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THE SYSTEM

Notations

1. The state : y = (x, θ1, θ2, v, ω1, ω2)

2. Action : +u (algebraic) on the
horizontal acceleration of the cart.

Assumptions
Rods have no mass (hence no inertia), no elastic properties.
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A CHAOTIC SYSTEM

Objective
From the downwards position (stable), swinging up the pendulum to the upward
position (unstable), thanks to the action u.

Difficulty
Chaotic aspect : small changes in conditions → substantial changes in short term.

Two strategies
1. Using optimal control theory ;
2. Using Reinforcement Learning.
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FINDING A GOOD CONTROL

Cost function

J(u) =

∫ T

0
|y(t)|2dt+ α

∫ T

0
u(t)2dt+ β|y(T )|2

with α, β > 0 to adjust.

Add physical constrains
∀t ∈ [0, T ], |u(t)| < umax
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NEED FOR CLOSED LOOP CONTROL

Open loop control is not enough
- No garantee that the system will end exactly in a balanced state,
- Simulation using a different software : calculations are not exactly the same,
- Chaotic aspect : any small deviation leads to a loss of control.

ÉCOLE POLYTECHNIQUE – Swinging up the double pendulum 8



OPTIMAL
CONTROL

THEORY

Swinging up
the double
pendulum

Introduction
The Double
Pendulum

Optimal
Control
Theory
Finding a good
control

Feedback
implementation

Reinforcement
Learning
Introduction to
RL

PILCO

IMPLEMENTING A FEEDBACK

State-Dependent Ricatti Equation
Uses the optimal trajectory y∗(t) as a guideline.
1. Linearize the dynamics of the optimal trajectory equation at time tm :

ẏ = f(y, u)⇒ ẏ(tm) = Am y(tm) +Bm u(tm)

2. Apply the LQR theory to this new system between tm and tm+1 : With cost
J =

∫ tm+1

tm
∆yTQ∆y + uTRu dt, retrieve P solution of

ATmP + PA+Q− PBR−1BTP = 0.
3. Use the following feedback : u = u∗ −BTPR−1∆y
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REINFORCEMENT LEARNING ?

Context : an agent evolving in an environment, taking actions depending on its
state, and receiving rewards based on its action and the environemnt.

Goal : select actions to maximize future rewards.

Definitions and notations
- S state space,
- A action space,
- P(s′|s, a) transition function,
- R(s, a, s′) reward function,
- π : S → A a policy.
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OBJECTIVE

Objective : find "best" policy π ⇒ what should be maximized ? Next reward ?
Need to focus on the future / the cumulative rewards.

Definition

- The Return at time t : Rt =

∞∑
i=0

γiri+t+1 with γ ∈ (0, 1] a discount factor.

- The Value function : V π(s) = E[Rt|st = s]

- The Action-Value function : Qπ(s, a) = E[Rt|st = s, at = a]

Example
The Greedy policy consists in at = π(st) = arg max

a∈A
Q(st, a)

ÉCOLE POLYTECHNIQUE – Swinging up the double pendulum 12



REINFORCE-
MENT

LEARNING

Swinging up
the double
pendulum

Introduction
The Double
Pendulum

Optimal
Control
Theory
Finding a good
control

Feedback
implementation

Reinforcement
Learning
Introduction to
RL

PILCO

AN EXAMPLE : Q-LEARNING

Main difficulty : finding Qπ or V π due to the expectation in their difference
⇒ S and A can be very big ! Need to learn them.
In theory, Q(st, a) = rt + γQ(s′t, a), but not the case if we use empirical value
for Q.

Qt+1(st, at)← Qt(st, at) + α(rt + γmax
a∈A

Qt(s′t, a)−Qt(st, at))

for t← 0 to T − 1 do
st ← StateChoice ; at ← ActionChoice
(s′t, rt)← Simulate(st, at)
Qt+1 ← Qt
Qt+1(st, at)← Qt(st, at) + α(rt + γmaxa∈AQ

t(s′t, a)−Qt(st, at))
end
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The dynamic of the problem :

f(xt) = yt+1 − yt, with xt = (yt, ut) ∈ R7

Gaussian Process
We will assume that f is a Gaussian Process :

- ∀(x1, . . . , xn), (f(x1), . . . , f(xn)) is a Gaussian vector,
- m(x) := E[f(x)] is the mean function,
- k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] is the covariate function, or kernel.

We assume that the kernel is Squared Exponential :
k(x, x′) = α2 exp

(
−1

2(x− x′)TΛ(x− x′)
)
, with α and Λ to determine.

Idea : for given yt, ut, we have yt+1 ∼ f(yt, ut).
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PILCO - POLICY AND COST

Policy
We define the policy of the model as followed :

π(y, θ) =

N∑
i=1

ωiφi(y), where φi(y) = exp(−1

2
(y − µi)TΛ−1(y − µi)

with θ = (ωi,Λ, µi)1≤i≤N

Cost
Cost function of one state : c(y) = 1− exp(−||y||2/σ2c )
Cost of one policy : J(θ) =

∑T
t=1 E[c(yt)] where the distribution of yt is computed

recursively : yt+1 ∼ f(yt, π(yt, θ))
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PILCO - FIRST ROLLOUT
At first, no information on the behavior of f . To gain data, random rollout :
random actions (ut)0≤t<T → we reccord the data f(yt, ut) = yt+1.
With this information, we reduce the space in which f can be.
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PILCO - ALGORITHM

The algorithm
- With the new information on f , compute J(θ) (Difficult from a mathematical
point of view, need to approximate),

- Minimize J : get θ∗ = arg min J(θ) (Gradient descent),
- With new θ (i.e. new policy), new rollout,
- More data → more precise f .

Repeat until the target is reached.
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CONCLUSION

Further works
- Finalizing the implementation of both approaches,
- A comparison between the two approaches : speed, resistance to noise...

Questions ?
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