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Abstract

In this paper, problems of optimal control are considered where in the
objective function, in addition to the control cost there is a tracking term
that measures the distance to a desired stationary state. The tracking
term is given by some norm and therefore it is in general not differentiable.
In the optimal control problem, the initial state is prescribed. We assume
that the system is either exactly controllable in the classical sense or nodal
profile controllable. We show that both for systems that are governed by
ordinary differential equations and for infinite-dimensional systems, for
example for boundary control systems governed by the wave equation,
under certain assumptions the optimal system state is steered exactly to
the desired state after finite time.

1 Introduction

Since the turnpike phenomenon has been studied by P. A. Samuelson in
mathematical economics in 1949 (see [2]), it has been analyzed in various
contexts, see for example [18], [19] and [1]. For optimal control prob-
lems with partial differential equations it has been studied in [13] and
[16] where distributed control is considered for linear–quadratic optimal
control problems. Problems of optimal boundary control are studied in
[8], [6] and [10]. In [15], both integral- and measure–turnpike properties
are considered. The turnpike phenomenon for linear quadratic optimal
control problems with time-discrete systems is studied in [4]. In [5], linear
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quadratic optimal control problems governed by general evolution equa-
tions are considered and exponential sensitivity and turnpike analysisis
studied. An overview on the turnpike phenomenon is given in the mono-
graph [20].

In this paper, we consider integral turnpike properties for problems
where the system is exactly controllable and in the objective function, an
L1-norm or L2-norm tracking term appears. We show that the resulting
optimal controls have a finite-time turnpike structure, that is the optimal
state reaches the static desired state (that we also refer to as the turnpike
and that does not depend on time) exactly in finite time.

These turnpike result are also useful for numerical computations since
they show that for sufficiently large time horizons T , sufficiently accurate
approximations of the optimal state/control pairs should also be identical
to the desired state with the corresponding constant control most of the
time.

The finite-time (or exact) turnpike property for continuous-time sys-
tems has already been discussed in [3] as an assumption in the context of
nonlinear model predictive control for a finite-dimensional system that is
governed by an ordinary differential equation. Here the aim is to prove
convergence in model predictive control. As an application, a problem of
optimal fish harvesting control is studied.

This paper has the following structure. In order to illustrate the sit-
uation, first we consider optimal control problems that are governed by
ordinary differential equations. In these problems the L1–norm appears
in the tracking term in the objective function. We show that if the weight
of the tracking term (i.e. the penalty parameter) is sufficiently large, the
optimal states and controls have a finite-time turnpike structure.

In the next section, we present a finite-time turnpike result for optimal
control problems with an abstract infinite dimensional system. First we
consider the case where the system is exactly controllable. We consider
an optimal control problem where the tracking term is given by a certain
maximum norm. We show that if the weight of the tracking term is
sufficiently large, the solution has a finite-time turnpike structure.

Then we consider the case where the system is nodal profile exactly
controllable. We consider an optimal control problem where the tracking
term for the nodal profiles is given by an L2–norm. We show that if
the weight of the tracking term is sufficiently large, the solution has a
finite-time turnpike structure for the nodal profiles.

Finally we return to the case where the system is exactly controllable.
We consider an optimal control problem where the tracking term is given
by a weighted L1–norm that has a singularity at t0 > 0. We show also in
this case, the solution has a finite-time turnpike structure.

In Section 4, examples are presented, where the results from the pre-
vious section are applicable. Section 5 contains conclusion.
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2 Optimal control problems with ordi-
nary differential equation

We start with optimal control problems with systems that are governed
by ordinary differential equations. We show that for such systems, L1-
tracking terms in the objective function can lead to finite-time turnpike
structures.

Example 1 We start with a system similar to the motivating example
in [9] that is governed by an ordinary differential equation. Let γ > 0 be
given. For T > 0 sufficiently large (this will be specified later) we consider
the problem

(OC)T


min

u∈L2(0,T )

T∫
0

1
2
|u(t)|2 + |u(t)|+ γ |y(t)| dt subject to

y(0) = −1, y′(t) = y(t) + exp(t)u(t).

The corresponding optimal control problem where the initial condition does
not appear is

(OC)(σ)


min

u∈L2(0,T )

T∫
0

1
2
|u(t)|2 + |u(t)|+ γ |y(t)| dt subject to

y′(t) = y(t) + exp(t)u(t).

The solution of (OC)(σ) (that we call the turnpike) is zero, that is y(σ) = 0
and u(σ) = 0. The results about the solution of (OC)T are summarized in
the following lemma.

Lemma 1 For γ > 0, define t0 > 0 as the minimal value where

(t0 − 1) exp(t0) =
1

γ
− 1.

Assume that T > t0 and (even)

γ eT ≥ 1 + γ et0 . (2.1)

Define

û(t) = γ(et0 − et) ≥ 0 for t ∈ (0, t0], û(t) = 0 for t > t0. (2.2)

Then for the state ŷ generated by û for t ≥ t0 we have ŷ(t) = 0. Moreover,
for all t ∈ (0, T ) we have ŷ(t) ≤ 0.

The control û as defined in (2.2) is the unique solution of (OC)T .

Proof. Let a control u ∈ L2(0, T ) be given. Then for the corresponding
state y we have

y(t) = et
[
−1 +

∫ t

0

u(τ) dτ

]
. (2.3)

Note that for the optimal control we have y(t) ≤ 0. (If y(t0) = 0, we can
continue with the zero control.) Moreover, we have u(t) ≥ 0. (Otherwise,
instead of decreasing the state it is also better to switch off the control).

3



Hence it suffices to consider the feasible controls u(t) ≥ 0 that satisfy the
moment inequality ∫ T

0

u(τ) dτ ≤ 1. (2.4)

Due to the definition of t0 and (2.2) we have∫ T

0

û(τ) dτ = 1. (2.5)

Then for t ∈ (0, t0) we have

ŷ(t) = et
[
−1 +

∫ t

0

u(τ) dτ

]
= γ t et+t0 − γ e2t + (γ − 1)et ≤ 0

and for t ≥ t0 we have ŷ(t) = 0.
With the representation (2.3), for all feasible controls u ≥ 0 where

y ≤ 0 integration by parts yields

J(0,T )(u, y) =

T∫
0

[
1
2
|u(t)|2 + u(t)− γ y(t)

]
dt

=

T∫
0

{
1
2
|u(t)|2 + u(t) + γ et

[
1−

∫ t

0

u(τ) dτ

]}
dt

=

T∫
0

u(t) dt+

T∫
0

1
2
|u(t)|2 + γ et

[
1−

∫ t

0

u(τ) dτ

]
|Tt=0 +

T∫
0

γ et u(t) dt

=

T∫
0

u(t) dt− γ + γ eT
[
1−

∫ T

0

u(τ) dτ

]
+

T∫
0

[
1
2
|u(t)|2 + γ et u(t)

]
dt

= (γ eT − 1)

[
1−

∫ T

0

u(τ) dτ

]
+

T∫
0

[
1
2
|u(t)|2 + γ et u(t)

]
dt+ 1− γ.

If T is sufficiently large in the sense that (2.1) holds, due to the L1-
norm that appears in the objective function, the solution has an exact
turnpike structure where the system is steered to zero in the finite time
t0 that is independent of T and remains there for t ∈ (t0, T ). This can
be seen as follows. Let u(t) = û(t) + δ(t) with û as defined in (2.2) and∫ T

0
δ(τ) dτ ≤ 1−

∫ T
0
û(τ) dτ = 0 where the last equation follows from (2.5)

and δ(t) ≥ 0 for t ≥ t0. Due to (2.1) we have

J(0,T )(u, y) = (γ eT − 1)

[
−
∫ T

0

δ(τ) dτ

]

+

T∫
0

[
1
2
|û(t) + δ(t)|2 + γ et (û(t) + δ(t))

]
dt+ 1− γ

4



≥ (γ eT−1)

[
−
∫ T

0

δ(τ) dτ

]
+

T∫
0

1
2
û(t)2+γ et û(t) dt+

T∫
0

(
û(t) + γ et

)
δ(t) dt+1−γ

= (γ eT −1)

[
−
∫ T

0

δ(τ) dτ

]
+J(0,T )(û, ŷ) +

t0∫
0

γet0 δ(t) dt+

T∫
t0

γ et δ(t) dt

≥ (γ eT −1)

[
−
∫ T

0

δ(τ) dτ

]
+J(0,T )(û, ŷ)+

t0∫
0

γ et0 δ(t) dt+

T∫
t0

γ et0 δ(t) dt

= J(0,T )(û, ŷ) + (γ eT − γ et0 − 1)

[
−
∫ T

0

δ(τ) dτ

]
.

Since γ eT − γ et0 − 1 ≥ 0, this implies that û as defined in (2.2) is the
optimal control. Thus we have proved Lemma 1. �

Consider the value t0 as a function of γ, t0 = t0(γ). Then we have
t0(1) = 1 and

lim
γ→∞

t0(γ) = 0.

In Example 2, we present numerical approximations for the optimal states
and controls for three values of γ.

2.1 A more general result for scalar ordinary dif-
ferential equations

Now we consider an optimal control problem with the same objective func-
tion and a more general ordinary differential equation. In this problem,
we also prescribe a terminal condition. At the end of the section we will
present sufficient conditions that imply that if the penalty parameter γ is
sufficiently large, the terminal state is reached before the final time.

Let continuous functions f , g from [0,∞) to the real numbers be given.
Assume that for all t ≥ 0 we have f(t) > 0, and g(t) > 0. Let γ ≥ 1 and
α < 0 be given. For a finite time horizon T > 0 we consider the problem

(OC)T


min

u(t)∈L2(0, T ),y(t)∈AC(0, T )

T∫
0

1
2
|u(t)|2 + |u(t)|+ γ |y(t)| dt subject to

y(0) = α, y′(t) = f(t) y(t) + g(t)u(t)
y(T ) = 0.

Here again the solution of the corresponding optimal control problem
without the initial and the terminal conditions (the turnpike) is zero,
that is y(σ) = 0 and u(σ) = 0. Note that the turnpike is compatible with
the terminal constraint y(T ) = 0. In the following theorem we present
the optimal control for (OC)T , which has a similar structure as in the
previous example.

Theorem 1 Define

F (t) = exp(

∫ t

0

f(s) ds), H(t) =

∫ t

0

F (τ) dτ.

5



We have

y(t) = F (t)

[
α+

∫ t

0

g(τ)

F (τ)
u(τ) dτ

]
. (2.6)

Define

û(t) = max

{
0,

[
−1− γ g(t)H(t)

F (t)
+ λ

g(t)

F (t)

]}
(2.7)

where the number λ > 0 is chosen such that∫ T

0

û(τ)
g(τ)

F (τ)
dτ = −α. (2.8)

Then the unique optimal control that solves (OC)T is equal to û(t).

Proof. Since y(0) = α ≤ 0, for the optimal state we have y(t) ≤ 0 for
all t ≥ 0. (Since otherwise, instead of increasing the state above zero it
is better to switch off the control.) Moreover, for the optimal control we
have u(t) ≥ 0. (Since otherwise, instead of decreasing the state it is also
better to switch off the control). Hence it suffices to consider the feasible
controls u(t) ≥ 0 that satisfy the moment inequality∫ T

0

g(τ)

F (τ)
u(τ) dτ ≤ −α. (2.9)

Due to the choice of λ, for the state ŷ generated by û, we have ŷ(T ) = 0.
For t ∈ [0, T ], consider

B(t) =

∫ t

0

g(τ)

F (τ)
û(τ) dτ. (2.10)

Then B(0) = 0 and B is increasing. Hence also the function [α+B(t)] is
increasing. We have B(0) + α < 0 and B(T ) + α = 0. Thus there exists
a unique point

t0 = min{t ∈ [0, T ] : α+B(t) = 0}.

and we have t0 ∈ (0, T ]. We have B(t0) = B(T ) and B is increasing. This
implies that for all t ∈ [t0, T ], we have B(t) = −α. On account of the
definition of B as an integral, this is only possible if for all t ∈ [t0, T ], we
have û(t) = 0. This implies that for all t ∈ [t0, T ] we have

−1− γ g(t)H(t)

F (t)
+ λ

g(t)

F (t)
≤ 0. (2.11)

By (2.6) we have

t0 = min{t ∈ [0, T ] : ŷ(t) = 0}.

Since ŷ(t) = F (t) [α+B(t)], for t < t0 we have ŷ(t) < 0. Since for
t ≥ t0, we have û(t) = 0, this implies that ŷ(t) = 0 for all t ≥ t0.

Since û ≥ 0 and ŷ ≤ 0, for the objective function we have

J(û) =

∫ T

0

1

2
(û(t))2 + û(t)− γ F (t)

[
α+

∫ t

0

û(τ)
g(τ)

F (τ)
dτ

]
dt.
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Integration by parts yields (since B(T ) = −α)

J(û) =

∫ T

0

1

2
(û(t))2 + û(t) dt− γ H(s)

[
α+

∫ s

0

û(τ)
g(τ)

F (τ)
dτ

]
|Ts=0

+ γ

∫ T

0

H(t) û(t)
g(t)

F (t)
dt

=

∫ T

0

1

2
(û(t))2 + û(t) dt− γ H(t0) (α+B(T ))

+ γ

∫ T

0

û(τ)
H(τ) g(τ)

F (τ)
dτ

=

∫ T

0

1

2
(û(t))2 + û(t)

[
1 + γ

H(t) g(t)

F (t)

]
dt.

Let δ ∈ L2(0, T ) be given. We use δ as a perturbation of the control. To
make sure that the terminal condition remains valid, we assume that∫ T

0

δ(τ)
g(τ)

F (τ)
dτ = 0. (2.12)

Since the optimal control must increase the values of the corresponding
trajectory to zero, it can only have positive values. Therefore we assume
that for t ∈ [0, T ] we have û(t) + δ(t) ≥ 0. Thus for t ∈ [0, t0] we have
sign(û(t) + δ(t)) = 1 and for t ≥ t0, we have δ(t) ≥ 0. Then we have

J(û+ δ) =

∫ T

0

1

2
(û(t) + δ(t))2 + (û(t) + δ(t))

[
sign(û(t) + δ(t)) + γ

H(t) g(t)

F (t)

]
dt

= J(û) +

∫ T

0

1

2
δ(t)2 dt+

∫ t0

0

δ(t)

[
û+ 1 + γ

H(t) g(t)

F (t)

]
dt

+

∫ T

t0

δ(t)

[
sign(δ(t)) + γ

H(t) g(t)

F (t)

]
dt

= J(û) +

∫ T

0

1

2
δ(t)2 dt+

∫ t0

0

δ(t)λ
g(t)

F (t)
dt

+

∫ T

t0

δ(t)

[
sign(δ(t)) + γ

H(t) g(t)

F (t)

]
dt

= J(û) +

∫ T

0

1

2
δ(t)2 dt+

∫ T

0

δ(t)λ
g(t)

F (t)
dt

+

∫ T

t0

δ(t)

[
−λ g(t)

F (t)
+ sign(δ(t)) + γ

H(t) g(t)

F (t)

]
dt

= J(û) +

∫ T

0

1

2
δ(t)2 dt

+

∫ T

t0

δ(t)

[
1 + γ

H(t) g(t)

F (t)
− λ g(t)

F (t)

]
dt

≥ J(û)

where the last step follows with (2.11). Thus û is the minimizer of J
among all controls that generate states with y(T ) = 0. This shows the
assertion. �
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The question remains: Do we have t0 < T if γ is sufficiently large?
Let t1 ∈ (0, T ) be given such that

−α− F (t1)

g(t1)

∫ t1

0

g2

F 2
dt+

∫ t1

0

g

F
dt > 0. (2.13)

Note that H is strictly increasing, hence we have the inequality∫ t1

0

(H(t1)−H(t))
g2

F 2
dt > 0.

Define the number

γ(t1) =
−α− F (t1)

g(t1)

∫ t1
0

g2

F2 dt+
∫ t1

0
g
F
dt∫ t1

0
(H(t1)−H(t)) g2

F2 dt
. (2.14)

Then we have γ(t1) > 0. Define the number

λ1 =
−α+

∫ t1
0

g
F
dt+ γ(t1)

∫ t1
0
H g2

F2 dt∫ t1
0

g2

F2 dt
. (2.15)

The definition of λ1 implies the equation

λ1

∫ t1

0

g2

F 2
dt = −α+

∫ t1

0

g

F
dt+ γ(t1)

∫ t1

0

H
g2

F 2
dt. (2.16)

Moreover, due to the definition of γ(t1) we have

1 +
g(t1)H(t1)

F (t1)
γ(t1) =

∫ t1
0
H g2

F2 dt+ g(t1)H(t1)
F (t1)

[
α−

∫ t1
0

g
F
dt
]

∫ t1
0
H g2

F2 dt−H(t1)
∫ t1

0
g2

F2 dt
.

In addition, the definition of λ1 and of γ(t1) implies

λ1
g(t1)

F (t1)
=
− g(t1)
F (t1)

[
α−

∫ t1
0

g
F
dt
]

+ g(t1)
F (t1)

γ(t1)
∫ t1

0
H g2

F2 dt∫ t1
0

g2

F2 dt

=

− g(t1)
F (t1)

[
α−

∫ t1
0

g
F
dt
]

+

[ ∫ t1
0

g2

F2 dt+
g(t1)
F (t1)

[
α−

∫ t1
0

g
F
dt

]
∫ t1
0 H g2

F2 dt−H(t1)
∫ t1
0

g2

F2 dt

] ∫ t1
0
H g2

F2 dt∫ t1
0

g2

F2 dt

=
1∫ t1

0
g2

F2 dt

[ ∫ t1
0
H g2

F2 dt∫ t1
0
H g2

F2 dt−H(t1)
∫ t1

0
g2

F2 dt
− 1

]
g(t1)

F (t1)

[
α−

∫ t1

0

g

F
dt

]

+

∫ t1
0
H g2

F2 dt∫ t1
0
H g2

F2 dt−H(t1)
∫ t1

0
g2

F2 dt

=

g(t1)H(t1)
F (t1)

[
α−

∫ t1
0

g
F
dt
]

+
∫ t1

0
H g2

F2 dt∫ t1
0
H g2

F2 dt−H(t1)
∫ t1

0
g2

F2 dt

Hence we have

λ1
g(t1)

F (t1)
= 1 + γ(t1)

g(t1)H(t1)

F (t1)
.

8



Assume that g is continuously differentiable and we have

g′(t) ≤ f(t) g(t). (2.17)

Assumption (2.17) implies that the function g
F

is decreasing.
Assumption (2.17) implies that the function g

F
is decreasing. Since

the function (λ1− γ(t1)H) is decreasing and g
F
> 0 this implies that also

the product
g

F
(λ1 − γ(t1)H)

is decreasing as a function of time.
Then the optimal control û as defined in (2.7) (with λ = λ1 and

γ = γ(t1)) is decreasing, û(t1) = 0 and the support of the optimal control
û is contained in [0, t1]. With λ1 defined as in (2.15), equation (2.16)
holds. This implies that the optimal control û as defined in (2.7) satisfies
(2.8). Thus we have shown the following statement:

If (2.17) holds, for all t0 ∈ (0, T ) such that (2.13) holds (with t1 = t0)
there is a weight γ > 0 such that the support of the corresponding optimal
control is contained in [0, t0].

Note that in Example 1, we have f(t) = 1 and g(t) = exp(t) = g′(t),
hence (2.17) holds. This explains why in the first example, for sufficiently
large values of T no terminal constraint is necessary. As a second example,
for the constant function g(t) = 1, (2.17) also holds.

3 General results in Hilbert spaces

In this section, we study optimal control problems in a Hilbert space
setting. In this way, we obtain results that we can apply to systems that
are governed by partial differential equations. Let X and U be Hilbert
spaces with the inner products 〈·, ·〉X , 〈·, ·〉U and the corresponding norms
‖·‖X , ‖·‖U respectively. We use T > 0 to denote the terminal time of our
optimal control problems. The space X contains the current state and the
space U is used as a framework for the control functions in L2(0, T ;U).

Let A : D(A) ⊂ X → X be the generator of a strongly continuous
semigroup, and let B denote an admissible control operator. As in [17],
Proposition 4.2.5., we consider control systems of the form{

x′ +Ax = Bu,
x(0) = x0

(3.1)

where x0 ∈ X is a given initial state. For all u ∈ L2(0, T ;U), the Cauchy
problem (3.1) has a unique solution x ∈ C([0, T ];X) (see [12]).

3.1 Exact controllability

Assume that (3.1) is exactly controllable using L2–controls in time t0 > 0,
that is there exists a constant C1 > 0 such that for all initial states x0 ∈ X
and all terminal states x1 ∈ X there is a control u ∈ L2(0, t0;U) such that
the solution x ∈ C([0, t0];X) of (3.1) satisfies{

x(t0) = x1.
‖u‖L2(0,t0;U) ≤ C1(‖x0‖X + ‖x1‖X).

(3.2)

9



Let a desired state xd ∈ X be given. Due to the exact controllability
assumption, there exists a control uexact ∈ L2(0, t0; U) such that the
solution xexact ∈ C([0, t0];X) of (3.1) satisfies

xexact(t0) = xd. (3.3)

We assume that xd is a holdable state in the sense that we can extend
uexact to the time interval [0, T ] by a constant control ud on [t0, T ] such
that for the corresponding state for all t ∈ (t0, T ) we have the equation
xexact(t) = xd and uexact(t) = ud. Thus on the time–interval (t0, T ) we
have Axexact = Axd = B uexact.

3.2 An optimal control problem with max-norm
penalization

First we consider a tracking term with the maximum-norm. For systems
that are exactly controllable, the optimal control steers the system to the
desired state after the prescribed time t0.

For γ > 0 we consider the following optimization problem:

P(T, γ)


min

u∈L2(0,t;U)

1
2
‖u− ud‖2L2(0,T ;U) + γ maxt∈[t0, T ] ‖x(s)− xd‖X

subject to
x′ +Ax = Bu, x(0) = x0.

In problem P(T, γ) the end condition x(t) = xd does not appear. Note
that problem P(T, γ) has a unique solution.

Our goal is to show that, due to the property of exact controllability
using L2–controls of the system, for γ sufficiently large the optimal state
xT satisfies the condition

xT (t) = xd

for all t ∈ [t0, T ]. A precise statement is given in the following theorem:

Theorem 2 Assume that T > t0 and that the system (3.1) is exactly
controllable. If γ > 0 is sufficiently large, for all t ∈ [t0, T ] the solution
(uT , xT ) of problem P(T, γ) satisfies the equation

xT (t) = xd.

Proof: An application of the Direct Method of the Calculus of Variations
shows that a solution of P(T, γ) exists. The strict convexity of the con-
trol cost 1

2
‖ · ‖2L2(0,T ;U) implies that the solution of P(T, γ) is uniquely

determined. Choose

γ > C1 ‖uexact − ud‖L2(0,t0;U). (3.4)

Similarly as in [9], consider the optimal control problem

Q(T, γ)


min

u∈L2(0,T ;U)

1
2
‖u− ud‖2L2(0,T ;U) + γ ‖x(t0)− xd‖X

subject to
x′ +Ax = Bu, x(0) = x0.
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Let (u∗, x∗) denote the solution of Q(T, γ). Now similarly as in Theorem
1 in ([9]), we show that x∗(t0) = xd by an indirect proof.

Suppose that x∗(t0) 6= xd. Then the objective functional of Q(T, γ) is
differentiable at (u∗, x∗) and the necessary optimality conditions imply∫ T

0

〈u∗ − ud, v〉U dt+ γ
〈x∗(t0)− xd, y〉X
‖x∗(t0)− xd‖X

= 0 (3.5)

for all v ∈ L2(0, t1;U) where y solves

y′ +Ay = Bv, y(0) = 0.

Due to the exact controllability of the system, we can choose a control
ṽ ∈ L2(0, t0;U) such that for the corresponding state ỹ we have

ỹ(t0) =
x∗(t0)− xd
‖x∗(t0)− xd‖X

and
‖ṽ‖L2(0,t0;U) ≤ C1. (3.6)

We extend ṽ to an element of L2(0, T ;U) by the definition ṽ(s) = 0 for all
s ∈ (t0, T ). Then the necessary optimality condition yields the equation∫ T

0

〈u∗ − ud, ṽ〉U dt+ γ
〈x∗(t0)− xd, x∗(t0)−xd

‖x∗(t0)−xd‖X
〉X

‖x∗(t0)− xd‖X
= 0. (3.7)

This implies the equation∣∣∣∣∫ T

0

〈u∗ − ud, ṽ〉U dt
∣∣∣∣ = γ. (3.8)

On the other hand, we have the inequality∣∣∣∣∫ T

0

〈u∗ − ud, ṽ〉U dt
∣∣∣∣ ≤ ‖u∗ − ud‖L2(0,T ;U) ‖ṽ‖L2(0,T ;U).

Since the control uexact is feasible for Q(T, γ), we have the inequality

1

2
‖u∗ − ud‖2L2(0,T ;U) ≤

1

2
‖uexact − ud‖2L2(0,T ;U) + γ ‖yexact(t0)− yd‖X

=
1

2
‖uexact − ud‖2L2(0,T ;U).

Hence
‖u∗ − ud‖L2(0,T ;U) ≤ ‖uexact − ud‖L2(0,T ;U).

Moreover, (3.6) implies

‖ṽ‖L2(0,T ;U) ≤ C1.

Hence (3.8) implies

γ ≤ C1 ‖uexact − ud‖L2(0,T ;U),

which is a contradiction to (3.4). Thus we have shown that x∗(t0) = xd.
This implies that for s ∈ (t0, T ] we have u∗(s) = ud and x∗(s) = xd.
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Let vQ denote the optimal value of Q(T, γ) and vP denote the opti-
mal value of P(T, γ). Then the definition of the corresponding objective
functionals implies the inequality

vQ ≤ vP .

Since the control u∗ is feasible for P(T, γ), we also have the inequality

vP =
1

2
‖uT − ud‖2L2(0,T ;U) + γ max

t∈[t0, T ]
‖xT (s)− xd‖X

≤ 1

2
‖u∗ − ud‖2L2(0,T ;U) + γ max

t∈[t0, T ]
‖x∗(s)− xd‖X

=
1

2
‖u∗ − ud‖2L2(0,t0;U) = vQ.

Thus we have vP = vQ, and (u∗, x∗) is an optimal control/state pair for
Q(T, γ). Since the solution is unique, this implies the assertion. �.

3.3 An optimal control problem for nodal profile
exactly controllable systems

Motivated by application problems in the operation of gas piplines, the
exact controllability of nodal profiles has been introduced in [7], see also
[11]. The assumption of exact controllability of nodal profiles also allows
to derive a result about the exactness of an L2-norm penalty term.

Let a Hilbert space Z, t0 ∈ (0, T ) and a linear map Π : L2(0, T ;X)→
L2(t0, T ;Z) be given. In the applications, typically Π will be some trace
operator, for example the boundary trace of the system state restricted
to the time-interval [t0, T ], see [7].

Assume that (3.1) is nodal profile exactly controllable using L2–controls
in time t0 > 0, that is there exists a constant C1 > 0 such that for all
initial states x0 ∈ X and all nodal profiles z ∈ L2(t0, T ;Z) there is a
control u ∈ L2(0, T ;U) such that the solution x ∈ C([0, T ];X) of (3.1)
satisfies for all t ∈ [t0, T ]{

Πx(t) = z(t),
‖u‖L2(0,T ;U) ≤ C1 (‖x0‖X + ‖z‖L2(t0,T ;Z)).

(3.9)

Remark 1 The exact boundary controllability of nodal profile for hyper-
bolic systems is discussed in [11].

For γ > 0 we consider the following optimization problem:

S(T, γ)


min

u∈L2(0,t;U)

1
2
‖u− ud‖2L2(0,T ;U) + γ

√
T∫
t0

‖Πx(s)−Πxd‖2Z ds

subject to
x′ +Ax = Bu, x(0) = x0

where as before, xd ∈ X is the desired holdable state. In problem S(T, γ)
the end condition x(t) = xd does not appear. Note that problem S(T, γ)
has a unique solution.
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Remark 2 Optimization problems of a similar structure with a differen-
tiable tracking term have been considered in [6] and [10].

Due to the nodal profile exact controllability assumption, there exists
a control vexact ∈ L2(0, t0; U) such that the solution pexact ∈ C([0, t0];X)
of (3.1) satisfies

Πpexact(t) = Πxd (3.10)

for all t ∈ [t0, T ].
Our goal is to show that, due to the property of nodal profile exact

controllability using L2–controls of the system, for γ sufficiently large the
optimal state xT satisfies the condition

ΠxT (t) = Πxd

for all t ∈ [t0, T ]. In the application in supply systems, this means that on
the time interval [t0, T ], the nodal profile that is desired by the customer
is attained exactly. A precise statement is given in the following theorem:

Theorem 3 Assume that T > t0 and that the system (3.1) is nodal profile
exactly controllable. If γ > C1 ‖uexact − ud‖L2(0,t0;U), for all s ∈ [t0, T ]
the solution (uT , xT ) of problem S(T, γ) satisfies the equation

ΠxT (s) = Πxd.

Proof: An application of the Direct Method of the Calculus of Variations
shows that a solution of S(T, γ) exists. The strict convexity of the con-
trol cost 1

2
‖ · ‖2L2(0,T ;U) implies that the solution of S(T, γ) is uniquely

determined. Choose

γ > C1 ‖vexact − ud‖L2(0,t0;U). (3.11)

Suppose that there exists τ ∈ [t0, T ] such that Πx∗(τ) 6= Πxd. Then
‖Πx∗ − Πxd‖L2(t0,T ;Z) 6= 0. Hence the objective functional of S(T, γ) is
differentiable in (u∗, x∗) and the necessary optimality conditions imply∫ T

0

〈u∗ − ud, v〉U dt+ γ

∫ T

t0

〈Πx∗(τ)−Πxd,Πy(τ)〉Z
‖Πx∗ −Πxd‖L2(t0,T ;Z)

dτ = 0 (3.12)

for all v ∈ L2(0, T ;U) where y solves

y′ +Ay = Bv, y(0) = 0.

Due to the nodal profile exact controllability of the system, we can
choose a control ṽ ∈ L2(0, t0;U) such that for the corresponding state ỹ
we have for all τ ∈ [t0, T ]

Πỹ(τ) =
Πx∗(τ)−Πxd

‖Πx∗ −Πxd‖L2(t0,T ;Z)

and
‖ṽ‖L2(0,T ;U) ≤ C1.
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Then the necessary optimality condition (3.12) yields the equation

∫ T

0

〈u∗−ud, ṽ〉U dt+γ
∫ T

t0

〈Πx∗(τ)−Πxd,
Πx∗(τ)−Πxd

‖Πx∗−Πxd‖L2(t0,T ;Z)
〉Z

‖Πx∗ −Πxd‖L2(t0,T ;Z)

dτ = 0.

(3.13)
This implies the equation∣∣∣∣∫ T

0

〈u∗ − ud, ṽ〉X dt
∣∣∣∣ = γ. (3.14)

On the other hand, we have the inequality∣∣∣∣∫ T

0

〈u∗ − ud, ṽ〉U dt
∣∣∣∣ ≤ ‖u∗ − ud‖L2(0,T ;U) ‖ṽ‖L2(0,T ;U).

Since the control vexact is feasible for S(T, γ), we have the inequality

1

2
‖u∗−ud‖2L2(0,T ;U) ≤

1

2
‖vexact−ud‖2L2(0,T ;U)+γ

∫ T

t0

‖Πpexact(τ)−Πxd‖Z dτ

=
1

2
‖vexact − ud‖2L2(0,T ;U).

Hence
‖u∗ − ud‖L2(0,T ;U) ≤ ‖vexact − ud‖L2(0,T ;U).

Moreover, we have
‖ṽ‖L2(0,T ;U) ≤ C1.

Hence (3.14) implies

γ ≤ C1 ‖vexact − ud‖L2(0,T ;U),

which is a contradiction to (3.11). Thus we have shown that Πx∗ = Πxd
on [t0, T ]. This implies the assertion. �.

3.4 An optimal control problem with L1-norm track-
ing term

In this section we present a result about the finite-time turnpike structure
of the optimal state and the optimal control that we have shown under the
assumption of exact controllability (3.2) for an optimal control problem
with an L1-norm tracking term with a singular weight in the objective
function.

For γ > 0 we consider the following optimal control problem R(T, γ)
with L1-norm tracking term:

R(T, γ)


min

u∈L2(0,T ;U)

1
2
‖u− ud‖2L2(0,T ;U) + γ

∫ T
t0

1
s−t0
‖x(s)− xd‖X ds

subject to
x′ +Ax = Bu, x(0) = x0.

In problem R(T, γ) the end condition x(T ) = xd does not appear. Prob-
lem R(T, γ) has a unique solution.
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Our goal is to show that, due to the property of exact controllability
using L2–controls of the system, for γ and T sufficiently large the optimal
state xT for R(T, γ) satisfies the condition

xT (t) = xd

for all t ∈ (t0, T ]. A precise statement is given in the following theorem:

Theorem 4 Assume that T > t0 and that the system (3.1) is exactly
controllable. If γ > 0, the solution (uT , xT ) of problem R(T, γ) satisfies
the equation

xT (t) = xd

for all t ∈ [t0, T ].

Proof: Since uexact is a feasible control for R(T, γ), evaluating the objec-
tive function of R(T, γ) at uexact yields the inequality

‖uT−ud‖2L2(0,T ;U) ≤ ‖uT−ud‖
2
L2(0,t0;U)+2 γ

∫ T

t0

1

s− t0
‖xexact(s)−xd‖X ds

(3.15)
= ‖uexact − ud‖2L2(0,t0;U).

An application of the Direct Method of the Calculus of Variations
shows that a solution of R(T, γ) exists. For the optimal control/state
pair we use the notation (uT , xT ).

If there exists t̂ ∈ (0, T ) with xT (t̂) = xd, the optimal way to continue
the control for s ∈ (t̂, T ] is with (ud, xd), hence for all s ∈ (t̂, T ] we have
xT (s) = xd.

Suppose that there exists a number t1 ∈ (t0, T ] such that xT (t1) 6= xd.
Then for all t ∈ [t0, t1), we also have xT (t) 6= xd. In particular, for all
t ∈ [t0, t1], we have ‖xT (t) − xd‖X > 0. Since xT is continuous, this
implies that

inf
t∈[t0, t1]

‖xT (t)− xd‖X = ε > 0.

This implies ∫ t1

t0

1

s− t0
‖x(s)− xd‖ ds ≥ ε

∫ t1

t0

1

s− t0
=∞.

Hence xT cannot be optimal, and this is a contradiction. �

4 Examples

In this section we present some examples to illustrate our results about
the finite-time turnpike phenomenon. We start with one example with a
system that is governed by an ordinary differential equation and then we
present examples with partial differential equations.

Example 2 Let us first return to Example 1. Here we present numerical
results that illustrate that the numerical solution for the discretized opti-
mal control problem where for T = 2 the interval [0, 2] has been replaced
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with a grid of 201 equidistant points and the ordinary differential equa-
tion has been replaced by a discrete time-system with the Euler backwards
discretization.

The resulting optimization problem has been solved numerically with
a standard method from matlab. To improve the performance, in the nu-
merical experiments the constraints u ≥ 0 and y ≤ 0 have been included in
the problem. (As shown in Example 1, they do not change the solution).
The numerical results are presented in Figure 1 for γ = 1

2
, Figure 2 for

γ = 1 and Figure 3 for γ = 2.

Figure 1: The figure shows the optimal control and the optimal state as ap-
proximate solutions of problem (OC)T for T = 2 and γ = 1

2 defined in Example
2.

Now we present examples of optimal control problems where Theorem
2 or Theorem 4 is applicable. These theorems assume that the system is
exactly controllable.

Example 3 Now we consider a problem of optimal torque control for an
Euler–Bernoulli beam. Let y0 ∈ H2(0, 1) and y1 ∈ H1(0, 1) be given. We
study the following optimal control problem:

min
u∈L2(0,T )

1
2
‖u2(t)‖2 dt+ γ maxt∈[t0, T ] ‖y(t, ·)‖L2(0,1) subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)
y(t, 0) = 0, yxx(t, 0) = u(t), t ∈ (0, T )
y(t, 1) = yxx(t, 1) = 0,
ytt(t, x) = −yxxxx(t, x), (t, x) ∈ (0, T )× (0, 1).
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Figure 2: The figure shows the optimal control and the optimal state as ap-
proximate solutions of problem (OC)T for T = 2 and γ = 1 defined in Example
2.

We have U = L2(0, 1) and X = L2(0, 1). Note that the Euler–Bernoulli
beam is exactly controllable in arbitrarily short times (see [17], Example
11.2.8), so in this case t0 > 0 can be chosen arbitrarily small. Theorem
2 implies that if γ is chosen sufficiently large the beam is steered to a
position of rest in the time t0 > 0,

Example 4 Consider the problem of optimal Neumann boundary control
of the wave equation. Define Q = (0, T ) × (0, 1). Here we have U =
L2(0, 1), X = L1(0, 1),

Let yd ∈ X and ud ∈ U be given. Consider the optimal control problem
min
u∈U

1
2

T∫
0

(u(t)− ud)2 dt+
T∫
2

1
t−2

1∫
0

|y(t, x)− yd| dx dt subject to

y(0, x) = 0, yt(0, x) = 0, x ∈ (0, 1)
y(t, 0) = 0, yx(t, 1) = u(t), t ∈ (0, T )
ytt(t, x)− yxx(t, x) = 0, (t, x) ∈ Q.

Our results show that the solution has a turnpike structure as described
in Theorem 4. The optimal control problem is similar to the Neumann
optimal boundary control problem with a differentiable objective function
considered in [8].

Now we present an example where Theorem 3 is applicable, that as-
sumes that the system is nodal profile exactly controllable.
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Figure 3: The figure shows the optimal control and the optimal state as ap-
proximate solutions of problem (OC)T for T = 2 and γ = 2 defined in Example
2.

Example 5 Now we consider a problem or optimal control where Theo-
rem 3 is applicable. The problem is similar as in [6], but in the tracking
term instead of the squared L2-norm we take the L2-norm. The motiva-
tion for this type of problem where the boundary trace of the state is driven
to a desired profile comes from the operation of networks of gas pipelines,
where the aim is to satisfy customer demands in an optimal way.

We consider a 2× 2 system in diagonal form. Let a length L > 0 and
a time interval [0, T ] be given. Let d− and d+ be real numbers such that

d− < 0 < d+.

Define the diagonal matrices

D =

(
d+ 0
0 d−

)
.

For all x ∈ [0, L], let M(x) denote a 2×2 matrix that depends continuously
on x. Assume that for all x ∈ [0, L] the matrix M(x) is positive semi–
definite. Let η0 ≤ 0 be a real number.

Consider the linear hyperbolic partial differential equation

rt +D rx = η0 M r (4.1)
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where for x ∈ (0, L) and t ∈ (0, T ), the state is given by r(t, x) =(
r+(t, x)
r−(t, x)

)
.

Let real numbers Rd+ and Rd− be given. To obtain an initial bound-
ary value problem, in addition to (4.1) we consider the initial condition
r(0, x) = 0 for x ∈ (0, L) at the time t = 0 and for t ∈ (0, T ) the Dirichlet
boundary conditions r+(t, 0) = u+(t), r−(t, L) = Rd−, with a boundary
control u+ in L2(0, T ). The resulting initial boundary value problem

r(0, x) = 0,
rt +D rx = η0 M r,
r+(t, 0) = u+(t),

r−(t, L) = Rd−

(4.2)

has a solution r ∈ C([0, T ], L2((0, L);R2)). Moreover, for the boundary
traces of the solution we have r+(·, L), r−(·, 0) ∈ L2(0, T ).

For x = (x+, x−) ∈ R2, we use the notation ‖x‖R2 =
√
x2

+ + x2
−. For

u = (u+, u−) ∈ (L2(0, T ))2 and R = (R+, R−) ∈ (L2(0, T ))2, define the
objective function

J(u, R)

=

∫ T

0

1
2

(u+(t))2 dt+ γ

∫ T−t0

t0

‖(R+(t)−Rd+, R−(t)−Rd−‖R2 dt. (4.3)

Then if L is sufficiently small and T and t0 < T are sufficiently large, the
system is nodal profile exactly controllable and Theorem 3 is applicable for
the optimal control problem{

minu+∈L2(0, T ) J(u+, (r+(·, L), r−(·, L)))

subject to (4.2).
(4.4)

In fact the result of Theorem 3 can be interpreted as a finite-time turn-
pike result (or exact turnpike), where the system is driven to a desired
stationary state in finite time

5 Conclusion

We have shown that a finite-time turnpike phenomenon occurs for prob-
lems of optimal control with nondifferentiable norm tracking terms.

We have first considered systems that are governed by ordinary differ-
ential equations. In the objective functions, L1-norm tracking terms are
used. The finite-time turnpike means that after finite time the optimal
state reaches the desired state. For infinite-dimensional systems, we have
shown that a finite-time turnpike phenomenon occurs for problems of op-
timal control for systems that are exactly controllable with a max-norm
type tracking term and a weighted L1-norm tracking term. For systems
that are nodal profile exactly controllable, we have shown that a finite-
time turnpike phenomenon occurs with an L2-norm tracking term.
This work was supported by the DFG grant CRC/Transregio 154, project
C03 and C05.
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[8] Gugat, M., Trélat, E., Zuazua, E.: Optimal Neumann control for the
1D wave equation: finite horizon, infinite horizon, boundary tracking
terms and the turnpike property, Systems and Control Letters 90,
61-70 (2016)

[9] Gugat, M., Zuazua, E.: Exact penalization of terminal constraints
for optimal control problems, Optim. Control Appl. Meth. 37, 1329–
1354 (2016)

[10] Gugat, M.: A turnpike result for convex hyperbolic optimal bound-
ary control problems, Pure and Applied Functional Analysis, 4, 849-
866 (2019)

[11] Li, T.-T., Wang, K., Gu, Q.: Exact Boundary Controllability of
Nodal Profile for Quasilinear Hyperbolic Systems, SpringerBriefs in
Mathematics (2016)

[12] Phillips, R. S.: A note on the abstract Cauchy problem Proc. Nat.
Acad. Sci. U.S.A. 40, 244-248 (1954)

[13] Porretta A., Zuazua, E.: Long Time versus Steady State Optimal
Control, SIAM J. Control and Optimization 51, 4242–4273 (2013)

[14] Sakamoto, N., Pighin, D., Zuazua, E.: The turnpike propety in
nonlinear optimal control – A geometric approach, Preprint (2019)

[15] Trelat, E., Zhang, C.: Integral and measure-turnpike properties
for infinite-dimensional optimal control systems, Mathematics of
Control, Signals, and Systems, 30:3 (2018)

20



[16] Trelat, E., Zhang, C., Zuazua, E.: Steady-state and periodic ex-
ponential turnpike property for optimal control problems in Hilbert
spaces, SIAM Journal on Control and Optimization 56, 1222–1252
(2018)

[17] Tucsnak M., Weiss, G.: Observation and Control for Operator Semi-
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