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Abstract. We obtain turnpike results for optimal control problems with lack

of stabilizability in the state equation and/or detectability in the state term in

the cost functional.
We show how, under weakened stabilizability/detectability conditions, terminal

conditions may affect turnpike phenomena.

Numerical simulations have been performed to illustrate the theoretical results.

Introduction

The purpose of this manuscript is to check the validity of the turnpike property
for linear quadratic optimal control problems, with weak observation of the state in
the cost functional. We consider the time-evolution optimal control problem

min
u
JT (u) =

1

2

∫ T

0

[
‖u(t)‖2 + ‖Cx(t)− z‖2

]
dt,

where: {
ẋ = Ax+Bu in (0, T )

terminal conditions

and the corresponding steady one

min
(x,u)

Js(x, u) =
1

2
‖u‖2 +

1

2
‖Cx− z‖2, with the constraint 0 = Ax+Bu.

The time-evolution problem satisfies the turnpike property if the time-evolution
optimal pair (uT , xT ) approximate the steady optimal pair (u, x) as the time horizon
T → +∞.

Typically, for turnpike to hold, the pair (A,B) is required to be stabilizable and
the pair (A,C) is asked to be detectable (see, e.g. [21, 32, 28]). Our goal is to
check if turnpike holds for the full control and the detected state, under weakened
detectability and controllability assumptions.
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The study of the behaviour of control problems in long time and the turnpike
property is a classical topic in the literature. We provide just some essential ref-
erences. A pioneer on the topic has been the econometrician Paul Samuelson (see
[9, 29, 18]). Later on the topic has been studied both in Mathematics and in Eco-
nomic Sciences [19, 36, 26, 14, 2, 23, 24, 10]. The infinite dimensional case has
been explored [1, 7, 8]. An extensive review on the topic is [37]. More recently, the
topic has been studied in [21, 32, 22, 31, 30, 13, 12, 20]. Related results have been
obtained in Mean Field Games (see, for instance, [5, 6]).

We distinguish two cases:

• section 1: free endpoint (the state left free at final time t = T );
• section 2: fixed endpoint (the state has to match a given final target at time
t = T ).

In section 1, we suppose the state is left free at t = T . We can then employ
Kalman decomposition (see, e.g. [38, section 3.3]) to decompose the state space
into a detectable part and an undetectable one. In Proposition 1, we prove that
an exponential turnpike property is satisfied by the full control and the detected
state if and only if the observable modes are stabilizable. In particular, if the
state equation is stabilizable, the turnpike property holds for the full control and
the detected state, without any observability assumptions on the cost functional
(Corollary 1).

These results rely on the absence of final condition for the state. As a consequence
of that, unobservable modes do not influence the value of the cost functional, i.e.
they are irrelevant for the sake of optimization.

In subsections 1.2 and 1.3, the above results are employed in the context of
pointwise control of respectively the heat and wave equation. We project the state
equation onto a finite number of Fourier modes. For the heat equation with poten-
tial, the full control and the observed state fulfils turnpike if and only if whenever
an eigenfunction is non-zero on the observation point, either the same eigenfunction
is non-zero on the control point or the point is stable for the free dynamics. For
the wave equation, a more restricted condition is required. The turnpike property
is verified by the full control and the observed state if and only if whenever an
eigenfunction vanishes on the control point, it vanishes on the observation point as
well.

In section 2, we deal with a fixed endpoint problem. Therefore,

• on the one hand, in the running cost we penalize only the observed state;
• on the other hand, the unobservable modes are relevant to fulfill the fi-

nal condition. Namely, the unobservable component of the system enters
in the definition of the set of admissible controls, where the functional is
minimized.

For this reason, we need to assume controllability of the full state equation and we
cannot employ Kalman decomposition to get rid of the unobservable component.
In Proposition 4, we prove that the turnpike property is verified for full control and
state, if the unobservable modes of A are not critical (they are not associated to a
purely imaginary eigenvalue of the free dynamics). In particular, turnpike can hold
even if both stable and unstable modes of A are not observable. This condition is
formulated as weak Hautus test.

Inspired by [10], we study a class of optimal control problems with fixed endpoint,
where the Hamiltonian matrix may have imaginary eigenvalues. In Proposition 5
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we prove that basically the exponential turnpike is satisfied by the control and the
observed state, while the unobserved state is linear in time, up to an exponentially
small remainder. We show how this result applies to the illustrative example in [10,
section 3].

1. Free endpoint problem

1.1. Statement of the main results. We consider the linear quadratic optimal
control problem:

min
u∈L2(0,T ;Rm)

JT (u) =
1

2

∫ T

0

[
‖u(t)‖2 + ‖Cx(t)− z‖2

]
dt, (1)

where: {
ẋ = Ax+Bu in (0, T )

x(0) = x0.
(2)

The matrix A ∈ Mn×n(R) describes the free dynamics, while the action of the
control is defined by multiplication by the matrix B ∈ Mn×m(R). C ∈ Mn×n(R)
is an observation matrix. By the Direct Methods in the Calculus of Variations and
strict convexity, the above problem admits a unique optimal control denoted by uT .
The optimal state is denoted by xT . Furthermore, by strict convexity, the optimal
control uT is the unique solution to the optimality system

ẋT (t) = AxT (t)−BB∗pT (t) t ∈ (0, T )

−ṗT (t) = A∗pT (t) + C∗(CxT (t)− z) t ∈ (0, T )

uT (t) = −B∗pT (t) t ∈ (0, T )

xT (0) = x0

pT (T ) = 0.

(3)

The corresponding steady problem reads as

min
(x,u)

Js(x, u) =
1

2
‖u‖2 +

1

2
‖Cx− z‖, with the constraint 0 = Ax+Bu. (4)

The well posedeness of the steady problem follows from the following Lemma.

Lemma 1.1. Let A ∈Mn×n(R), B ∈Mn×m(R), C ∈Mn×n(R) and z ∈ Rn. Set

M := {(u, x) ∈ Rm × Rn | 0 = Ax+Bu}

and

Js(u, x) :=
1

2

[
‖u‖2 + ‖Cx− z‖2

]
. (5)

Then,

(1) there exists (u, x) ∈M global minimizer for Js over M ;
(2) the set of global minimizers of Js is given by

argmin(Js) = {(u, x)}+ {0} × [ker(A) ∩ ker(C)] .

We prove this Lemma in the Appendix.
Inspired by [3, Definition 2.1, page 480], we give the following definition of C-

stabilizability, namely stabilizability of the observable part of the state.
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Definition 1.2. Let A ∈Mn×n(R), B ∈Mn×m(R) and C ∈Mn×n(R). (A,B) is
said to be C-stabilizable if there exists a feedback matrix L ∈Mm×n(R), such that

‖C exp (t (A−BL)) ‖ ≤ K exp(−µt), ∀ t ≥ 0,

for some K, µ > 0.

We introduce the concept of C-turnpike, i.e. turnpike for the full control and
the detected state. To this end, let us decompose the state space into a de-
tectable part and an undetectable one. We start be defining some observability
and detectability concepts. Let T > 0 be a time horizon. The output operator
ψT : Rn −→ L2(0,+∞;Rn) is defined as

ψT (ϕ0) :=

{
C exp (At)ϕ0 t ∈ [0, T ]

0 t > T
(6)

for any ϕ0 ∈ Rn. The subspace NO(C,A) := ker (ψT ) is called the unobservable
space, which admits an algebraic representation [33, Propositon 1.4.7]

ker (ψT ) =

n−1⋂
i=0

ker
(
CAi

)
. (7)

We define the observable space as the orthogonal ker (ψT )
⊥

. The undetectbale
space is defined as the subspace NO0+(C,A) := ker (ψT )∩L 0+(A), made of those
unobservable modes which are not stable. By (7),

NO0+(C,A) =

n−1⋂
i=0

ker
(
CAi

)
∩L 0+(A).

The detectable space is defined as W := NO0+(C,A)⊥.
We are now in position to decompose the state space into a detectable part and

an undetectable one
Rn = W ⊕NO0+(C,A),

where

NO0+(C,A) =

n−1⋂
i=0

ker
(
CAi

)
∩L 0+(A)

and
W := NO0+(C,A)⊥.

The matrix associated to the orthogonal projection onto W is denoted by D, while
the matrix associated to the projection onto NO0+(C,A) is indicated by R. For
any x ∈ Rn,

x = Dx+Rx. (8)

If (A,C) is detectable, D = I is the identity matrix.

Definition 1.3. Let A ∈ Mn×n(R), B ∈ Mn×m(R) and C ∈ Mn×n(R). Let D
be the corresponding projection onto the detectable space W , as in (8). The triplet
(A,B,C) enjoys C-turnpike if, for any initial datum x0 ∈ Rn and target z ∈ Rn,
there exists K = K(A,B,C, x0, z) and µ = µ(A,B,C) > 0, such that, for any
T > 0,

‖uT (t)− u‖+ ‖DxT (t)−Dx‖ ≤ K [exp(−µt) + exp (−µ (T − t))] ,
where (uT , xT ) is the optimal pair for (2)-(1) and (u, x) is a minimizer for the steady
functional (5).
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As we announced, the main assumption of the following Proposition is that ob-
servable modes are stabilizable.

Proposition 1. In the above notation, the triplet (A,B,C) enjoys C-turnpike if
and only if (A,B) is C-stabilizable.

The proof can be found in subsection 1.4.
We have the following Corollary.

Corollary 1. Suppose

(A,B) is stabilizable. (H)

Then, for any observation matrix C ∈ Mn×n(R), the triplet (A,B,C) enjoys C-
turnpike.

Proof of Corollary 1. (A,B) is stabilizable. Then, for any C, (A,B) is C-stabilizable.
Hence, Proposition 1 yields the conclusion. �

In subsection 1.2 we apply our theory to the pointwise control of the heat equation
and in subsection 1.3 we illustrate how our theory works in the pointwise control of
the wave equation. In subsection 1.4, we prove Proposition 1.

1.2. Pointwise control of the heat equation. Let Ω be a connected bounded
open set of Rn, n = 1, 2, 3, with C∞ boundary. Inspired by [17, section 1.2], we
consider a heat equation controlled from one point xcon ∈ Ω

yt −∆y + cy = v(t)δ(x− xcon) in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y(0, x) = y0(x), in Ω

(9)

where y = y(t, x) is the state, while v = v(t) is the control and δ(x − xcon) is the
Dirac delta at xcon, i.e. the control acts on xcon. The potential coefficient c is
supposed to be bounded. Following [17, subsection 1.2.2], one can prove that for
any y0 ∈ L2(Ω) and v ∈ L2(0, T ), there exists a unique y ∈ L2((0, T )× Ω) solution
by transposition to (9), with initial datum y0 and control v.

We derive now a finite-dimensional Fourier approximation of the above controlled
equation. We assume that the spectrum of A := −∆ + cI : H1

0 (Ω) −→ H−1(Ω)
is simple. Let {λk} be the spectrum of A and let {φk} be a corresponding set of
eigenfunctions, orthonormal basis of L2(Ω).

FixN ∈ N\{0}. The projection of (9) on the finite dimensional space span {φ1, . . . , φN}
reads as {

ẋ = ANx+BNu in (0, T )

x(0) = x0,
(10)

where AN is an N ×N diagonal matrix

AN =

−λ1

0

0

−λN




, (11)
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the control operator BN is an N × 1 matrix

BN =

φ1(xcon)

φ2(xcon)

φN (xcon)




(12)

and the initial datum

x0 =

[∫
Ω

y0φ1dx, . . . ,

∫
Ω

y0φNdx

]
.

We consider the optimal control problem:

min
u∈L2(0,T )

JT (u) =
1

2

∫ T

0

[
|u(t)|2 + ‖CNx(t)− z‖2

]
dt, (13)

where x is the state solution to (10), with control u and initial datum x0, the scalar
z ∈ R is a running target and

CN := [φ1(xobs), . . . , φN (xobs)] ,

namely the state is observed on xobs ∈ Ω.

Proposition 2. The triplet (AN , BN , CN ) enjoys CN -turnpike if and only if for
any i ∈ {1, . . . , N} such that φi(xobs) 6= 0, either φi(xcon) 6= 0 or λi > 0.

Proof of Proposition 2. In this case, the observable subspace reads as

WN = NO(CN , AN )⊥ =

n−1∑
i=0

Range
(

(A∗N )
i
C∗N

)
(14)

and the stabilizable subspace

S(AN , BN ) =

n−1∑
i=0

Range
(
Ai

NBN

)
+ L −(AN ).

(AN , BN ) is CN -stabilizable if and only if

WN ⊆ S(AN , BN ).

Now, for any natural i ≥ 0, we have

(A∗N )
i
C∗N =

λi1φ1(xobs)

λiNφN (xobs)




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and

(AN )
i
BN =

λi1φ1(xcon)

λiNφN (xcon)




.

Hence, since the spectrum of the Dirichlet laplacian is simple, the (CN , AN ) observ-
able subspace is

WN =
{
w ∈ RN | wi = 0, if φi(xobs) = 0

}
and the (AN , BN ) stabilizable subspace reads as

S(AN , BN ) =
{
w ∈ RN | wi = 0, if φi(xcon) = 0 and λi ≤ 0

}
.

Then, WN ⊆ S(AN , BN ) if and only if

{i ∈ {1, . . . , N} | φi(xobs) 6= 0} ⊂ {i ∈ {1, . . . , N} | φi(xcon) 6= 0 and λi > 0}
Then, by Proposition 1, the triplet (AN , BN , CN ) enjoys CN -turnpike if and only

if for any i ∈ {1, . . . , N} such that φi(xobs) 6= 0, either φi(xcon) 6= 0 or λi > 0. �

We have performed some numerical simulations employing a conjugate gradient
method (see [25, algorithm 2 page 111]). In our notation, we chose domain Ω =
(0, 10), N = 16, potential coefficient c ≡ −(2π/10)2 − 1, xcon = L/3, xobs = L/2,
target z ≡ 1 and initial datum x0 = [1, . . . , 1]. The results are depicted in figures 1
and 2.

Figure 1. Optimal control for (13) subject to (10), with Ω =
(0, 10), N = 16, c ≡ −(2π/10)2− 1, xcon = L/3, xobs = L/2, target
z ≡ 1 and initial datum x0 = [1, . . . , 1].
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Figure 2. Observed optimal state for (13) subject to (10), with
Ω = (0, 10), N = 16, c ≡ −(2π/10)2 − 1, xcon = L/3, xobs = L/2,
target z ≡ 1 and initial datum x0 = [1, . . . , 1].

1.3. Pointwise control of the wave equation. Let Ω be a connected bounded
open set of Rn, n = 1, 2, 3, with C∞ boundary.

As in [17, section 1.3], we consider the wave equation controlled from xcon ∈ Ω
ytt −∆y = v(t)δ(x− xcon) in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y(0, x) = y0
0(x), yt(0, x) = y1

0(x) in Ω

(15)

where y = y(t, x) is the state, while v = v(t) is the control whose action is localized
on the point xcon by means of multiplication with the Dirac delta δ(x− xcon). The
well posedeness of the above equation was analyzed in [17, subsection 1.3.2], by
using transposition techniques. For any y0 ∈ H1

0 (Ω), y1 ∈ L2(Ω) and v ∈ L2(0, T ),
there exists a unique solution by transposition to (15), with initial datum (y0, y1)
and control v.

We suppose that the spectrum {λk} of the Dirichlet laplacian is simple. Let {φk}
be an orthonormal basis of L2(Ω), such that −∆φk = λkφk.

Fix N ∈ N \ {0}. Set

DN :=

λ1

0

0

λN




. (16)

The projection of (15) onto the finite dimensional space span {φ1, . . . , φN} reads as{
ẋ = ANx+BNu in (0, T )

x(0) = x0,
(17)
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where AN is an 2N × 2N matrix

A =

(
0 IN
−DN 0

)
, (18)

the control operator BN is an 2N × 1 matrix

BN =

0

0

φ1(xcon)

φ2(xcon)

φN (xcon)





(19)

and the initial datum

x0 =

[∫
Ω

y0φ1dx, . . . ,

∫
Ω

y0φNdx;

∫
Ω

y1φ1dx, . . . ,

∫
Ω

y1φNdx

]
.

We consider the optimal control problem:

min
u∈L2(0,T )

JT (u) =
1

2

∫ T

0

[
|u(t)|2 + ‖CNx(t)− z‖2

]
dt, (20)

where x is the state solution to (17), with control u and initial datum x0, the scalar
z is a running target and

CN := [φ1(xobs), . . . , φN (xobs); 0, . . . , 0] ,

namely the state is observed on xobs ∈ Ω.
We have the following result.

Proposition 3. The triplet (AN , BN , CN ) enjoys CN -turnpike if and only if for
any i ∈ {1, . . . , N} such that φi(xobs) 6= 0, we have φi(xcon) 6= 0.

Proof of Proposition 3. As in the proof of Proposition 2, we define the observable
subspace

WN := NO(CN , AN )⊥ =

n−1∑
i=0

Range
(

(A∗N )
i
C∗N

)
(21)

and the stabilizable subspace

S(AN , BN ) =

n−1∑
i=0

Range
(
Ai

NBN

)
+ L −(AN ),

where in this case AN and BN are given respectively by (18) and (19). The CN -
stabilizability of (AN , BN ) is equivalent to the inclusion

WN ⊆ S(AN , BN ).
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On the one hand, for any natural i ≥ 0, we have

(A∗N )
2i
C∗N =

(−λ1)iφ1(xcon)

(−λN )iφN (xcon)

0

0





.

and

(A∗N )
2i+1

C∗N =

0

0

(−λ1)iφ1(xcon)

(−λN )iφN (xcon)




On the other hand, for any natural i ≥ 0, we have

(AN )
2i
BN =

0

0

(−λ1)iφ1(xcon)

(−λN )iφN (xcon)




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and

(AN )
2i+1

BN =

(−λ1)iφ1(xcon)

(−λN )iφN (xcon)

0

0





.

Hence, since the spectrum of the Dirichlet laplacian is simple, the (CN , AN ) observ-
able subspace is

WN =
{
w ∈ R2N | wi = 0 and wi+1 = 0 if φi(xobs) = 0

}
and the (AN , BN ) stabilizable subspace reads as

S(AN , BN ) =
{
w ∈ R2N | wi = 0 and wi+1 = 0 if φi(xcon) = 0

}
.

Then, the inclusion WN ⊆ S(AN , BN ) holds if and only if

{i ∈ {1, . . . , N} | φi(xobs) 6= 0} ⊂ {i ∈ {1, . . . , N} | φi(xcon) 6= 0}
Then, by Proposition 1, the triplet (AN , BN , CN ) enjoys CN -turnpike if and only

if for any i ∈ {1, . . . , N} such that φi(xobs) 6= 0, φi(xcon) 6= 0. �

We carried out some numerical simulations using the interior-point optimization
routine IPOpt (see [34] and [35]) coupled with AMPL [11], which serves as modelling
language and performs the automatic differentiation. In our notation, we chose
domain Ω = (0, 10), N = 16, xcon = L/2, xobs = L/2, target z ≡ 1 and initial
datum x0 = [1, . . . , 1]. The results are illustrated in figures 3 and 4.
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Figure 3. Optimal control for (17)-(20), with Ω = (0, 10), N =
16, xcon = L/2, xobs = L/2, z ≡ 1 and xcon = [1, . . . , 1].

Figure 4. Observed optimal state for (17)-(20), with Ω = (0, 10),
N = 16, xcon = L/2, xobs = L/2, z ≡ 1 and xcon = [1, . . . , 1].

1.4. Proof of Proposition 1. The key-tool for our analysis of the control problem
(2)-(1) is the Kalman decomposition (see, e.g. [38, section 3.3]). In the notation
of [4], L 0,+(A) denote the A-invariant subspace of Rn spanned by the generalized
eigenvectors of A corresponding to eigenvalues λ of A such that Re(λ) ≥ 0. We
decompose the state space into an detectable part and an undetectable one

Rn = W ⊕NO0+(C,A),

where

NO0+(C,A) =

n−1⋂
i=0

ker
(
CAi

)⋂
L 0,+(A) (22)

and

W := NO0+(C,A)⊥. (23)



THE TURNPIKE WITH LACK OF OBSERVABILITY 13

The matrix associated to the orthogonal projection onto W is denoted by D, while
the matrix associated to the projection onto NO0+(C,A) is indicated by R. Hence,
for any x ∈ Rn,

x = Dx+Rx.

where Dx ∈W and Rx ∈ NO0+(C,A). By definition (22), we realize that

Cx = CDx+ CRx = CDx. (24)

Moreover, by (22), we haveANO0+(C,A) ⊆ NO0+(C,A). Then, ARx ∈ NO0+(C,A),
whence

RARx = ARx and DARx = 0. (25)

In the notation of [4], L −(A) denote the A-invariant subspace of Rn spanned
by the generalized eigenvectors of A corresponding to eigenvalues λ of A such that
Re(λ) < 0 and the stabilizable subspace

S(A,B) :=

n−1∑
i=0

Range
(
AiB

)
+ L −(A).

An essential tool for the proof of Proposition 1 is the following Lemma.

Lemma 1.4. Let A ∈ Mn×n(R), B ∈ Mn×m(R) and C ∈ Mn×n(R). (A,B) is
C-stabilizable if and only if for any initial datum x0 ∈ Rn, there exists a control
u ∈ L2(0,+∞;Rm), such that ∫ ∞

0

‖Cx‖2dt < +∞, (26)

x being the solution to (2), with initial datum x0 and control u.

The above Lemma follows from [3, Remark 2.2 page 24] applied to the detectable
space W , introduced in (23).

We are now ready to prove Proposition 1.

Proof of Proposition 1. Step 1 Necessity of the C-stabilizability of (A,B)
Suppose (A,B,C) enjoys C-turnpike. Then, taking target z = 0, for any initial
datum x0 ∈ Rn, we have

‖uT (t)‖+ ‖CxT (t)‖ ≤ K [exp (−µt) + exp (−µ (T − t))] ,
(uT , xT ) being the optimal pair for (2)-(1), with target z = 0 and initial datum x0,
whence

JT (uT ) ≤ K, (27)

where K is independent of the time horizon T . By Banach-Alaoglu Theorem, there
exists u∞ ∈ L2((0,+∞);Rn), such that, up to subsequences,

uT −→
T→+∞

u∞,

weakly in L2((0,+∞);Rm). We denote by x∞ the solution to (2), with initial datum
x0 and control u∞. Arbitrarily fix S > 0. By definition of weak convergence, up to
subsequences

xT −→
T→+∞

x∞,

weakly in L2((0, S);Rm). By lower-semicontinuity of the norm with respect to the
weak convergence and (27), for any S > 0, we have∫ S

0

‖Cx∞‖2dt ≤ lim inf
T→+∞

1

2

∫ S

0

[
‖uT (t)‖2 + ‖CxT (t)‖2

]
dt ≤ lim inf

T→+∞
JT (uT ) ≤ K,
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whence, by the arbitrariness of S,∫ ∞
0

‖Cx∞‖2dt ≤ K < +∞.

Then, by Lemma 1.4, (A,B) is C-stabilizable.
Step 2 We rewrite the functional employing Kalman decomposition
Assume (A,B) is C-stabilizable. Take any initial datum x0 ∈ Rn and control
u ∈ L2(0, T ;Rm). Let x be the corresponding solution to the state equation{

ẋ = Ax+Bu in (0, T )

x(0) = x0.
(28)

Set y := Dx. By (25),

ẏ =
d

dt
[Dx] = DAx+DBu = DADx+DARx+DBu = DADx+DBu = DAy+DBu,

whence {
ẏ = DAy +DBu in (0, T )

y(0) = Dx0.
(29)

Furthermore, by (25),
Cx = CDx+ CRx = Cy.

Then, the functional JT introduced in (2)-(1) can be rewritten as

JT (u) =
1

2

∫ T

0

[
‖u(t)‖2 + ‖Cy(t)− z‖2

]
dt, (30)

where: {
ẏ = DAy +DBu in (0, T )

y(0) = Dx0.
(31)

Step 3 Sufficiency of C-stabilizability of (A,B)
Let uT be the optimal control and yT be the optimal state for the optimal control
problem (31)-(30).

By construction, (DA,C) is detectable on W and, since (A,B) is C-stabilizable,
(DA,DB) is stabilizable on W . Then, by [28, Corollary 3.2] applied to (31)-(30),
we have

‖uT (t)− u‖+
∥∥DxT (t)−Dx

∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] ,
K and µ > 0 being independent of the time horizon. Then, the triplet (A,B,C)
enjoys C-turnpike, as desired. �

2. Fixed endpoint problem

In this section, we consider an optimal control problem for (2) with arbitrarily
prescribed terminal state. Let an initial datum x0 ∈ Rn and a final target x1 ∈ Rn

be given.
In the notation of section 1, assume (A,B) is controllable. Consider the control

system {
ẋ = Ax+Bu in (0, T )

x(0) = x0, x(T ) = x1.
(32)

We introduce the set of admissible controls

Uad :=
{
u ∈ L2(0, T ;Rm) | there exists a solution x to (32)

}
. (33)
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We consider the linear quadratic optimal control problem:

min
u∈Uad

JT (u) =
1

2

∫ T

0

[
‖u(t)‖2 + ‖Cx(t)− z‖2

]
dt, (34)

where z ∈ Rn is a running target. By the Direct Methods in the Calculus of Vari-
ations and strict convexity, the above problem admits a unique optimal control
denoted by uT . The optimal state is denoted by xT . Furthermore, by strict con-
vexity, the optimal control uT = −B∗pT , where (xT , pT ) is the unique solution to
the optimality system

ẋT (t) = AxT (t)−BB∗pT (t) t ∈ (0, T )

−ṗT (t) = A∗pT (t) + C∗
(
CxT (t)− z

)
t ∈ (0, T )

xT (0) = x0

xT (T ) = x1.

(35)

As in the free endpoint problem, the steady problem is a minimization problem
in finite dimension under linear constraints The corresponding steady problem reads
as

min
(x,u)

Js(x, u) =
1

2
‖u‖2 +

1

2
‖Cx− z‖, with the constraint 0 = Ax+Bu. (36)

This problem has been analyzed in section 1.
As we anticipated, the fixed endpoint case is more delicate. Indeed,

• in the functional, we penalize only the observable part of the state;
• in the definition of the set of admissible control, we impose a final condition
xT (T ) = x1, which involves the full state, including the unobservable part.

We cannot expect the classical turnpike property to be valid, without any additional
assumptions on (A,C). Indeed, take A skew adjoint and C = 0. The resulting
optimal control is oscillatory, thus violating the turnpike property.

The turnpike property is verified by the full state and adjoint state if (A,C)
fulfills the weak Hautus test, introduced in definition (2.1) below. In subsection
2.2, inspired by [10], we study velocity turnpike in case the Hamiltonian matrix has
imaginary eigenvalues.

2.1. The sufficiency of the weak Hautus test for exponential turnpike.

Definition 2.1. Take (A,C) as in (32)-(34). The pair (A,C) is said to satisfy the
weak Hautus test if

rank

[
A− iβI

C

]
= n, ∀ iβ ∈ sp (A) , (37)

where sp (A) denotes the spectrum of A, i stands for the imaginary unit and β ∈ R.

Note that the difference with respect to the classical Hautus test (see, e.g. [33,
Proposition 1.5.1]) is that the above rank condition has to be checked only for purely
imaginary eigenvalues iβ. Namely, only eigenvectors of imaginary eigenvalues of A
are required to be observable.

Proposition 4. Suppose (A,B) is controllable and the weak Hautus test (37) is
satisfied. Take T > 2. Let uT be an optimal control for (32)-(34) and xT be the
optimal state. There exist T -independent K and µ > 0 such that

‖uT (t)− u‖+ ‖xT (t)− x‖ ≤ K [exp (−µt) + exp (−µ (T − t))] , (38)
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where (u, x) is the unique solution to the steady problem (36).

The proof of the sufficiency of the weak Hautus test (37) (available at the end of
the present section) is based on Lemma 2.2, Lemma 2.3 and Lemma 2.4, concerning
the properties of the optimality system (35) and its associated matrix, the so-called
Hamiltonian matrix

Ham :=

[
A −BB∗

−C∗C −A∗
]
. (39)

Lemma 2.2 is well-known in the literature (see e.g. [15, Lemma 8]). However, we
provide the proof for the reader’s convenience.

Lemma 2.2. Consider the Hamiltonian matrix Ham introduced in (39). Assume
(A,B) is stabilizable. We have L 0(H) = {0} if and only if the weak Hautus test is
satisfied.

Proof of Lemma 2.2. Since (A,B) is stabilizable, the Algebraic Riccati Equation

ÊA+A∗Ê − ÊBB∗Ê + C∗C = 0 (ARE) (40)

admits a unique antistrong solution Ê, a symmetric and positive semidefinite ma-

trix, such that A+ := A−BB∗Ê has all eigenvalues with nonpositive real parts (see
e.g. [16] and references therein). As in [27] and [16, formula (3.8) page 57], set

Λ :=

[
In 0

−Ê In.

]
Using (40), we have1

ΛHamΛ−1 =

[
A−BB∗Ê −BB∗

0 −
(
A−BB∗Ê

)∗
.

]
This, together with [4, Fact 1-(f)], yields the equivalence between L 0(H) = {0}
and NO0(C,A) = {0}, with

NO0(C,A) :=

n−1⋂
i=0

ker
(
CAi

)
∩L 0(A).

To conclude, we have to prove that NO0(C,A) = {0} if and only if (A,C) satisfies
the weak Hautus test (37). On the one hand, if NO0(C,A) = {0}, then for any
eigenvector v corresponding to imaginary eigenvalue iβ of A and for any k ∈ N∪{0}

CAkv = (iβ)
k
Cv. (41)

Since NO0(C,A) = {0}, we have Cv 6= 0, whence

rank

[
A− iβI

C

]
= n,

as required. On the other hand, suppose (37) is verified. Suppose, by contradiction,
that NO0(C,A) ) {0}. Since NO0(C,A) is A-invariant, there exists a nonzero

1

Λ−1 =

[
In 0

Ê In.

]



THE TURNPIKE WITH LACK OF OBSERVABILITY 17

eigenvector v ∈ NO0(C,A) corresponding to an imaginary eigenvalue iβ. By (41),
this leads to Cv = 0, which yields

rank

[
A− iβI

C

]
< n,

so obtaining a contradiction, as desired. �

We now provide a global bound of the norm of the adjoint state, uniform in the
time horizon T > 2.

Lemma 2.3. Consider the control problem (32)-(34). There exists K = K(A,B,C)
such that, for any time horizon T > 2 and time instant t ∈ [0, T ], we have∥∥pT (t)

∥∥ ≤ K [‖x0‖+ ‖x1‖+ ‖z‖] (42)

Proof of Lemma 2.3. Step 1 Reduction to the case running target z = 0
By Lemma B.1, the vector [0;C∗z] ∈ Range (Ham), whence there exists (x, p) ∈
Rn × Rn solving the steady optimality system{

Ax−BB∗p = 0

−A∗p− C∗(Cx− z) = 0.
(43)

Introduce the perturbation variables x̃T := xT − x and p̃T := pT − p. We realize
that the pair

(
x̃T , p̃T

)
solves

˙̃xT (t) = Ax̃T (t)−BB∗p̃T (t) t ∈ (0, T )

− ˙̃pT (t) = A∗p̃T (t) + C∗Cx̃T (t) t ∈ (0, T )

x̃T (0) = x0 − x
x̃T (T ) = x1 − x,

(44)

the optimality system for the control problem (32)-(34), with terminal conditions
x̃T (0) = x0 − x and x̃T (T ) = x1 − x. This allows us to reduce to the case z = 0.
To avoid weighting the notation, we will drop the tilde in x̃T and p̃T .
Step 2 Upper bound for the minimum value of the functional
Consider the control

û(t) :=


u0(t) t ∈ (0, 1)

0 t ∈ (1, T − 1)

u1(t− T + 1) t ∈ (T − 1, T ),

(45)

where u0 : (0, 1) −→ Rm drives the control system (32) from x0 to 0 in time 1 and
u1 : (0, 1) −→ Rm steers (32) from 0 to x1 in time 1. Consequently the control û,
steers the system from x0 to x1 in time T .

Now, for i = 0, 1, the control ui operates in an interval of length one. Then,
there exists some K, independent of T , such that

‖ui‖L2(0,1) ≤ K‖xi‖,

whence

‖û‖L2(0,T ) ≤ K [‖x0‖+ ‖x1‖] . (46)
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Now, let x̃ be the solution to (32), with control û. By definition of û, x̃(t) = 0, for
t ∈ [1, T − 1], whence∫ T

0

‖x̃‖2dt =

∫ 1

0

‖x̃‖2dt+

∫ T

T−1

‖x̃‖2dt

≤ K

[
‖x0‖2 + ‖x1‖2 +

∫ 1

0

‖u0‖2dt+

∫ T

T−1

‖u1‖2dt

]
≤ K

[
‖x0‖2 + ‖x1‖2

]
, (47)

the constant K being independent of the time horizon. Therefore, by (46) and (47)
and since uT is a minimizer of JT ,

JT (uT ) ≤ JT (û) ≤ K
[
‖x0‖2 + ‖x1‖2

]
. (48)

Step 3 Boundedness of ‖pT (0)‖ and ‖pT (T )‖
By assumptions, (A,B) is controllable. Then, (A∗, B∗) is observable. Therefore, by
adapting the techniques of [21, remark 2.1 page 4245], for every t ∈ [0, T ], we have

‖pT (t)‖2 ≤ K

[∫ T

0

‖B∗pT (s)‖2ds+

∫ T

0

‖C∗CxT (s)‖2ds

]

≤ K

[∫ T

0

‖uT (s)‖2ds+

∫ T

0

‖CxT (s)‖2ds

]
= KJT (uT ) ≤ K

[
‖x0‖2 + ‖x1‖2

]
, (49)

with K independent of T , as desired.
�

Let H ∈ MN×N (R) be a square matrix. Following the notation of [4], L −(H),
L 0(H) and L +(H) denote resp. the H-invariant subspaces of Rn spanned by
the generalized eigenvectors of H corresponding to eigenvalues λ of H such that
Re(λ) < 0, Re(λ) = 0 and Re(λ) > 0. In the proof Proposition 4 we use the
following Lemma, proved in the appendix.

Lemma 2.4. Let H ∈MN×N (R) be a square matrix. Let y be a solution to

ẏ = Hy. (50)

Then, for every t ∈ [0, T ]

dist
(
y(t),L 0(H)

)
≤ K [exp (−µt) ‖y(0)‖+ exp (−µ (T − t)) ‖y(T )‖] (51)

the constants K and µ > 0 being independent of the time horizon.

We are now in position to prove Proposition 4.

Proof of Proposition 4. Step 1 Hyperbolicity of the Hamiltonian matrix
If the weak Hautus test (37) is verified, by Lemma 2.2, the critical subspace
L 0(H) = {0}.
Step 2 Uniqueness of the minimizer for the steady problem
By the above step, we have L 0(H) = {0}. Then, the steady optimality system{

Ax−BB∗p = 0

−A∗p− C∗(Cx− z) = 0
(52)
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admits a unique solution (x, p), whence the optimal pair for the minimization prob-
lem (36) is unique and is given by (u, x) = (−B∗p, x).
Step 3 Conclusion
If the weak Hautus test (37) is verified, by Lemma 2.2, the critical subspace
L 0(H) = {0}. Then, Lemma 2.3 and Lemma 2.4 allow us to conclude. �

2.2. Exponential velocity turnpike. This subsection has been inspired by [10]
where the notion of velocity turnpike has been introduced. In particular, we give a
theoretical explanation of the illustrative example in [10, section 3]. Note that, in
the proposition below the Hamiltonian matrix may have imaginary eigenvalues.

By [4, fact 1.(f)],

L 0
(
A−BB∗Ê

)
= NO0(C,A). (53)

Then, we can decompose

Rn = NO0(C,A)⊕L −
(
A−BB∗Ê

)
(54)

and define the corresponding projections P1 onto NO0(C,A) and P2 onto

L −
(
A−BB∗Ê

)
.

Proposition 5. Suppose (A,B) is controllable and NO0(C,A) ⊆ ker (A). Take
T > 2. Let uT be an optimal control for (32)-(34) and xT be the optimal state.
Then, there exist T -independent K and µ > 0 such that∥∥uT (t)− ûT

∥∥+
∥∥P2x

T (t)− x̂T
∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] , (55)

and∥∥uT (t)− ûT
∥∥+
∥∥P1

[
xT (t)−

(
x0 − tBB∗q̂T

)]∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] ,
(56)

where q̂T ∈ ker
((
A−BB∗Ê

)∗)
, x̂T ∈ L −

(
A−BB∗Ê

)
and ûT = −BB∗Êx̂T −

BB∗q̂T . Furthermore,

dist
((
ûT , x̂T

)
, argmin [Js]

)2 ≤ K

T
, (57)

for some K is independent of the time horizon T .

Proof of Proposition 5. The optimal control for the time-evolution problem (32)-
(34) reads as uT = −B∗pT , where

ẋT (t) = AxT (t)−BB∗pT (t) t ∈ (0, T )

−ṗT (t) = A∗pT (t) + C∗
(
CxT (t)− z

)
t ∈ (0, T )

uT (t) = −B∗pT (t) t ∈ (0, T )

xT (0) = x0

xT (T ) = x1.

(58)

By working in perturbation variables, as in the step 1 of the proof of Lemma 2.3,
we can reduce to the case z = 0.
Step 1 Change of variable
Set the linear transformation

Λ :=

[
In 0

−Ê In.

]
(59)
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By using the Algebraic Riccati Equation (40), we have2

ΛHamΛ−1 =

[
A−BB∗Ê −BB∗

0 −
(
A−BB∗Ê

)∗
.

]
Set further qT := −ÊxT + pT . Then the pair

(
xT , qT

)
solves

ẋT (t) =
(
A−BB∗Ê

)
xT (t)−BB∗qT (t) t ∈ (0, T )

−q̇T (t) =
(
A−BB∗Ê

)∗
qT (t) t ∈ (0, T )

xT (0) = x0

xT (T ) = x1.

(60)

Step 2 Proof of the equality L 0
(
A−BB∗Ê

)
= ker

(
A−BB∗Ê

)
By [4, fact 1.(f)-(d)] and the hypothesis NO0(C,A) ⊆ ker(A), we have

L 0
(
A−BB∗Ê

)
= NO0(C,A) ⊆ ker(A), (61)

and

L 0
(
A−BB∗Ê

)
= NO0(C,A) ⊆ ker

(
Ê
)
, (62)

whence

L 0
(
A−BB∗Ê

)
⊆ ker (A) ∩ ker

(
Ê
)
⊆ ker

(
A−BB∗Ê

)
, (63)

Therefore, by definition of critical subspace L 0

L 0
(
A−BB∗Ê

)
= ker

(
A−BB∗Ê

)
. (64)

Step 3 Estimate (55)
From step 2, we have also

L 0
((
A−BB∗Ê

)∗)
= ker

((
A−BB∗Ê

)∗)
. (65)

To finish the proof, we firstly focus on the second equation in (60), satisfied by qT .

By (65), there exists q̂T ∈ L 0
((
A−BB∗Ê

)∗)
= ker

((
A−BB∗Ê

)∗)
, such that∥∥qT (t)− q̂T

∥∥ ≤ K [exp (−µ(T − t))]
∥∥qT (T )

∥∥ , ∀ t ∈ [0, T ] (66)

the constant K and µ > 0 being independent of T > 2. We need now to estimate∥∥qT (T )
∥∥, uniformly on T > 2. By definition of the linear transformation Λ, we have

qT (T ) = pT (T )− ÊxT (T ) = pT (T )− Êx1. (67)

By Lemma 2.3, there exists K = K(A,B,C) such that, for any time horizon T > 2
and time instant t ∈ [0, T ], we have∥∥pT (t)

∥∥ ≤ K [‖x0‖+ ‖x1‖+ ‖z‖] , (68)

whence ∥∥qT (T )
∥∥ ≤ ∥∥pT (T )

∥∥+K ‖x1‖ ≤ K [‖x0‖+ ‖x1‖+ ‖z‖] (69)

2

Λ−1 =

[
In 0

Ê In.

]
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Therefore, by (66) and (69), we have∥∥qT (t)− q̂T
∥∥ ≤ K [exp (−µ(T − t))] , ∀ t ∈ [0, T ] (70)

the constants µ = µ(A,B,C) and K = K(A,B,C, x0, x1, z).
At this stage, by definition of P2,
d

dt

[
P2x

T
]

= P2

(
A−BB∗Ê

)
P2x

T − P2BB
∗qT in (0, T )

P2x
T (0) = P2x0.

(71)

Now, P2

(
A−BB∗Ê

)
P2 is stable, which, together with (70), leads to∥∥P2x

T (t)− x̂T
∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] , (72)

for some x̂T ∈ L −
(
A−BB∗Ê

)
. Now, by (72) and (62), the optimal control

uT = −B∗ÊxT −B∗qT = −B∗ÊP2x
T −B∗qT . (73)

Then, for ûT = −BB∗Êx̂T −BB∗q̂T , we have∥∥uT (t)− ûT
∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] . (74)

This finishes the proof of (55).
Step 4 Proof of (56)
To conclude, it suffices to prove∥∥P1

[
xT (t)−

(
x0 − tBB∗q̂T

)]∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] . (75)

We have
d

dt

[
P1x

T
]

= P1

(
A−BB∗Ê

)
P1x

T − P1BB
∗qT in (0, T )

P1x
T (0) = P1x0.

(76)

Now, by assumption, the kernel ker
(
A−BB∗Ê

)
= L 0

(
A−BB∗Ê

)
= NO0(C,A),

whence 
d

dt

[
P1x

T
]

= −P1BB
∗qT in (0, T )

P1x
T (0) = P1x0,

(77)

i.e. P1x
T reads as

P1x
T (t) = P1x0 −

∫ t

0

P1BB
∗qT (s)ds

= P1x0 −
∫ t

0

P1BB
∗q̂T ds−

∫ t

0

P1BB
∗ [qT (s)− q̂T

]
ds

= P1x0 − tP1BB
∗q̂T −

∫ t

0

P1BB
∗ [qT (s)− q̂T

]
ds. (78)
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By (70), we have, for any t ∈ [0, T ]∫ t

0

∥∥P1BB
∗ [qT (s)− q̂T

]∥∥ ds ≤ K

∫ t

0

exp (−µ(T − s)) ds

=
K

µ
[exp (−µ(T − t))− exp (−µT )]

≤ K

µ
exp (−µ(T − t)) , (79)

whence ∥∥P1x
T (t)− P1x0 − tP1BB

∗q̂T
∥∥ ≤ K

µ
exp (−µ(T − t)) , (80)

as desired.
Step 5 Proof of (57)
On the one hand, defining a control û as in (45), we have the upper bound

JT (uT ) ≤ JT (û) ≤ K
[
‖x0‖2 + ‖x1‖2

]
. (81)

On the other hand, employing (55) we get the lower bound

JT (uT ) ≥ T
[∥∥ûT∥∥2

+
∥∥Cx̂T∥∥2

]
−K, (82)

where the constant K is independent of the time horizon T and the terminal data

x0 and x1. Since x̂T ∈ L −
(
A−BB∗Ê

)
, (81) together with (82) yields (57). This

finishes the proof. �

Example 1. We show now how our techniques apply in the example presented in
[10, section 3]. We consider the control system

ẋ1 = x2 in (0, T )

ẋ2 = u in (0, T )

x1(0) = x0,1, x2(0) = x0,2, x1(T ) = x1,1, x2(T ) = x1,2.

(83)

We introduce the set of admissible controls

Uad :=
{
u ∈ L2(0, T ;R) | there exists a solution x to (83)

}
. (84)

We formulate the optimal control problem

min
u∈Uad

JT (u) =
1

2

∫ T

0

[
|u(t)|2 + |x2(t)|2

]
dt. (85)

For this special problem, we have NO0(C,A) = ker (A), whence Proposition 5 is
applicable.

We write the Algebraic Riccati Equation associated to the above problem[
0 0
1 0

]
Ê + Ê

[
0 1
0 0

]
− Ê

[
0 1
0 0

]
Ê +

[
0 0
0 1

]
= 0. (86)

The unique positive semidefinite solution to the above equation is given by

Ê =

[
0 0
0 1

]
, (87)

whence

A−BB∗Ê =

[
0 1
0 −1

]
, (88)

with spectrum σ
(
A−BB∗Ê

)
= {0,−1}. We have
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• ker
(
A−BB∗Ê

)
= span {e1};

• ker
((
A−BB∗Ê

)∗)
= {(x1, x1) | x1 ∈ R};

• L −
(
A−BB∗Ê

)
= {(x1,−x1) | x1 ∈ R};

• L −
((
A−BB∗Ê

)∗)
= span {e2}.

We decompose

Rn = NO0(C,A)⊕L −
(
A−BB∗Ê

)
= span {e1} ⊕ {(x1,−x1) | x1 ∈ R} , (89)

with the corresponding projections P1(x1, x2) = (x1 + x2, 0) and P2(x1, x2) =
(−x2, x2).

By Proposition 5, there exist T -independent K and µ > 0 such that∣∣uT (t)− ûT
∣∣+
∥∥P2x

T (t)− x̂T
∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] , (90)

and∣∣uT (t)− ûT
∣∣+∥∥P1

[
xT1 (t)−

(
x0,1 − tBB∗q̂T

)]∥∥ ≤ K [exp (−µt) + exp (−µ (T − t))] ,
(91)

where q̂T ∈ ker
((
A−BB∗Ê

)∗)
= {(x1, x1) | x1 ∈ R},

x̂T ∈ L −
(
A−BB∗Ê

)
= {(x1,−x1) | x1 ∈ R} and ûT = −BB∗Êx̂T − BB∗q̂T .

Moreover, ∣∣ûT ∣∣2 +
∥∥x̂T2 ∥∥2

= dist
((
ûT , x̂T

)
, argmin [Js]

)2 ≤ K

T
, (92)

where K is independent of the time horizon T .

Appendix A. Proof of Lemma 1.1.

We determine the set of minimizers of (5), to prove Lemma 1.1.

Proof of Lemma 1.1. Step 1 Existence of minimizer
We introduce the equivalence relation in M

∼: (x1, u1) ∼ (x2, u2) if v1 = v2 and y2 − y1 ∈ ker(A) ∩ ker(C).

We denote by [(x, u)] the equivalence class of (x, u). Actually, Js(x1, u1) = Js(x2, u2),
provided that (x1, u1) ∼ (x2, u2). Then, we are in position to define

[Js] : M/ ∼−→ R

[(x, u)] 7−→ Js(x, u).

Now, by definition of Js and M/∼, for any r ≥ 0 the sublevel set

Sr := {[(x, u)] ∈M/∼ | Js(x, u) ≤ r}
is compact. Hence, by the Weierstrass extreme value theorem, there exists global
minimizer [(u, x)] for [Js]. Then, (u, x) is a global minimizer of Js.
Step 2 Conclusion
By definition of (u, x) and Js,

argmin(Js) ⊇ {(u, x)}+ {0} × [ker(A) ∩ ker(C)] .

Let us now prove the other inclusion by contradiction. Suppose there exists (x, u)
global minimizer such that

(x, u) /∈ {(u, x)}+ {0} × [ker(A) ∩ ker(C)] .
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Then, either v 6= u or

v = u and y − x /∈ ker(A) ∩ ker(C).

In both cases (v, Cy) 6= (u,Cx). Indeed, in the first case, from v 6= u, we have
(v, Cy) 6= (u,Cx). In the second case v = u. Therefore, A(y − x) = B(v − u) = 0.
Then, y − x ∈ ker(A), whence y − x /∈ ker(C). Now, the function

g : Rm × Rn 7−→ R

(v, ỹ) −→ 1

2

[
‖v‖2 + ‖ỹ − z‖2

]
is strictly convex. Then, Js(x, u) = g(v, Cy) 6= g(u,Cx) = Js(u, x). Hence (x, u) is
not a minimizer, so obtaining a contradiction. This finishes the proof. �

Appendix B. Kernel and range of the Hamiltonian matrix

Let A ∈Mn×n(R), B ∈Mn×m(R) and C ∈Mn×n(R). We determine the kernel
and the range of the Hamiltonian matrix

Ham :=

[
A −BB∗

−C∗C −A∗.

]
(93)

The above is the coefficient matrix of the optimality system (52) for the steady
problem (4).

Lemma B.1. Let Ham be the Hamiltonian matrix (93). Then,

ker (Ham) = [ker (A) ∩ ker (C)]× [ker (A∗) ∩ ker (B∗)] (94)

and

Range (Ham) = [Range (A) + Range (B)]× [Range (A∗) + Range (C∗)] . (95)

Proof of Lemma B.1. Step 1 Computation of the kernel
By definition we have the inclusion

[ker (A) ∩ ker (C)]× [ker (A∗) ∩ ker (B∗)] ⊆ ker (Ham) . (96)

We are now going to prove the other inclusion. Take an arbitrary (x, p) ∈ ker (Ham),
which verifies {

Ax−BB∗p = 0

−A∗p− C∗Cx = 0
(97)

We start by multiplying the first equation by p and the second equation by x,
getting

0 = (Ax, p)− (BB∗p, p) = (x,A∗p)− ‖B∗p‖2 (98)

and

0 = − (x,A∗p)− (C∗Cx, x) = − (x,A∗p)− ‖C∗x‖2 . (99)

We sum the above equation, obtaining

‖B∗p‖2 + ‖Cx‖2 = 0, (100)

whence p ∈ ker (B∗) and x ∈ ker (C), which, together with (97), leads to{
Ax = BB∗p = 0

A∗p = −C∗Cx = 0.
(101)
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This finishes step 1.
Step 2 Computation of the range
By linear algebra,

Range (Ham) = ker (Ham∗)
⊥
. (102)

Now, the transpose of Ham reads as

Ham∗ =

[
A∗ −C∗C
−BB∗ −A.

]
(103)

Set Ã := A∗, B̃ := C∗ and C̃ := B∗. The above matrix is the hamiltonian matrix
for Ã, B̃ and C̃. Then, by using the results of step 1, we have

ker (Ham∗) = [ker (A∗) ∩ ker (B∗)]× [ker (A) ∩ ker (C)] , (104)

whence

ker (Ham∗)
⊥

= [Range (A) + Range (B)]× [Range (A∗) + Range (C∗)] , (105)

as desired. �

Appendix C. Proof of Lemma 2.4

Proof of Lemma 2.4. Step 1 Stable, antistable and critical splitting
We have

Rn = L −(H)⊕L 0(H)⊕L +(H),

where ⊕ stands for the direct sum. Then, let y be a solution to (50). Denote by
y1, y2 and y3 resp. the projections of x onto L −(H), L 0(H) and L +(H). Then,
x = y1 + y2 + y3 and, for i = 1, 2, 3,

ẏi = Hyi in (0, T ).

Step 2 Estimate for the stable part
We have

ẏ1 = Hy1 in (0, T ),

All the eigenvalues of H �L −(H) have strictly negative real part, where we have
denoted by LH the linear operator associated to the matrix H. Then, we have, for
any t ∈ [0, T ]

‖y1(t)‖ ≤ K exp(−µt)‖y1(0)‖ ≤ K exp(−µt)‖y(0)‖, (106)

the constant K depending only on H.
Step 3 Estimate for the unstable part
By definition

ẏ3 = Hy3 in (0, T ). (107)

Then, ỹ3(t) := y3(T − t) solves

˙̃y3 = −Hỹ3 in (0, T ). (108)

Now, all the eigenvalues of −H�L +(H) have strictly negative real part. Then, as in
Step 1,

‖y3(t)‖ = ‖ỹ3(T − t)‖ ≤ K exp(−µ(T − t))‖ỹ3(0)‖ ≤ K exp(−µ(T − t))‖y(T )‖.
(109)

The estimates (106) and (109) yield (51). �
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