

2− α

)
= 0.

So one has

2
√
λ

2− α
= jν(α,µ),k,

for some k ∈ N
⋆. Therefore the set of admissible eigenvalues is given by

λν(α,µ),k =

(
2− α

2

)2

j2ν(α,µ),k, k ∈ N
∗.

As for the eigenfunctions, they take the form

∀k ≥ 1, Φα,µ,k(x) = Ckx
1−α

2 Jν(α,µ)

(
jν(α,µ),kx

2−α
2

)
.

It remains to show that (Φk)k≥1 forms an orthogonal family in L2(0, 1) and choose Ck so that it becomes
normalized. For any n,m ≥ 1, let us compute

∫ 1

0

Φν(α,µ),n(x)Φν(α,µ),m(x) dx

= CnCm
∫ 1

0

x1−αJν(α,µ)

(
jν(α,µ),nx

2−α
2

)
Jν(α,µ)

(
jν(α,µ),mx

2−α
2

)
dx

=
2CnCm
2− α

∫ 1

0

yJν(α,µ)
(
jν(α,µ),ny

)
Jν(α,µ)

(
jν(α,µ),my

)
dx

=
CnCm
2− α

δnm[Jν(α,µ)+1(jν(α,µ),n)]
2,

where we used the orthogonality property of Bessel’s functions (see [19, section 5.14]). Moreover, Bessel’s
functions satisfy the identity (see [29, p. 45, equation (4)]):

xJ ′
ν(x) − νJν(x) = −xJν+1(x),

6



yielding Jν+1(jν,n) = −J ′
ν(jν,n). It follows that

∫ 1

0

Φν(α,µ),n(x)Φν(α,µ),m(x) dx =
CnCm
2− α

δnm[J ′
ν(α,µ)(jν(α,µ),n)]

2.

Finally, choosing

Ck =

√
2− α

|J ′
ν(α,µ)(jν(α,µ),k)|

,

the family (Φk)k≥1 is orthonormal in L2(0, 1). �

Next we give some estimates on the eigenvalues that will be useful in the analysis of the problem. Referring
to [29, Section 15.53], we can give the following asymptotic expansion of the zeros of the Bessel function Jν ,
for any fixed ν ≥ 0:

jν,k =

(
k +

ν

2
− 1

4

)
π − 4ν2 − 1

8
(
k + ν

2 − 1
4

)
π
+O

(
1

k3

)
, as k → +∞.

Moreover, in what follows we will also need the following bounds on jν,k, which are provided in [20,
Lemma 1]





∀ν ∈
[
0,

1

2

]
, ∀k ≥ 1, π

(
k +

ν

2
− 1

4

)
≤ jν,k ≤ π

(
k +

ν

4
− 1

8

)
,

∀ν ∈
[
1

2
,+∞

)
, ∀k ≥ 1, π

(
k +

ν

4
− 1

8

)
≤ jν,k ≤ π

(
k +

ν

2
− 1

4

)
.

(3.4)

The inequalities above become exact when ν = 1/2 (which corresponds, according to (3.2), to α = µ = 0).
We also recall the following result, whose proof is classical and can be found in [18, Proposition 7.8].

Lemma 3.1. Let (jν,k)k≥1 be the sequence of positive zeros of the Bessel function Jν . Then the following
holds:

• The difference sequence (jν,k+1 − jν,k)k converges to π as k → +∞.
• The sequence (jν,k+1 − jν,k)k is strictly decreasing if |ν| > 1/2, strictly increasing if |ν| < 1/2, and
constant if |ν| = 1/2.

In addition, using the bounds on the zeros of Bessel functions that we just presented, we can provide
upper and lower bounds, uniform with respect to k, for the difference

√
λα,µ,k+1 −

√
λα,µ,k between the

square roots of two successive eigenvalues of our original problem. These bounds will be crucial in the proof
of the controllability result and in the estimation of the controllability cost. In more detail, we have the
following result.

Lemma 3.2. We have the following bounds for the difference
√
λα,µ,k+1 −

√
λα,µ,k:

(i) When ν(α, µ) ∈
[
0, 12
)
that is when µ ∈

( α
16

(3α− 4), µ(α)
]
, then

∀k ≥ 1,
7π

16
(2− α) ≤

√
λα,µ,k+1 −

√
λα,µ,k ≤ (2 − α)

2
π. (3.5)

(ii) When ν(α, µ) ∈
[
1
2 ,+∞

)
that is when µ ∈

(
−∞,

α

16
(3α− 4)

]
, then

∀k ≥ 1,
π

2
(2− α) ≤

√
λα,µ,k+1 −

√
λα,µ,k ≤ (2− α)

2

(
jν(α,µ),2 − jν(α,µ),1

)
. (3.6)

Proof. Let us start with ν(α, µ) ∈ [0, 12 ]. Concerning the lower bound, employing the estimates (3.4) we can
easily obtain

√
λα,µ,k+1 −

√
λα,µ,k =

2− α

2

(
jν(α,µ),k+1 − jν(α,µ),k

)
≥ (2− α)π

2

(
ν(α, µ)

4
+

7

8

)
≥ 7π

16
(2− α),

7



since ν(α, µ) ≥ 0. Concerning the upper bound, thanks to Lemma 3.1 we immediately have that jν(α,µ),k+1−
jν(α,µ),k < π, which clearly implies

√
λα,µ,k+1 −

√
λα,µ,k ≤ π

2
(2 − α).

For ν(α, µ) ∈ [ 12 ,+∞), instead, thanks again to Lemma 3.1 we have that jν(α,µ),k+1− jν(α,µ),k > π, which
clearly implies

√
λα,µ,k+1 −

√
λα,µ,k ≥ π

2
(2 − α).

Finally, the upper bound is again a consequence of Lemma 3.1:

√
λα,µ,k+1 −

√
λα,µ,k =

2− α

2

(
jν(α,µ),k+1 − jν(α,µ),k

)
≤ 2− α

2

(
jν(α,µ),2 − jν(α,µ),1

)
,

since the sequence
(
jν(α,µ),k+1 − jν(α,µ),k

)
k
is nonincreasing in that case. Observe that it is the best upper

bound (valid for any k ≥ 1) that one can obtain here. �

Notice that, using the fact that 0 ≤ α < 1, one can deduce the following estimates that are also uniform
with respect to α and µ :

• when ν(α, µ) ∈
[
0, 12
)
,

∀k ≥ 1,
7π

16
≤
√
λα,µ,k+1 −

√
λα,µ,k ≤ π; (3.7)

• when ν(α, µ) ∈
[
1
2 ,+∞

)
,

∀k ≥ 1,
π

2
≤
√
λα,µ,k+1 −

√
λα,µ,k. (3.8)

On the other hand, let us observe that in the case ν(α, µ) ∈
[
1
2 ,+∞

)
, the upper estimate given in Lemma

3.2 is not satisfactory. Indeed, one can quote the following inequality from [23]:

∀ν > 0, ∀n ≥ 1, ν − an
21/3

ν1/3 < jν,n < ν − an
21/3

ν1/3 +
3

20
a2n

21/3

ν1/3
,

where an is the n-th negative zero of the Airy function. It follows that there exists a > 0 such that

jν,2 − jν,1 ∼ a ν1/3 as ν → +∞.

Consequently, for any α ∈ [0, 1),

jν(α,µ),2 − jν(α,µ),1 ∼ aν(α, µ)1/3 → +∞ as µ→ −∞. (3.9)

Moreover, this upper estimate being the best possible one valid for any k ≥ 1 (see the proof of Lemma
3.2), it is of course not possible to improve it.

Therefore, in order to get sharp estimates of the cost of controllability, it will be important to provide
some better upper estimates. To this end, we will use the following complementary asymptotic estimates
that is only valid for k large enough but that has the advantage of being uniform with respect to α and µ:

Lemma 3.3. When ν(α, µ) ∈
[
1
2 ,+∞

)
, for any k > ν(α, µ), we have
√
λα,µ,k+1 −

√
λα,µ,k ≤ 2π.

Proof. It directly follows from the definition of λα,µ,k and Lemma 5.1 in [9] that says that the zeros the
Bessel functions satisfy

∀ν ≥ 1

2
, ∀k > ν, jν,k+1 − jν,k ≤ 2π.

�

4. Well-posedness of the controllability problems

This section deals with the well-posedness of the models we are considering. To this end, let us first recall
the functional framework associated to the purely degenerate operator Pα (see for instance [5]).
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4.1. Functional framework. For all 0 ≤ α < 1, we set

H1
α(0, 1) :=

{
u ∈ L2(0, 1) ∩H1

loc((0, 1])
∣∣∣ xα/2ux ∈ L2(0, 1)

}
.

Obviously, for any u ∈ H1
α(0, 1), the trace at x = 1 exists. Moreover, in the case 0 ≤ α < 1 (which is

the one considered in this paper), it can be proved that the trace at x = 0 also makes sense. This allows to
introduce the space

H1
α,0(0, 1) :=

{
u ∈ H1

α(0, 1)
∣∣∣ u(0) = 0 = u(1)

}
.

Next we introduce the functional setting associated to the degenerate/singular operator Pα,µ (see [26]).
For any µ ≤ µ(α), we define

H1,µ
α (0, 1) :=

{
u ∈ L2(0, 1) ∩H1

loc((0, 1])

∣∣∣∣
∫ 1

0

(
xαu2x − µ

x2−α
u2
)
dx < +∞

}

and

H1,µ
α,0(0, 1) :=

{
u ∈ H1,µ

α (0, 1)
∣∣∣ u(0) = 0 = u(1)

}
.

In the case of a sub-critical parameter µ < µ(α), thanks to the generalized Hardy inequality (1.1), it

is easy to see that H1,µ
α,0(0, 1) = H1

α,0(0, 1). On the contrary, for the critical value µ = µ(α), the space is

enlarged (see [28] for this observation in the case α = 0):

H1
α,0(0, 1) ⊂6= H

1,µ(α)
α,0 (0, 1).

Next we define

H2,µ
α (0, 1) :=

{
u ∈ H1,µ

α (0, 1) ∩H2
loc((0, 1])

∣∣∣ (xαux)x +
µ

x2−α
u ∈ L2(0, 1)

}
.

Finally, the domain of the operator Pα,µ is given by

D(Pα,µ) := H2,µ
α (0, 1) ∩H1,µ

α,0(0, 1).

4.2. Homogeneous boundary conditions and a source term. Let us first consider the system with
homogeneous boundary conditions and a source term





wt − (xαwx)x − µ

x2−α
w = f(x, t), (x, t) ∈ Q

w(0, t) = 0, t ∈ (0, T )

w(1, t) = 0, t ∈ (0, T )

w(x, 0) = w0(x), x ∈ (0, 1).

(4.1)

Under the assumption (2.1) and for any w0 ∈ L2(0, 1) and f ∈ L2((0, 1) × (0, T )), problem (4.1) is
well-posed (see [26]) and we state the following definitions:

Definition 4.1. We have the following notions of solution:

a) Given w0 ∈ L2(0, 1) and f ∈ L2((0, 1)× (0, T )), one defines the mild solution of (4.1)

w ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1,µ
α,0(0, 1))

as the one given by the variation formula:

w(x, t) = etPα,µw0 +

∫ t

0

e(t−s)Pα,µf(x, s)ds.

b) We say that a function

w ∈ C0([0, T ];H1,µ
α,0(0, 1)) ∩H1(0, T ;L2(0, 1)) ∩ L2(0, T ;D(Pα,µ))

is a strict solution of (4.1) if it satisfies the equation a.e. in (0, 1) × (0, T ) and the boundary and
initial conditions for all t ∈ [0, T ] and x ∈ [0, 1].

Notice that, if w0 ∈ H1,µ
α,0(0, 1), then the mild solution of (4.1) is also the unique strict solution.
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4.3. Non homogeneous boundary condition at x = 1. Next we turn to the boundary value problem
(2.2). To define the solution of (2.2), we transform it into a problem with homogeneous boundary conditions
and a source term. Let us introduce

∀x ∈ [0, 1], p(x) := xq where q :=
1− α

2
+
√
µ(α)− µ.

Observe that p(0) = 0, p(1) = 1 and

(xαp′)′(x) +
µ

x2−α
p(x) = 0.

Formally, if u is a solution of (2.2), then the function defined by

v(x, t) = u(x, t)− p(x)

p(1)
H(t) = u(x, t)− xqH(t) (4.2)

is solution of 



vt − (xαvx)x − µ

x2−α
v = −p(x)

p(1)
H ′(t), (x, t) ∈ Q

v(0, t) = 0, t ∈ (0, T )

v(1, t) = 0, t ∈ (0, T )

v(x, 0) = u0(x) −
p(x)

p(1)
H(0), x ∈ (0, 1).

(4.3)

Reciprocally, given h ∈ L2(0, T ), consider the solution of




vt − (xαvx)x − µ

x2−α
v = −p(x)

p(1)
h(t), (x, t) ∈ Q

v(0, t) = 0, t ∈ (0, T )

v(1, t) = 0, t ∈ (0, T )

v(x, 0) = v0(x), x ∈ (0, 1).

Then the function u defined by

u(x, t) = v(x, t) +
p(x)

p(1)

∫ t

0

h(τ)dτ

satisfies 



ut − (xαux)x − µ

x2−α
u = 0, (x, t) ∈ Q

u(0, t) = 0, t ∈ (0, T )

u(1, t) =

∫ t

0

h(τ)dτ, t ∈ (0, T )

u(x, 0) = v0(x), x ∈ (0, 1).

Let now H be given in H1(0, T ). The results of section 4.2 apply in particular to problem (4.1) when one
chooses

f(x, t) = −p(x)
p(1)

H ′(t) and v0(x) = u0(x)−
p(x)

p(1)
H(0). (4.4)

This allows us to define in a suitable way the solution of (2.2):

Definition 4.2. We have the following notions of solution:

a) We say that u ∈ C0([0, T ];L2(0, 1))∩L2(0, T ;H1,µ
α (0, 1)) is the mild solution of (2.2) if v defined by

(4.2) and (4.4) is the mild solution of (4.3).
b) We say that u ∈ C0([0, T ];H1,µ

α (0, 1)) ∩H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2,µ
α (0, 1)) is the strict solution

of (2.2) if v defined by (4.2) and (4.4) is the strict solution of (4.3).

We deduce

Proposition 4.1. Assume that 0 ≤ α < 1 and µ ≤ µ(α).

a) Given u0 ∈ L2(0, 1) and H ∈ H1(0, T ), problem (2.2) admits a unique mild solution.
10



b) Given u0 ∈ H1,µ
α (0, 1) such that u0(0) = 0 and H ∈ H1(0, T ) such that u0(1) = H(0), problem (2.2)

admits a unique strict solution. In particular, this holds true when u0 ∈ H1,µ
α,0(0, 1) and H ∈ H1(0, T )

is such that H(0) = 0.

The proof of Proposition 4.1 follows immediately noticing that

H̃(x, t) :=
p(x)

p(1)
H(t)

satisfies

H̃ ∈ C0([0, T ];H1,µ
α (0, 1)) ∩H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2,µ

α (0, 1)).

4.4. Non homogeneous boundary condition at x = 0. Finally we study to the boundary value problem
(2.3). To define its solution, as we did for (2.2) before, we transform it into a problem with homogeneous
boundary conditions and a source term. Let us introduce

∀x ∈ [0, 1], p(x) := 1− xq where q := 2
√
µ(α) − µ. (4.5)

Observe that q = 0 in the critical case µ = µ(α). (See also Remark 4.1 later). So we assume here that
µ < µ(α). Then notice that p(0) = 1, p(1) = 0. Moreover, one can readily check that

[
xα(xγp)′

]′
(x) +

µ

x2−α−γ
p(x) = 0, (4.6)

where γ is the parameter introduced in (2.4). Formally, if u is a solution of (2.3), then the function defined
by

v(x, t) = u(x, t)− xγ
p(x)

p(0)
H(t) = u(x, t)− xγ(1− xq)H(t) (4.7)

is solution of 




vt − (xαvx)x − µ

x2−α
v = F (x, t), (x, t) ∈ Q

v(0, t) = 0, t ∈ (0, T )

v(1, t) = 0, t ∈ (0, T )

v(x, 0) = v0(x), x ∈ (0, 1),

(4.8)

where we denoted

F (x, t) := −xγ p(x)
p(0)

H ′(t) and v0(x) := u0(x) − xγ
p(x)

p(0)
H(0).

Observe that (2.3) actually implies (x−γv)(0, t) = 0 which, in particular, gives v(0, t) = 0 as written in
(4.8). Indeed, notice that v in (4.7) is given explicitly by

v(x, t) =
∑

k≥1

vk(t)Φk(x),

with

vk(t) := vk,0e
−λkt +

∫ t

0

Fk(s)e
−λk(t−s) ds

vk,0 :=

∫ 1

0

v0(x)Φk(x) dx

Fk(t) =

∫ 1

0

F (x, t)Φk(x) dx.

Then, as x→ 0 we have

x−γv(x, t) =
∑

k≥1

vk(t)x
1−α

2 −γJν

(
jν(α,µ),kx

2−α
2

)
=
∑

k≥1

vk(t)x
√

µ(α)−µJν

(
jν(α,µ),kx

2−α
2

)
→ 0.

In view of that, we get

x−γu(x, t) = x−γv(x, t) +
p(x)

p(0)
H(t) → H(t), as x→ 0.
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Reciprocally, given h ∈ L2(0, T ), consider the solution of





vt − (xαvx)x − µ

x2−α
v = −xγ p(x)

p(0)
h(t), (x, t) ∈ Q

v(0, t) = 0, t ∈ (0, T )

v(1, t) = 0, t ∈ (0, T )

v(x, 0) = v0(x), x ∈ (0, 1).

Then the function u defined by

u(x, t) = v(x, t) + xγ
p(x)

p(0)

∫ t

0

h(τ)dτ

satisfies 




ut − (xαux)x − µ

x2−α
u = 0, (x, t) ∈ Q

(x−γu)(0, t) =

∫ t

0

h(τ)dτ, t ∈ (0, T )

u(1, t) = 0, t ∈ (0, T )

u(x, 0) = v0(x), x ∈ (0, 1).

Let now H be given in H1(0, T ). The results of section 4.2 apply in particular to problem (4.1) when one
chooses

f(x, t) = −xγ p(x)
p(0)

H ′(t) and v0(x) = u0(x)− xγ
p(x)

p(0)
H(0). (4.9)

This allows us to define in a suitable way the solution of (2.3):

Definition 4.3. We have the following notions of solution:

a) We say that u ∈ C0([0, T ];L2(0, 1))∩L2(0, T ;H1,µ
α (0, 1)) is the mild solution of (2.3) if v defined by

(4.7) and (4.9) is the mild solution of (4.8).
b) We say that u ∈ C0([0, T ];H1,µ

α (0, 1)) ∩H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2,µ
α (0, 1)) is the strict solution

of (2.3) if v defined by (4.7) and (4.9) is the strict solution of (4.8).

We deduce

Proposition 4.2. Assume that 0 ≤ α < 1 and µ < µ(α).

a) Given u0 ∈ L2(0, 1) and H ∈ H1(0, T ), problem (2.3) admits a unique mild solution.
b) Given u0 ∈ H1,µ

α (0, 1) and H ∈ H1(0, T ) such that (x−γu0)(0) = H(0) and u0(1) = 0, problem
(2.3) admits a unique strict solution. In particular, this holds true when u0 ∈ H1,µ

α (0, 1) such that
(x−γu0)(0) = u0(1) = 0.

The proof of Proposition 4.1 follows immediately noticing that

H̃(x, t) := xγ
p(x)

p(0)
H(t)

satisfies

H̃ ∈ C0([0, T ];H1,µ
α (0, 1)) ∩H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2,µ

α (0, 1)).

Remark 4.1. As a final remark we observe that, when µ = µ(α), the value of q that we defined in (4.5) is
zero. This means that, in the case of critical potentials, the change of variables introduced for defining the
solution to our problem is the trivial one. Therefore, in what follows, when dealing with (2.3) we shall always
assume µ < µ(α). Notice, however, that this assumption is not a limitation. Indeed, for critical potentials
we do not expect our equation (2.3) to be well posed, at least not with the boundary conditions that we are
imposing. This behavior had already been observed in [3] for purely singular operators (α = 0), and a more
detailed discussion on this point can be found in the Appendix A of that mentioned work.
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5. Proof of Theorem 2.1

This Section is devoted to the proof of our first result Theorem 2.1 on the boundary controllability for
(2.2).

The proof will employ the classical moment method (see [12, 13]). This procedure is based on the explicit
construction of the control H , given in terms of a family (σα,µ,m(t))m≥1 biorthogonal in L2(0, T ) to the
family of real exponential (eλα,µ,n)n≥1, that is

∀m,n ≥ 0,

∫ T

0

σα,µ,m(t)eλα,µ,nt dt = δmn =

{
1 if m = n,

0 if m 6= n.
(5.1)

In order to show the existence of such a sequence, we will use [7, Theorem 2.4], whose proof has been
inspired by the works of Seidman-Avdonin-Ivanov [24] and Tucsnak-Tenenbaum [25]. In this part, it will
be fundamental that the eigenvalues associated to our problem fulfill the gap conditions

∀n ≥ 1,
√
λα,µ,n+1 −

√
λα,µ,n ≥ γmin.

Furthermore, to define properly the control H , we also need to provide some sharp lower bound of the
norm ‖σα,µ,m(t)m≥1‖L2(0,T ), which will be obtained as a consequence of this second spectral estimate

∀n ≥ 1,
√
λα,µ,n+1 −

√
λα,µ,n ≤ γmax. (5.2)

When ν(α, µ) ∈
[
0, 12
]
, (5.2) holds true for some γmax that is independent of α and µ. Here we will use

[7, Theorem 2.5], inspired from Guichal [16].
When ν(α, µ) ∈

[
1
2 ,+∞

)
, (5.2) still holds true but with γmax that tends to +∞ as µ → −∞. So one

could still use [7, Theorem 2.5] but this would not give a sharp estimate. For this reason, we complement
(5.2) by the better asymptotic estimate given in Lemma 3.3. Then we will use [8, Theorem 2.2].

Therefore, according to the above discussion, our proof will be organized into the following steps:

Step 1. Following the classical approach of [12, 13], we first reduce our control problem to a moment
problem.
Step 2. We give a formal solution, using the properties of the spectrum of the operator Pα,µ.
Step 3. We prove the existence of the control, its regularity (in H1(0, T )) and also give an upper
bound of the cost of controllability.
Step 4. We finally derive a lower bound of the cost of controllability.

Let α and µ be given such that 0 ≤ α < 1 and µ ≤ µ(α). For simplicity in the notations, we denote in the
following by Φk (instead of Φα,µ,k) and λk (instead of λα,µ,k) the eigen-elements given by Proposition 3.1,
and by σm (instead of σα,µ,m) the biorthogonal family. Besides, also for simplicity in the notations, we will
denote in a generic way by C all the constants (independent of k, α, µ and T ) that appear in the calculus.
We stress that the value of C may change from line to line.

5.1. Reduction to a moment problem. In this part, we treat the problem with formal computations.
We will present a rigorous justification in a second moment.

Let us start expanding the initial condition u0 ∈ L2(0, 1) in the basis of the eigenfunctions (Φk)k≥1.
Indeed, we know that there exists a sequence ( ρ0k)k≥1 ∈ ℓ2(N∗) such that, for all x ∈ (0, 1),

u0(x) =
∑

k≥1

ρ0kΦk(x), ρ0k :=

∫ 1

0

u0(x)Φk(x) dx, k ≥ 1.

Next, we expand also the solution u to (2.2) as

u(x, t) =
∑

k≥1

βk(t)Φk(x), (x, t) ∈ Q,

with

βk(t) :=

∫ 1

0

u(x, t)Φk(x) dx, k ≥ 1
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and
∑

k≥1

βk(t)
2 < +∞.

Therefore, the controllability condition u(x, T ) = 0 becomes

∀k ≥ 1, βk(T ) = 0. (5.3)

Moreover, we notice that the function vk(x, t) := Φk(x)e
λk(t−T ) solves the adjoint problem





vk,t + (xαvk,x)x +
µ

x2−α
vk = 0, (x, t) ∈ Q

vk(0, t) = vk(1, t) = 0, t ∈ (0, T ).
(5.4)

Combining (2.2) and (5.4) we obtain

0 =

∫

Q

[
vk

(
ut − (xαux)x − µ

x2−α
u
)
+ u

(
vk,t + (xαvk,x)x +

µ

x2−α
vk

) ]
dxdt

=

∫ 1

0

vku
∣∣∣
T

0
dx −

∫ T

0

xαuxvk

∣∣∣
1

0
dt+

∫ T

0

xαvk,xu
∣∣∣
1

0
dt

=

∫ 1

0

vk(x, T )u(x, T ) dx−
∫ 1

0

vk(x, 0)u0(x) dx +

∫ T

0

H(t)vk,x(1, t) dt

=

∫ 1

0

u(x, T )Φk(x) dx− e−λkT

∫ 1

0

u0(x)Φk(x) dx + e−λkTΦ′
k(1)

∫ T

0

H(t)eλkt dt

=βk(T )− ρ0ke
−λkT + e−λkTΦ′

k(1)

∫ T

0

H(t)eλkt dt.

Then, (5.3) yields

∀k ≥ 1, Φ′
k(1)

∫ T

0

H(t)eλkt dt = ρ0k. (5.5)

On the other hand, since we are looking for a solution of the moment problem belonging to H1(0, T ),
instead of (5.5) we would rather be interested in a condition involving the derivative of the function H . This
condition can be obtained integrating by parts in (5.5), as follows

∫ T

0

H(t)eλkt dt =
1

λk
H(t)eλkt

∣∣∣∣
T

0

− 1

λk

∫ T

0

H ′(t)eλkt dt.

Therefore, H ′(t) has to satisfy

∀k ≥ 1, −Φ′
k(1)

λk

∫ T

0

H ′(t)eλkt dt = ρ0k −
Φ′

k(1)

λk

(
H(T )eλkT −H(0)

)
. (5.6)

We will provide a solution to the above problem which satisfies H(0) = H(T ) = 0.

5.2. Formal solution of the moment problem. We exhibit here a formal solution of the moment problem
(5.6).

5.2.1. Formal definition of the control H. Set artificially λ0 := 0, so that we have now a sequence (λk)k≥0.
We assume for the moment that we are able to construct a family (σm)m≥0 of functions σm ∈ L2(0, T ),
which is biorthogonal to the family (eλnt)n≥0. Observe that for n = 0, using λ0 = 0, (5.1) implies

∀m ≥ 1,

∫ T

0

σm(t) dt = 0. (5.7)

Then let us define the function H as follows:

H(t) :=

∫ t

0

K(s) ds, with K(t) := −
∑

k≥1

λk
Φ′

k(1)
ρ0kσk(t). (5.8)
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It is straightforward that, if K ∈ L2(0, T ), then H ∈ H1(0, T ) with H(0) = 0 and H ′(t) = K(t). Moreover
thanks to (5.7) we have, at least formally,

H(T ) = −
∫ T

0

∑

k≥1

λk
Φ′

k(1)
ρ0kσk(s) ds = −

∑

k≥1

λk
Φ′

k(1)
ρ0k

∫ T

0

σk(s) ds = 0.

Finally,

−Φ′
k(1)

λk

∫ T

0

H ′(t)eλkt dt = −Φ′
k(1)

λk

∫ T

0

K(t)eλkt dt =
Φ′

k(1)

λk

∫ T

0




∑

ℓ≥1

λℓ
Φ′

ℓ(1)
ρ0ℓσℓ(t)



 eλkt dt

=
Φ′

k(1)

λk

∑

ℓ≥1

λℓ
Φ′

ℓ(1)
ρ0ℓ

∫ T

0

σℓ(t)e
λkt dt =

Φ′
k(1)

λk

∑

ℓ≥1

λℓ
Φ′

ℓ(1)
ρ0ℓδk,ℓ = ρ0k,

and the moment problem (5.6) is formally satisfied.

5.2.2. If regular, the control H drives the solution from u0 to zero. Let us assume for now that K ∈ L2(0, T )
(and, consequently H introduced in (5.8) belongs to H1(0, T )). We show here that H is able to drive the
solution to (2.2) from the initial state u0 to zero in time T . To this end, let us remind the change of variables

v(x, t) := u(x, t)− p(x)

p(1)
H(t), p(x) := xq, q =

1− α

2
+
√
µ(α) − µ,

that transforms our original equation (2.2) in





vt − (xαvx)x − µ

x2−α
v = −p(x)

p(1)
K(t), (x, t) ∈ Q

v(0, t) = v(1, t) = 0, t ∈ (0, T )

v(x, 0) = u0(x), x ∈ (0, 1)

Now, for a fixed ε > 0 we have

∫ T

ε

∫ 1

0

−p(x)
p(1)

K(t)Φk(x)e
λkt dxdt

=

∫ T

ε

∫ 1

0

(
vt − (xαvx)x − µ

x2−α
v
)
Φk(x)e

λkt dxdt

=

∫ 1

0

vΦke
λkt
∣∣∣
T

ε
dx+

∫ T

ε

∫ 1

0

v
(
−(xαΦ′

k)
′ − µ

x2−α
Φk − λkΦk

)
eλkt dxdt

= eλkT

∫ 1

0

v(x, T )Φk(x) dx − eλkε

∫ 1

0

v(x, ε)Φk(x) dx.

Hence, taking the limit for ε→ 0+ we find

∫

Q

−p(x)
p(1)

K(t)Φk(x)e
λkt dxdt = eλkT

∫ 1

0

v(x, T )Φk(x) dx − ρ0k.

From this last identity and (5.8), it immediately follows

eλkT

∫ 1

0

v(x, T )Φk(x) dx = ρ0k +

(∫ T

0

K(t)eλkt dt

)(∫ 1

0

−p(x)
p(1)

Φk(x) dx

)

= ρ0k −
λk

Φ′
k(1)

ρ0k

∫ 1

0

−p(x)
p(1)

Φk(x) dx.
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Moreover,
∫ 1

0

− p(x)

p(1)
Φk(x) dx

=
1

λk

∫ 1

0

−p(x)
p(1)

λkΦk(x) dx =
1

λk

∫ 1

0

p(x)

p(1)

(
(xαΦ′

k(x))
′ +

µ

x2−α
Φk(x)

)
dx

=
1

λk

p(x)

p(1)
xαΦ′

k(x)

∣∣∣∣
1

0

− 1

λk

∫ 1

0

p′(x)

p(1)
xαΦ′

k(x) dx +
1

λk

∫ 1

0

p(x)

p(1)

µ

x2−α
Φk(x) dx

=
Φ′

k(1)

λk
− 1

λk

p′(x)

p(1)
xαΦk(x)

∣∣∣∣
1

0

+
1

λk

∫ 1

0

[(
xα
p′(x)

p(1)

)′
+ µxα−2 p(x)

p(1)

]
Φk(x) dx

=
Φ′

k(1)

λk
+

1

λkp(1)

∫ 1

0

[
(xαp′(x))

′
+ µxα−2p(x)

]
Φk(x) dx =

Φ′
k(1)

λk
,

since from the definition of p(x) it is straightforward to check that

(xαp′(x))
′
+ µxα−2p(x) = 0.

Hence, we get

eλkT

∫ 1

0

v(x, T )Φk(x) dx = 0,

which of course implies v(x, T ) = 0 and, since H(T ) = 0, we can finally conclude that

u(x, T ) = v(x, T ) +
p(x)

p(1)
H(T ) = 0.

At this stage, in order to prove point (i) of Theorem 2.1, it remains to prove the existence of a suitable
biorthogonal family and to show that K belongs to L2(0, T ). This will be done in the next subsection
together with the obtention of the upper bound of the cost of controllability.

5.3. Existence of the control, H1 regularity and upper bound of the cost of controllability.

5.3.1. Existence of a suitable biorthogonal family. We will use the following result.

Theorem 5.1. (see [7, Theorem 2.4]) Assume that for all k ≥ 0, λk ≥ 0, and that there is some γmin > 0
such that

∀k ≥ 0,
√
λk+1 −

√
λk ≥ γmin.

Then there exists a family (σm)m≥0 which is biorthogonal to the family (eλkt)k≥0 in L2(0, T ). Moreover,
there exists some universal constant Cu independent of T , γmin and m such that, for all m ≥ 0, we have

‖σm‖2L2(0,T ) ≤ Cue−2λmT e
Cu

√
λm

γmin e
Cu

γ2
min

T B⋆(T, γmin), (5.9)

with

B⋆(T, γmin) =
Cu
T
max

{
Tγ2min,

1

Tγ2min

}
. (5.10)

Remark 5.1. [7, Theorem 2.4] is formulated in the following way:

‖σm‖2L2(0,T ) ≤ Cue−2λmT e
Cu

√
λm

γminB(T, γmin),

with

B(T, γmin) =





(
1
T + 1

T 2γ2
min

)
e

Cu
γ2
min

T if T ≤ γ−2
min,

Cuγ2min if T ≥ γ−2
min,

and this is clearly equivalent to (5.9)-(5.10).
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Using (3.7) and (3.8), the eigenvalues of the problem satisfy for all µ ≤ µ(α)

∀k ≥ 1,
√
λk+1 −

√
λk ≥ min

{
7π

16
,
π

2

}
=

7π

16
.

As before, define artificially λ0 := 0. Then, for all µ ≤ µ(α),

√
λ1 −

√
λ0 =

2− α

2
jν(α,µ),1 ≥ 2− α

2
· 3π
4

=
3π

8
(2− α) ≥ 3π

8
,

using the fact that, thanks to (3.4), one can easily prove that jν,1 ≥ 3π/4 for all ν ≥ 0 and next using the
fact that 2− α ≥ 1. Therefore we can apply Theorem 5.1 to the family (eλkt)k≥0 provided that we choose

γmin = min

{
7π

16
,
3π

8

}
=

3π

8
.

We obtain that there exists a family (σm)m≥0 biorthogonal to (eλkt)k≥0 in L2(0, T ), and such that

‖σm‖2L2(0,T ) ≤ Ce−2λmT e
C
√

λm
γmin B̃(T ) ≤ Ce−2λmT eC

√
λmB̃(T ), (5.11)

with

B̃(T ) = max

{
1,

1

T 2

}
e

C

T for all T > 0.

The form of B̃(T ) easily follows from the definition of B(T, γmin)
⋆.

5.3.2. The control f belongs to H1(0, T ). We have to check that the control H defined as in (5.8) belongs
to H1(0, T ). To this end, we are going to prove, instead, that the function K belongs to L2(0, T ). From
(5.8) we have

‖K‖L2(0,T ) =

∥∥∥∥∥∥

∑

k≥1

λk
Φ′

k(1)
ρ0kσk

∥∥∥∥∥∥
L2(0,T )

≤
∑

k≥1

| ρ0k|
∣∣∣∣
λk

Φ′
k(1)

∣∣∣∣ ‖σk‖L2(0,T ) .

Let us compute the value of |Φ′
k(1)|: we recall that

Φk(x) = Ck x
1−α

2 Jν(α,µ)

(
jν(α,µ),kx

2−α
2

)
, with Ck =

√
2− α

|J ′
ν(α,µ)(jν(α,µ),k)|

.

Thus, a direct computation gives

Φ′
k(x) =

1− α

2
Ckx−

1+α
2 Jν(α,µ)

(
jν(α,µ),kx

2−α
2

)
+

2− α

2
Ckjν(α,µ),kx

1−2α
2 J ′

ν(α,µ)

(
jν(α,µ),kx

2−α
2

)
.

Therefore

|Φ′
k(1)| =

∣∣∣∣
1− α

2
CkJν(α,µ)(jν(α,µ),k) +

2− α

2
Ckjν(α,µ),kJ ′

ν(α,µ)(jν(α,µ),k)

∣∣∣∣ =
(2 − α)

3
2

2
jν(α,µ),k.

(5.12)

Consequently, employing (5.12) and the explicit expression of the eigenvalues λk we obtain

∣∣∣∣
λk

Φ′
k(1)

∣∣∣∣ =
(
2−α
2

)2
j2ν(α,µ),k

(2−α)
3
2

2 jν(α,µ),k

=

√
2− α

2
jν(α,µ),k ≤

√
2jν(α,µ),k.

Therefore, we get

‖K‖L2(0,T ) ≤
√
2
∑

k≥1

| ρ0k|jν(α,µ),k ‖σk‖L2(0,T ) ≤
√
2



∑

k≥1

| ρ0k|2



1/2

∑

k≥1

j2ν(α,µ),k ‖σk‖
2
L2(0,T )




1/2

.
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Using the explicit expression of λk, we get j2ν(α,µ),k = 4λk/(2− α)2 ≤ 4λk since α < 1. Hence, using also

the estimate (5.11), we deduce that

‖K‖L2(0,T ) ≤ C ‖u0‖L2(0,1)




∑

k≥1

λke
−2λkT eC

√
λk B̃(T )




1/2

,

which is finite. This implies that K ∈ L2(0, T ). Therefore we have H ∈ H1(0, T ) with of course H(0) = 0.
And the fact that H(T ) = 0 follows from (5.7) with m = 0.

5.3.3. Upper bound of the cost of controllability. As shown before, the function H defined in (5.8) is an
admissible control. It follows that

Cctr−bd ≤ ‖H‖H1(0,T )

‖u0‖L2(0,1)
≤ C‖K‖L2(0,T )

‖u0‖L2(0,1)
.

Hence

Cctr−bd ≤ C
√
B̃(T )

( ∞∑

k=1

λke
−2λkT eC

√
λk

)1/2

.

Then let us write

C
√
λk ≤ λkT +

C′

T
.

One deduces that

Cctr−bd ≤ C
√
B̃(T )

( ∞∑

k=1

λke
−λkT e

C
′

T

)1/2

≤ C
√
B̃(T )e

C

T

( ∞∑

k=1

(2 − α)2

4
(jν(α,µ),k)

2e−
(2−α)2

4 j2ν(α,µ),kT

)1/2

≤ Ce
C

T

( ∞∑

k=1

(jν(α,µ),k)
2e−

(2−α)2

4 j2ν(α,µ),kT

)1/2

.

Next we use the following Lemma proved in [9]:

Lemma 5.1. There is some constant C > 0, independent of ν and of Y , such that :

∀ν ≥ 0, ∀Y > 0,

∞∑

k=1

j2ν,ke
−j2ν,kY ≤ C 1 + ν2

Y 3/2
e−(1+ν2)Y

C .

Applying Lemma 5.1 with Y = (2−α)2

4 T , it follows that

Cctr−bd ≤ Ce C

T
1 + ν(α, µ)

T 3/4
e−

1+ν(α,µ)2

2C
(2−α)2

4 T ≤ Ce C

T [1 + ν(α, µ)]e−C(1+ν(α,µ)2)T

≤ Ce C

T

[
1 +

2

2− α

√
µ(α)− µ

]
e
−C

(

1+ 4
(2−α)2

(µ(α)−µ)
)

T

≤ Ce C

T

[
1 +

√
µ(α)− µ

]
e
−C

(

1+
√

µ(α)−µ
)2

T
.

5.4. Lower bound of the cost of controllability. Let us fix m ≥ 1 and let us choose u0 = Φm. Consider
Hm any control that drives the solution of (2.2) to zero in time T . Then (5.5) reads as

∀k ≥ 1, Φ′
k(1)

∫ T

0

Hm(t)eλkt dt = ρ0k = δmk.

It follows that

∀k ≥ 1,

∫ T

0

(
Φ′

m(1)Hm(t)
)
eλkt dt = δmk.
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In other words, the sequence (Φ′
m(1)Hm)m≥1 is biorthogonal to the set (eλkt)k≥1. At this stage, we will

distinguish the two following cases:

ν(α, µ) ∈
[
0,

1

2

]
that is, µ ∈

[ α
16

(3α− 4), µ(α)
]

and

ν(α, µ) ∈
[
1

2
,+∞

)
that is, µ ∈

(
−∞,

α

16
(3α− 4)

]
.

5.4.1. Lower bound in the case ν(α, µ) ∈ [0, 1/2]. In this first case, we are going to use the following
generalization of Guichal [16], proved in [7]:

Theorem 5.2. ([7, Theorem 2.5]) Assume that λk ≥ 0 for all k ≥ 1 and that there is some 0 < γmin ≤ γmax

such that

∀k ≥ 1, γmin ≤
√
λk+1 −

√
λk ≤ γmax. (5.13)

Then there exists cu > 0 independent of T and m such that any family (σm)m≥1 which is biorthogonal to the
family (eλkt)k≥1 in L2(0, T ) satisfies

‖σm‖2L2(0,T ) ≥ e−2λmT e
1

2γ2
max

T b(T, γmax,m),

with

b(T, γmax,m) =
c2u

C(m, γmax, λ1)2 T

(
1

2γ2
max

T

)2m
1

(4γ2maxT + 1)2
(5.14)

and

C(m, γmax, λ1) = m! 2
m+

[

2
√

λ1
γmax

]

+1
(
m+

[
2
√
λ1

γmax

]
+ 1

)
.

When ν(α, µ) ∈ [0, 12 ], using (3.7), we see that assumption (5.13) is satisfied with

γmin :=
7π

16
, and γmax := π.

So, using Theorem 5.2, we obtain that any family (σm)m≥1 which is biorthogonal to the family (eλkt)k≥1

in L2(0, T ) satisfies:

‖σm‖2L2(0,T ) ≥ e−2λmT e
1

2π2T b(T, γmax,m),

where b(T, γmax,m) is given in (5.14). Let us now apply this inequality for m = 1. It implies

‖σ1‖2L2(0,T ) ≥ e−2λ1T e
1

2π2T b(T, γmax, 1). (5.15)

Next, we observe that, for ν ∈ [0, 12 ] and n = 1, (3.4) gives

3π

4
≤ π

(
3

4
+
ν

2

)
≤ jν,1 ≤ π

(
1 +

1

4

(
ν − 1

2

))
≤ π.

It follows that

9π2

64
≤
(
2− α

2

)2(
3π

4

)2

≤ λ1 ≤
(
2− α

2

)2

π2 ≤ π2

and

λ1 ≤ C(1 + ν(α, µ))2.

In particular, using λ1 ≥ 9π2/64, we obtain that

b(T, γmax, 1) ≥
C

T 3(1 + T )2
.

From (5.15), we deduce

‖σ1‖2L2(0,T ) ≥
C

T 3(1 + T )2
e−2λ1T e

1
2π2T .
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Hence,

‖Φ′
1(1)H1‖2L2(0,T ) ≥

C
T 3(1 + T )2

e−2λ1T e
1

2π2T .

From (5.12), one has

|Φ′
1(1)| =

(2− α)3/2jν(α,µ),1

2
≤

√
2jν(α,µ),1 ≤

√
2π.

So we obtain that

Cctr−bd ≥ C
T 3/2(1 + T )

e−λ1T e
C

T .

Finally, using the fact that λ1 ≤ C(1 + ν(α, µ))2, we get

Cctr−bd ≥ C
T 3/2(1 + T )

e−C(1+ν(α,µ))2T e
C

T ≥ Ce
C
T e−C(1+ν(α,µ))2T .

Since 2− α > 1, we have ν(α, µ) ≤ 2
√
µ(α) − µ. Hence

Cctr−bd ≥ Ce C

T e
−C

[

1+
√

µ(α)−µ
]2

T
,

which gives the result.

5.4.2. Lower bound in the case ν(α, µ) ∈ [1/2,+∞). In this case, one still could apply Theorem 5.2. Indeed,
assumption (5.13) is satisfied with

γmin :=
π

2
, γmax :=

2− α

2
[jν(α,µ),2 − jν(α,µ),1].

Nevertheless, since γmax → +∞ as µ → −∞ (as mentionned in (3.9)), this would not give the best
possible result. On the other hand, from Lemma 3.3, one has

∀k ≥ N∗,
√
λk+1 −

√
λk ≤ γ∗max

with

N∗ := [ν(α, µ)] + 1 and γ∗max := 2π.

In that context, when there is a bad global upper gap γmax, and a good (much smaller) asymptotic upper
gap γ∗max, it is interesting to use the following extension of Theorem 5.2:

Theorem 5.3. ([8, Theorem 2.2]) Assume that λk ≥ 0 for all k ≥ 1 and that there are 0 < γmin ≤ γ∗
max

≤
γmax such that

∀k ≥ 1, γmin ≤
√
λk+1 −

√
λk ≤ γmax,

and

∀k ≥ N∗,
√
λk+1 −

√
λk ≤ γ∗

max
.

Then any family (σm)m≥1 which is biorthogonal to the family (eλkt)k≥1 in L2(0, T ) satisfies

‖σm‖2L2(0,T ) ≥ e−2λmT e
2

T(γ∗
max

)2 b∗(T, γmax, γ
∗
max, N∗, λ1,m)2,

where b∗ is rational in T (and explictly given in [8, Lemma 4.4]).

We are here in position to apply Theorem 5.3. So we obtain that any family (σm)m≥1 which is biorthogonal
to the family (eλkt)k≥1 in L2(0, T ) satisfies

‖σm‖2L2(0,T ) ≥ e−2λmT e
2

4π2T b∗(T, γmax, γ
∗
max, N∗, λ1,m)2,

where, when m ≤ N∗, b∗ (see Lemma 4.4 in [8]) has the following explicit value of

b∗(T, γmax, γ
∗
max, N∗, λ1,m) = C∗

√
1 + Tλ1√

T

(T (γ∗max)
2)K∗+K′

∗
+2

(1 + (T (γ∗max)
2))N∗+K∗+K′

∗
+3
,
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with

K∗ =

[
2
√
λ1 + (N∗ +m)γmax

γ∗max

]
−N∗ + 2,

K ′
∗ =

[
γmax

γ∗max

(N∗ −m)

]
−N∗ + 2,

C∗ =
1

(N∗ +K∗ +K ′
∗ + 3)!

cu(γ
∗
max)

2(N∗−1)

C(+)C(−)
,

and with

C(+) =

(
γmax

γ∗max

)N∗−1

(
N∗ +m+

[
2
√
λ1

γmax

]
+ 1
)
!

(
m+

[
2
√
λ1

γmax

]
+ 1
)
!
([

2
√
λ1+(N∗+m)γmax

γ∗
max

]
+ 1
)
!
(
2m+

[
2
√
λ1

γmax

]
+ 1
)

and

C(−) =

(
γmax

γ∗max

)N∗−1
(m− 1)! (N∗ −m)!(
1 +

[
γmax

γ∗
max

(N∗ −m)
])

!
.

In the above expressions, we take m = 1 and we only need to look at the behavior as µ → −∞ i.e.
ν(α, µ) → +∞. This is possible to study (see [9]) and one obtains

b∗(T, γmax, γ
∗
max, N∗, λ1, 1) ≥ e−Cν(α,µ)4/3(ln ν(α,µ)+ln 1

T )

√
1 + T√
T

.

Consequently,

‖σ1‖2L2(0,T ) ≥ b(T, α, µ, 1)2,

with

b(T, α, µ, 1) := e−λ1T e
1

4π2T

√
1 + T√
T

e−Cν(α,µ)4/3(ln ν(α,µ)+ln 1
T ).

Hence,

‖Φ′
1(1)H1‖L2(0,T ) ≥ b(T, α, µ, 1).

This gives the following lower bound of the cost:

Cctr−bd ≥ 1

|Φ′
1(1)|

b(T, α, µ, 1).

From (3.4), we have jν(α,µ),1 ≤ C(1+ν(α, µ)).We deduce that λ1 ≤ C(1+ν(α, µ))2 and, using also (5.12),
|Φ′

1(1)| ≤ C(1 + ν(α, µ)). So, we get

Cctr−bd ≥ C
1 + ν(α, µ)

e−λ1T e
1

4π2T e−Cν(α,µ)4/3(ln ν(α,µ)+ln 1
T )

√
1 + T√
T

≥ Ce−C(1+ν(α,µ))2T e
1

4π2T e−Cν(α,µ)4/3(ln ν(α,µ)+ln 1
T )

√
1 + T√
T

≥ C e C

T e
−C

[

1+
√

µ(α)−µ
]2

T
e
−C

[√
µ(α)−µ

]4/3(

ln[
√

µ(α)−µ]+ln 1
T

)

.

6. Proof of Theorem 2.2

This Section is devoted to the proof of Theorem 2.2 on the boundary controllability for (2.3). As for the
case of a control acting at x = 1, the proof will be organized into the following steps:

Step 1. The reduction to a moment problem.
Step 2. Formal solution.
Step 3. Existence and regularity of the control and upper bound of the cost.
Step 4. Lower bound of the cost.

Moreover, in what follows we are not going to present all the details of our computations, since they are
in many aspects similar to the ones in the previous sections.
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6.1. Reduction to a moment problem. Once again, we expand the initial condition u0 ∈ L2(0, 1) and
the solution to (2.3) with respect to the basis of the eigenfunctions (Φk)k≥1:

u0(x) =
∑

k≥1

ρ0kΦk(x), u(x, t) =
∑

k≥1

βk(t)Φk(x).

Therefore, the controllability condition u(x, T ) = 0 reads again as in (5.3)
Besides, we notice again that the function vk(x, t) := Φk(x)e

λk(t−T ) solves the adjoint problem (5.4).
Hence, combining (2.3) and (5.4) we obtain

0 =

∫

Q

[
vk

(
ut − (xαux)x − µ

x2−α
u
)
+ u

(
vk,t + (xαvk,x)x +

µ

x2−α
vk

)]
dxdt

=

∫ 1

0

vku
∣∣∣
T

0
dx−

∫ T

0

xαuxvk

∣∣∣
1

0
dt+

∫ T

0

xαvk,xu
∣∣∣
1

0
dt

=

∫ 1

0

vk(x, T )u(x, T ) dx−
∫ 1

0

vk(x, 0)u0(x) dx −
∫ T

0

H(t)(xα+γvk,x)(0, t) dt

=

∫ 1

0

u(x, T )Φk(x) dx − e−λkT

∫ 1

0

u0(x)Φk(x) dx − e−λkT rk

∫ T

0

H(t)eλkt dt

= βk(T )− ρ0ke
−λkT − e−λkT rk

∫ T

0

H(t)eλkt dt,

where we have indicated

rk := lim
x→0+

xα+γΦ′
k(x). (6.1)

Then, from the controllability condition (5.3) it follows that

∀k ≥ 1, −rk
∫ T

0

H(t)eλkt dt = ρ0k. (6.2)

On the other hand, since we are looking for a solution of the moment problem belonging to H1(0, T ),
instead of (6.2) we would rather be interested in a condition involving the derivative of the function H . This
condition can be obtained once again integrating by parts as follows

∫ T

0

H(t)eλkt dt =
1

λk
H(t)eλkt

∣∣∣∣
T

0

− 1

λk

∫ T

0

H ′(t)eλkt dt.

Therefore, the derivative H ′(t) has to satisfy

∀k ≥ 1,
rk
λk

∫ T

0

H ′(t)eλkt dt = ρ0k +
rk
λk

(
H(T )eλkT −H(0)

)
. (6.3)

Also in this case, we will provide a solution to the above problem which satisfies H(0) = H(T ) = 0.
To this end, we remark that the value of rk can be computed explicitly, starting from (6.1) and using the
definition of the Bessel function Jν(α,µ). In particular, one can readily verify that

rk =
B1(α, µ)

Γ(1 + ν(α, µ))
jν(α,µ),k, (6.4)

with

B1(α, µ) :=

√
2− α

|J ′
ν(α,µ)(jν(α,µ),k)|

(√
µ(α) +

√
µ(α)− µ

)
.

6.2. Formal solution of the moment problem.
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6.2.1. Formal definition of the control H. We present here the formal computations showing that the mo-
ment problem (6.3) has a solution H . To define this function H , we will employ again the biorthogonal a
sequence (σk)k≥1 that we introduced before, and whose existence is guaranteed by the gap conditions (3.5)
and (3.6) and by Theorem 5.1

Now, let us define the function H as follows:

H(t) :=

∫ t

0

K(s) ds, with K(t) :=
∑

k≥1

λk
rk
ρ0kσk(t). (6.5)

It is straightforward that, if K ∈ L2(0, T ), then we have H ∈ H1(0, T ) with H ′(t) = K(t) and H(0) =
0 = H(T ). Moreover,

rk
λk

∫ T

0

H ′(t)eλkt dt =
rk
λk

∫ T

0

K(t)eλkt dt =
rk
λk

∫ T

0



∑

ℓ≥1

λℓ
rℓ
ρ0ℓσℓ(t)


 eλkt dt

=
rk
λk

∑

ℓ≥1

λℓ
rℓ
ρ0ℓ

∫ T

0

σℓ(t)e
λkt dt =

rk
λk

∑

ℓ≥1

λℓ
rℓ
ρ0ℓδk,ℓ = ρ0k,

and the moment problem (6.3) is formally satisfied.

6.2.2. If regular, the control H drives the solution from u0 to zero. We show here that the control H that
we introduced in (6.5) is able to drive the solution to (2.3) from the initial state u0 to zero in time T . To
this end, let us remind the change of variables

v(x, t) := u(x, t)− xγ
p(x)

p(0)
H(t), p(x) := 1− xq, q = 2

√
µ(α)− µ,

that transforms our original equation (2.3) into





vt − (xαvx)x − µ

x2−α
v = −xγ p(x)

p(0)
K(t), (x, t) ∈ Q

v(0, t) = v(1, t) = 0, t ∈ (0, T )

v(x, 0) = u0(x), x ∈ (0, 1).

Now, for a fixed ε > 0 we have
∫ T

ε

∫ 1

0

−xγ p(x)
p(0)

K(t)Φk(x)e
λkt dxdt

=

∫ T

ε

∫ 1

0

(
vt − (xαvx)x − µ

x2−α
v
)
Φk(x)e

λkt dxdt

=

∫ 1

0

vΦke
λkt
∣∣∣
T

ε
dx+

∫ T

ε

∫ 1

0

v
(
−(xαΦ′

k)
′ − µ

x2−α
Φk − λkΦk

)
eλkt dxdt

= eλkT

∫ 1

0

v(x, T )Φk(x) dx − eλkε

∫ 1

0

v(x, ε)Φk(x) dx.

Hence, taking the limit for ε→ 0+ we find
∫

Q

−xγ p(x)
p(0)

K(t)Φk(x)e
λkt dxdt = eλkT

∫ 1

0

v(x, T )Φk(x) dx − ρ0k.

From this last identity and (6.3), it immediately follows

eλkT

∫ 1

0

v(x, T )Φk(x) dx = ρ0k +

(∫ T

0

K(t)eλkt dt

)(∫ 1

0

−xγ p(x)
p(0)

Φk(x) dx

)

= ρ0k +
λk
rk
ρ0k

∫ 1

0

−xγ p(x)
p(0)

Φk(x) dx.
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Moreover,

∫ 1

0

− xγ
p(x)

p(0)
Φk(x) dx

=
1

λk

∫ 1

0

−xγ p(x)
p(0)

λkΦk(x) dx =
1

λk

∫ 1

0

xγ
p(x)

p(0)

(
(xαΦ′

k(x))
′ +

µ

x2−α
Φk(x)

)
dx

=
1

λk

p(x)

p(0)
xα+γΦ′

k(x)

∣∣∣∣
1

0

− 1

λk

∫ 1

0

(
xγ
p(x)

p(0)

)′
xαΦ′

k(x) dx +
1

λk

∫ 1

0

xγ
p(x)

p(0)

µ

x2−α
Φk(x) dx

= − rk
λk

− 1

λk

(
xγ
p(x)

p(0)

)′
xαΦk(x)

∣∣∣∣
1

0

+
1

λk

∫ 1

0

[(
xα
(
xγ
p(x)

p(0)

)′)′

+ µxα+γ−2 p(x)

p(0)

]
Φk(x) dx

= − rk
λk

+
1

λkp(0)

∫ 1

0

[ (
xα (xγp(x))

′)′
+ µxα+γ−2p(x)

]
Φk(x) dx = − rk

λk
,

since we already noticed that (see (4.6))

[
xα (xγp)

′ ]′
(x) +

µ

x2−α−γ
p(x) = 0.

Hence, we get

eλkT

∫ 1

0

v(x, T )Φk(x) dx = 0,

which of course implies v(x, T ) = 0 and, since H(T ) = 0, we can finally conclude that

u(x, T ) = v(x, T ) + xγ
p(x)

p(0)
H(T ) = 0.

6.3. Existence of the control, H1 regularity and upper bound of the cost of controllability. We
have to check that the control H defined as in (5.8) belongs to H1(0, T ) and to obtain the upper bound for
the controllability cost. To this end, as we did before, we are going to prove instead that the function K
belongs to L2(0, T ).

In what follows, Cu denotes again a universal constant, independent of T , γmax, γmin and k, which may
change value even from line to line. From (6.5) we have

‖K‖L2(0,T ) =

∥∥∥∥∥∥

∑

k≥1

λk
rk
ρ0kσk(t)

∥∥∥∥∥∥
L2(0,T )

≤
∑

k≥1

| ρ0k|
∣∣∣∣
λk
rk

∣∣∣∣ ‖σk(t)‖L2(0,T ) .

Moreover, employing the expression (3.3) of λk and the explicit expression of rk given in (6.4) we obtain

∣∣∣∣
λk
rk

∣∣∣∣ =
(2− α)

3
2Γ(1 + ν(α, µ))|J ′

ν(α,µ)(jν(α,µ),k)|

4
(√

µ(α) +
√
µ(α) − µ

) jν(α,µ),k ≤ Cu
Γ(1 + ν(α, µ))√
µ(α) +

√
µ(α) − µ

jν(α,µ),k,

since 0 ≤ α < 1 and |J ′
ν(α,µ)(jν(α,µ),k)| ≤ 1 (see [7, Formula 79]). Therefore, we get

‖K‖L2(0,T ) ≤ Cu
Γ(1 + ν(α, µ))√
µ(α) +

√
µ(α) − µ

‖u0‖L2(0,1)




∑

k≥1

j2ν(α,µ),k ‖σk(t)‖
2
L2(0,T )





1
2

.

From here, proceeding as in Section 5.3.3, we can immediately conclude that K ∈ L2(0, T ) and we have
the following estimate

Cctr−bd ≤ Cu
Γ(1 + ν(α, µ))√
µ(α) +

√
µ(α)− µ

e
Cu
T

[
1 +

√
µ(α)− µ

]
e
−Cu

(

1+
√

µ(α)−µ
)2

T
.
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6.4. Lower bound of the cost of controllability. Fix m ≥ 1 and consider the initial condition u0 = Φm

in (2.2). Let Hm be any control that drives the solution of the equation to zero in time T . Then, the moment
condition (6.2) yields

−rk
∫ T

0

Hm(t)eλkt dt = ρ0k =

∫ 1

0

u0(x)Φk(x) dx = δk,m.

Hence,

∀ k ≥ 1,

∫ T

0

(
rmHm(t)

)
eλkt dt = rm

δk,m
rk

=

{
1, if k = m

0, if k 6= m.

This means that the sequence
(
rmHm(t)

)
ℓ≥1

is biorthogonal to (eλkt)k≥1 in L2(0, T ). Now, as we did

before, we choose m = 1 and we distinguish between the two cases

ν(α, µ) ∈
[
0,

1

2

]
and ν(α, µ) ∈

[
1

2
,+∞

)
.

In the former one, employing (5.15) we have

‖r1H1(t)‖2L2(0,T ) ≥ e−2λ1T e
1

2γ2
maxT b(T, γmax, 1),

which yields

‖H1(t)‖2L2(0,T ) ≥
1

|r1|
e−2λ1T e

1
2γ2

maxT b(T, γmax, 1).

Now, thanks to (6.4) we obtain

1

|r1|
=

Γ(1 + ν(α, µ))√
µ(α) +

√
µ(α) − µ

|J ′
ν(α,µ)(jν(α,µ),1)|√

2− α
j−1
ν(α,µ),1.

Moreover, since 0 ≤ α < 1, employing (3.4) and the fact that |J ′
ν(jν(α,µ),1)| ≥ C with C independent of µ

(see [7, Corollary 2]), we also have

1

|r1|
≥ Cu√

µ(α) +
√
µ(α)− µ

which yields

‖H1(t)‖L2(0,T ) ≥
Cu√

µ(α) +
√
µ(α) − µ

e−2λ1T e
1

2γ2
maxT b(T, γmax, 1).

Proceeding now as in the proof of Theorem 2.1 it is easy to obtain our final estimate

Cctr−bd ≥ Cu√
µ(α) +

√
µ(α) − µ

1

T 4
e−Cu(1−α)2T e

Cu
T .

When ν(α, µ) ≥ 1
2 , instead, the lower bound reads as follows:

Cctr−bd ≥ Cu√
µ(α) +

√
µ(α) − µ

e
C

T e
−C

[

1+
√

µ(α)−µ
]2

T
e
−C

[√
µ(α)−µ

]4/3(

ln[
√

µ(α)−µ]+ln 1
T

)

.

The proof of this fact is totally analogous to what we already did in the proof of Theorem 2.1 and we
leave it to the reader.

7. Final comments and open questions

In this paper, we have analyzed the controllability properties of a degenerate/singular parabolic equation
on the space interval (0, 1). We have considered the two different situations of a boundary control acting at
x = 1 or x = 0 (where the degeneracy/singularity occurs). In both cases, by means of the classical moment
method, we have shown that the equation is null-controllable and we provided suitable estimates for the
controllability cost.

We present hereafter a non-exhaustive list of comments and open problems related to our work.
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(1) As a first thing, we recall that in the present work we are not treating the strongly degenerate case
1 ≤ α < 2.

• When the control acts at x = 1, we expect this case could be treated with a similar methodology
(also using the ideas of [9]). However, in order to keep the paper of a reasonable length, this
case is not covered here.

• When the control acts at x = 0, instead, this is an open question even in the purely degenerate
case µ = 0 ([9] deals only with controls in x = 1). Indeed, in this case one encounters difficulty
already at the level of the well-posedness of the equation, due to the need to find a suitable
boundary condition.

(2) A second open problem is related to the obtaining of suitable Carleman estimates for boundary
controllability. This is not an easy task. Indeed, the usual weights introduced in previous works
([2, 5, 6, 10, 11, 21, 26, 27]) for proving interior controllability are designed in such a way that all
the boundary terms are greater or equal to zero, and can therefore be ignored. On the other hand,
adapting these weights in order to keep the boundary terms and still be able to prove the Carleman
is a quite cumbersome issue. Nevertheless, the interest in obtaining, if possible, a Carleman estimate
for boundary controllability remains, and it is related to various further applications:

• the treatment of equations with a nonlinear term;
• the possibility of considering general function a(x) (such as in [21]) instead of xα in the purely
degenerate case (and even with a double degeneracy both at x = 0 and x = 1);

• the possibility of studying problems for a purely singular operator with two singular points at
x = 0 and x = 1;

• the case of a degenerate/singular operator with µ/xβ with β ≤ 2−α (instead of µ/x2−α). In this
case (analyzed in [26] only limited to a locally distributed control), null controllability should
be true for any µ but it cannot be studied with the present method.
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