

Swinging up the double pendulum

SUMMARY

Introduction The Double Pendulum

Introduction
The Double Pendulum

Control Theory Finding a good control

Feedback implementation

Reinforcement Learning

Introduction to RL PILCO

Optimal Control Theory

Finding a good control Feedback implementation

Reinforcement Learning

Introduction to RL

PILCO

1 INTRODUCTION THE DOUBLE PENDULUM

THE SYSTEM

Introduction The Double Pendulum

Optimal Control Theory

Finding a good control Feedback

implementation

Reinforcement Learning

Introduction to RL

Notations

- 1. The state : $y = (x, \theta_1, \theta_2, v, \omega_1, \omega_2)$
- 2. Action : +u (algebraic) on the horizontal acceleration of the cart.

Assumptions

Rods have no mass (hence no inertia), no elastic properties.

A CHAOTIC SYSTEM

Introduction The Double Pendulum

Optimal Control Theory

control Feedback implementation

Reinforcement Learning

Introduction to RL PILCO

Objective

From the downwards position (stable), swinging up the pendulum to the upward position (unstable), thanks to the action u.

Difficulty

Chaotic aspect : small changes in conditions \rightarrow substantial changes in short term.

Two strategies

- 1. Using optimal control theory;
- 2. Using Reinforcement Learning.

OPTIMAL CONTROL THEORY

FINDING A GOOD CONTROL

Introduction The Double Pendulum

Control
Theory
Finding a good
control

Feedback implementation

Reinforcement Learning

Introduction to RL PILCO

Cost function

$$J(u) = \int_0^T |y(t)|^2 dt + \alpha \int_0^T u(t)^2 dt + \beta |y(T)|^2$$

with $\alpha, \beta > 0$ to adjust.

Add physical constrains $\forall t \in [0, T], |u(t)| < u_{max}$

NEED FOR CLOSED LOOP CONTROL

Introduction The Double Pendulum

Optimal Control Theory

Finding a good control

Feedback implementation

Reinforcement Learning

Introduction to RL

Open loop control is not enough

- No garantee that the system will end exactly in a balanced state,
- Simulation using a different software : calculations are not exactly the same,
- Chaotic aspect : any small deviation leads to a loss of control.

IMPLEMENTING A FEFDBACK

Introduction The Double Pendulum

Optimal Control Theory

Finding a good control

Feedback implementation

Reinforcement Learning

Introduction to

State-Dependent Ricatti Equation

Uses the optimal trajectory $y^*(t)$ as a guideline.

1. Linearize the dynamics of the optimal trajectory equation at time t_m :

$$\dot{y} = f(y, u) \Rightarrow \dot{y}(t_m) = A_m y(t_m) + B_m u(t_m)$$

- 2. Apply the LQR theory to this new system between t_m and t_{m+1} : With cost $J=\int_{t_m}^{t_{m+1}}\Delta y^TQ\Delta y+u^TRu\ dt$, retrieve P solution of $A_m^TP+PA+Q-PBR^{-1}B^TP=0$.
- 3. Use the following feedback : $u = u^* B^T P R^{-1} \Delta y$

REINFORCEMENT LEARNING

Swinging up the double pendulum

REINFORCEMENT LEARNING?

Introduction The Double Pendulum

Optimal Control Theory Finding a good contro

Feedback implementation

Reinforcement

Learning

Introduction to

Context: an agent evolving in an environment, taking actions depending on its state, and receiving rewards based on its action and the environemnt.

Goal: select actions to maximize future rewards.

Definitions and notations

- \mathcal{S} state space,
- A action space.
- $\mathbb{P}(s'|s,a)$ transition function,
- $\mathcal{R}(s, a, s')$ reward function,
- $\pi: \mathcal{S} \to \mathcal{A}$ a policy.

OBJECTIVE

Introduction The Double Pendulum

Optimal Control Theory

Finding a good control Feedback

Reinforcement

Learning

Introduction to

RL PILCO Objective : find "best" policy $\pi \Rightarrow$ what should be maximized? Next reward? Need to focus on the future / the cumulative rewards.

Definition

- The Return at time $t:R_t=\sum_{i=0}^{\infty}\gamma^ir_{i+t+1}$ with $\gamma\in(0,1]$ a discount factor.
- The Value function : $V^{\pi}(s) = \mathbb{E}[R_t|s_t = s]$
- The Action-Value function : $Q^{\pi}(s,a) = \mathbb{E}[R_t|s_t = s, a_t = a]$

Example

The Greedy policy consists in
$$a_t = \pi(s_t) = \underset{a \in \mathcal{A}}{\arg \max} Q(s_t, a)$$

AN EXAMPLE : Q-LEARNING

Introduction The Double Pendulum

Optimal Control Theory

contro Feedback

Reinforcement

Learning Introduction to

Finding a good

implementation

Main difficulty: finding Q^{π} or V^{π} due to the expectation in their difference $\Rightarrow \mathcal{S}$ and \mathcal{A} can be very big! Need to learn them.

In theory, $Q(s_t, a) = r_t + \gamma Q(s'_t, a)$, but not the case if we use empirical value for Q.

$$Q^{t+1}(s_t, a_t) \leftarrow Q^t(s_t, a_t) + \alpha(r_t + \gamma \max_{a \in \mathcal{A}} Q^t(s_t', a) - Q^t(s_t, a_t))$$

$$\begin{array}{l} \textbf{for } t \leftarrow 0 \ to \ T-1 \ \textbf{do} \\ \mid s_t \leftarrow \text{StateChoice} \ ; \ a_t \leftarrow \text{ActionChoice} \\ (s_t', r_t) \leftarrow \text{Simulate}(s_t, a_t) \\ Q^{t+1} \leftarrow Q_t \\ \mid Q^{t+1}(s_t, a_t) \leftarrow Q^t(s_t, a_t) + \alpha(r_t + \gamma \max_{a \in \mathcal{A}} Q^t(s_t', a) - Q^t(s_t, a_t)) \end{array}$$
 end

PII CO

Introduction The Double Pendulum

Optimal Control Theory

Finding a good contro

Feedback implementation

Reinforcement Learning

Introduction to

PII CO

The dynamic of the problem:

$$f(x_t) = y_{t+1} - y_t$$
, with $x_t = (y_t, u_t) \in \mathbb{R}^7$

Gaussian Process

We will assume that f is a Gaussian Process:

- $\forall (x_1, \ldots, x_n), (f(x_1), \ldots, f(x_n))$ is a Gaussian vector,
- $m(x) := \mathbb{E}[f(x)]$ is the mean function.
- $k(x, x') = \mathbb{E}[(f(x) m(x))(f(x') m(x'))]$ is the covariate function, or *kernel*.

We assume that the kernel is Squared Exponential:

 $k(x,x') = \alpha^2 \exp\left(-\frac{1}{2}(x-x')^T \Lambda(x-x')\right)$, with α and Λ to determine.

Idea: for given y_t, u_t , we have $y_{t+1} \sim f(y_t, u_t)$.

PILCO - POLICY AND COST

Introduction The Double Pendulum

Optimal Control Theory

Finding a good contro Feedback implementation

Reinforcement Learning

Introduction to

PILCO

Policy

We define the policy of the model as followed:

$$\pi(y, \theta) = \sum_{i=1}^{N} \omega_i \phi_i(y), \text{ where } \phi_i(y) = \exp(-\frac{1}{2}(y - \mu_i)^T \Lambda^{-1}(y - \mu_i))$$

with
$$\theta = (\omega_i, \Lambda, \mu_i)_{1 \leq i \leq N}$$

Cost

Cost function of one state : $c(y) = 1 - \exp(-||y||^2/\sigma_c^2)$ Cost of one policy : $J(\theta) = \sum_{t=1}^T \mathbb{E}[c(y_t)]$ where the distribution of y_t is computed recursively: $y_{t+1} \sim f(y_t, \pi(y_t, \theta))$

Swinging up the double pendulum

PILCO - FIRST ROLLOUT

Introduction The Double Pendulum

Optimal Control Theory

Finding a good control Feedback

implementatio

Reinforcement Learning

Introduction to

PILCO

At first, no information on the behavior of f. To gain data, random rollout : random actions $(u_t)_{0 \le t < T} \to \text{we record the data } f(y_t, u_t) = y_{t+1}$. With this information, we reduce the space in which f can be.

PILCO - ALGORITHM

Introduction The Double Pendulum

Optimal Control Theory

control Feedback

implementation

Reinforcement Learning

Introduction to RL

PILCO

The algorithm

- With the new information on f, compute $J(\theta)$ (Difficult from a mathematical point of view, need to approximate),
- Minimize J : get $\theta^* = \arg\min J(\theta)$ (Gradient descent),
- With new θ (i.e. new policy), new rollout,
- More data \rightarrow more precise f.

Repeat until the target is reached.

CONCLUSION

Introduction The Double Pendulum

Optimal Control Theory

control Feedback

implementation

Reinforcement Learning

Introduction to

PILCO

Further works

- Finalizing the implementation of both approaches,
- A comparison between the two approaches : speed, resistance to noise...

Questions?

REFERENCES

Introduction The Double Pendulum

Optimal Control Theory Finding a good

contro Feedback implementation

Reinforcement Learning Introduction to

PII CO

- Tayfun Çimen, "State-Dependent Riccati Equation (SDRE) Control: A Survey" in Proceedings of the 17th World CongressThe International Federation of Automatic Control
- M.P. Deisenroth and C.E. Rasmussen, "PILCO: A Model-Based and Data-Efficient Approach to PolicySearch" in Proceedings of the 28th International Conference on Machine Learning
- Michael Hessea, Julia Timmermanna, Eyke Hüllermeierb and AnsgarTrächtlera, "A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart" in Proceedings of 4th International Conference on System-Integrated Intelligence