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Supervised learning

Goal: Find an approximation of a function f, : RY — R™ from a dataset
T
drawn from an unknown probability measure p on RY x R™.

® Classification: match points (images) to respective labels (cat, dog).

® High-dimensional interpolation problem.

Extensions
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Classification

Suppose X; € R? and y; € {—1,1} for i < N.

® A simple idea:

. N T S 112 p X_ A
min Z Hw X — y;H + ||wl|%p 2 H H
weRd 15

p =1,2 and set

e T
f(x):{l f w'x>0

—1 else.
— discriminative model (other ex: Support Vector o Op
Machine)
® Compared to generative models (e.g. Bayes / X,
classifier)

® But data is not linearly separable in general.
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Neural networks

Neural network: for any i < N

x<t1 — a(wkxﬁ‘ -+ bk) for k€ {0,..., Nyyers — 1}

' (NN1)
X? =X; € Rda

® wk € R%+1%d (weights) and bX € R% (biases) are controls.

® Niayers > 1 given depth;

® d, called widths with dp = d and dNIayers = m.

® o € Lip(R) & o(0) = 0 defined componentwise

Figure: Sigmoid: tanh(x) and ReLU: max{x, 0}

® ML jargon: multilayer perceptron / fully-connected.
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"Training" a NN

Training <= Optimization:

N
1 N P
inf — E loss (wN’aye"Sx; 'ayers,jf;) + A |{wk, bk}
{ k 1k Nlayers N “ k1l¢gp
w,b }k:O =1 5 a "~ «
~ g regularization

training error

® loss(x,y) = ||[x — y||} for p=1,2 or loss(x, y) = log(1 + e*¥);
® )\ > 0 fixed.
Comments:

® x > whViayers xNiayers js the candidate approximation of unknown f

Py WNIayers X:V layers

nonlinear (softmax).

® |n practice solved using stochastic gradient descent + backpropagation.

N ‘
can be replaced by ¢ (waayersx; 'ayers) where p : R™ — R™ is

Extensions
Q000
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Residual neural networks

ResNets: fix dy = d; forany i < N

k+1 __ _k k k k
x: - =xX; +ho(w'x; + b for k€ {0,..., Npayers — 1
; ( ) t ayers — 1} (ResNet)
x) = X;
where h = 1.
layer = timestep!; h = N,T for given T > O:
ayers
x;(t) = o(w(t)x;(t) + b(t for te (0, T
(6) = o (w(£x(6) + (1) ©.7) -
x;(0) = X;.

For (nODE), we shall henceforth assume o(Ax) = Ao(x) for A > 0 (positive
homogeneity).

1\Weinan E '17

o
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Residual neural networks

® |n addition to (NN1), one can also consider variants:

xf;‘+1 = wko(xK) + b for k€ {0,..., Nayers — 1}
I (NN>)
x" = X.
— motivates considering
%;(t) = w(t)o(x;(t b(t) for te€ (0, T
%() = w(D)o (xi() + b(t) for t€(0,T) —
x;(0) = X;.
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Training is optimal control

Henceforth fix P: R — R™ s.t. P~1({yi}) # @ forall i < N.
Given T, )\ > O:

inf — loss Px;(T y, —|—)\ || w, bT|
[w,b] T €Hk(0, T;R%) N Z (7)) [w: o]

Hk(0, T;Rdu)

® k=0 for (nODE3), k = 1 for (nODE) (L?-regularization may not be enough
for compactness — enhance to Sobolev regularization)

® d,:=d*+d

Henceforth denote the training error by

N
St TV = % S loss(Pxi(T), 7)
=1
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Why ODEs?
ODE formulation has been used to great effect:

Neural ordinary differential equations [PDF] nips.cc
RTQ Chen, Y Rubanova, J Bettencourt... - Advances in neural ..., 2018 - papers.nips.cc

... at 3 Replacing residual networks with ODEs for supervised learning In this section, we
experimentally investigate the training of neural ODEs for supervised learning. Software ...

v DY Cited by 729 Related articles All 20 versions $9

® adaptive schemes, solvers (Chen et al. '18, Dupont et al. '19, Benning et al.
'19)

® PMP-based training algos (E et al. '19)
® Stability to adversarial perturbations (Haber, Ruthotto et al. '18)

Artificial intelligence / Machine learning

Aradical new neural
network design could
overcome big challenges
in Al

Researchers borrowed equations from calculus to redesign the
core machinery of deep learning so it can model continuous
processes like changes in health.

by Karen Hao December 12,2018

“panda” “gibbon” '
27.7% confidence 99.3% confidence MIT Tech Review, 2018

g o= o=
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Why ODEs?

I'—>00 ~ Npgyers —> 0.

® Set xX0 =[x,...,Xv]", u=[w,b]", and put both (nODE) and (nODE3) in the

form
x(t) = f(x(t),u(t)) in (0,T)
{x(O) = x% ¢ R%, (nODE)
® And so
inf  G(x(T)) + A ulleco, .m0 (SLa)

ueH*(0, T;R%)
subject to (nODE)

® T > 1 would imply that Nj,es > 1 — deep learning regime. So,

Question: What happens to a minimizer u” solving (SL1), and corresponding state
x" to (nODE) when T — co?
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Scaling

Key idea: Time-Scaling.

® Assumptions on 0 — f(x, u) is positively homogeneous w.r.t. u, i.e.
f(x, au) = af(x,u) for a > 0.

® Hence, given u'(t) and the solution x” (t) to

xT(t) =f (xT(t), uT(t)) in (0,T)

x"(0) =x°,

(1)

then ul(t) := Tu' (tT) is such that x*(t) := x" (¢tT) solves (1) for t € [0, 1].

Then:

iun7fc,{>(xT(T))+)\/oT HUT(t)H2 dt = inf $(x"(T)) + %/01 HTuT(sT)szs

= Linf o6 (M) + 2 [ |7 s

1
_ ;;ﬂlm(xl(l)) + )\/0 |ut(s)|[? ds.
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Theorem (Esteve, G., Pighin, Zuazua, '20): Fix A > 0 and suppose {¢ = 0} # @.
For any T > 0, let u” be minimizer in (SL1), x” associated solution to (nODE).
Assume that (nODE) is controllable. Then

d(x"(T)) — 0 as T — 4o0.

Moreover, 3{ T}y positive times and 3xT € R%, ¢(xT) = 0, such that

||xT”(Tn) - xTH — 0 as n— +oo.

1 .
i UT” =
|+ " (%)

where u™* solves

Moreover

—s 0 as n — +oo
Hk(0,1;Rdu)

inf
u€ H*(0,1;R%)
subject to (nODE) with T=1
and

b(x(1))=0

2
A ||u||Hk(0,]_;Rdu) :
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=81

Figure: Here Nj e, = lT

Niw

_ 1 - _
J and thus h = A and we consider o = 1.

Extensions

0000

15/40












Supervised learning Qualitative results Quantitative results Zero training error regime Extensions

O O0000@0000 00000000000 0000 0000
000000000

I >o00<—= A\A—0

Back to
H(xT(T)) + A /0 Ham@| de= sy + - /0 T as
— q&(xT(T)) + %/01 ||u1(5)||2 ds

A\ 1
= ¢(x*(1)) + ?/0 | (s)|)” ds.

Corollary: Fix T > 0. Under the assumptions of the Theorem,
" (T — 0 as A — 0.

Moreover
o]

b
Hk (0, T;Ru) — | || (0, 1:R) as A —0

where u* solves

inf
ueH*(0,1;R%)
subject to (nODE) with T=1
and

¢(x(1))=0

2
”u”Hk(o,l;]Rdu) :
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Discussion

® Back to

N

min loss (wTsign()?}),jf;) + Aw||%s
weRd —1

where e.g. loss(x, y) = log(1 + €*¥); shown? that

lim @/ ||w*” — w*
A—0

where w* is maximum margin separator:

w* = argmax| | -1 miinj/}wTsign()?}).

® Compared to other convergence results of generalization nature: implicit bias
property of gradient descent3:

"In the overparametrized regime, after training a neural network with
gradient-based methods until zero training error, with A = 0, among the many
classifiers which overfit on the training dataset, the algorithm selects the one
which performs best on the test dataset.”

® We clearly exhibit the explicit [?>~regularization of the control parameters.

2 Rosset, Hu, Hastie '04
3Zhang et al. '16, Soudry et al. '18, Gunasekar et al. '18, Chizat & Bach '20



Supervised learning Qualitative results Quantitative results Zero training error regime

O O00000e00 00000000000 0000
000000000

Proof of Theorem

For simplicity, suppose kK = 0.

Part 1). We first show that
d(x"(T)) — 0 as T — oo.

Recall that mingq, ¢ = 0.

1 By controllability, 3u! € L?(0,1) such that ¢(x!(1)) = 0.

T

2 Since u' is a minimizer,

2 2

& (xT(T)) A ||uT

<o) 035 (;)

[2(0,T) T

A 2
= ¢ (x'(1)) + T ||”1||L2(o,1)

3 Since ¢(x!(1)) =0,

A 2
0< ¢ (XT(T)) S 7 ||”1||L2(o,1) :

L2(0,T)

Extensions
Q000
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Part 2). We now show that 3{T,}% of positive times and Ix’ € R%, ¢(xT) =0

such that
HxT”(Tn) - xTH — 0 as n — +oo.

1 Integral formulation of ODE + Gronwall + Cauchy Schwarz + scaling:

o (VT4 s,

HxT(T) —xOH SN, VT ‘uT

L2(0,T)

']

Sn,o ||u 12(0,1) XP (||”1||L2(o,1))

Yy

Thus {xT(T)}T>0 is bounded (subset of R%);

2 — H{T,H} 1% of positive times and IxT € R% such that

||xT”(Tn)—xT|| — 0 as n — +oo0.

3 By Part 1), ¢ (xT”(Tn)) — 0. By lower semicontinuity of ¢,

&(x') < liminf ¢ (xTn(T,,)) — 0.

n——+o00



Supervised learning Qualitative results Quantitative results Zero training error regime Extensions

O 00000000 e 00000000000 0000 0000
000000000

Part 3). We finally show that u,(t) := TL,, uT”(Tin) for t € [0, T,] satisfies
lun — u™|[2(0,1) — O as n — +0oo

where u* solves

. 2
inf A |ul|72 :
L<(0,1
uel?(0,1) (0,1)
subject to (nODE) with T=1
and

b(x(1))=0

1 Let u® € L2(0,1) solution to above minimization problem;

2 By contradiction: |unl[;2(0,1) < ||u°||,_z(0,1) for every n > 1;
3 Banach-Alaoglu: Ju* € L?(0,1) such that

up — u* weakly in L2(0,1)
X* trajectory associated to u™; compactness properties of ODE:
Xp — X strongly in C°[0, 1]

a But x"7(T,) = xn(1) thus x*(1) = xT by Part 1), so ¢(x*(1)) = 0.

s Weak lower semicontinuity of [?2—norm:
0][2 2 . 2 - 2 012
||U ||,_2(0,1) < ”U*”Lz(o,l) < I:?rglo'lf”u””Lz(O,l) < I'f';n_ilép ”Un”[_z(o,l) < ||U ||L2(0,1)

so strong L%—convergence and u* solves the desired problem.
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Setting

Question: Quantitative estimates for the time T required to reach the zero training
error regime ¢(x(T)) = 07

® We might need to change the cost function!

® Consider loss(x, y) = ||x — y||® and so we recall

N
1 5
$(x(T)) = = > 1IPxi(T) = 7lI?
i=1
® Modified supervised learning problem:

T+
UEHkgE[’l—;Rd“) [JT(U) = ‘/0~ Q{)(X(t))dt _I_ A ”u”sz(O,T;RdU) (SL*)
subject to (nODE)
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Exponential stabilization

Theorem (Esteve, G., Pighin, Zuazua '20): Fix A > 0 and suppose that
(nODE) is controllable. There exist T* > 0 such that for any T > T*, any
solution (u”,x7) to (SL*)-(nODE) satisfies

& (xT(t)) < Cre—Ht vVt € [0, T]

and

uT(t)” < Ge M for a.e. te€ [0, T]
for some Cy, Co, u > 0, all independent of T.

Remarks:

® Akin to universal approximation: given tolerance € > 0, there exists T > 0
(number of layers) and control parameters u® such that the neural network
output is e—close to the desired target.

® The difference with universal approximation is that our parameters may be
computed explicitly via a training procedure.
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Turnpike property

® Theorem is a special manifestation of the

well-known turnpike property in optimal
control and economics.

For suitable optimal control problems in a
sufficiently large T, any optimal solution
(u”,xT) remains, during most of the time,
O(e~t + e (T—1))—close to the optimal
solution of a corresponding “static”’ optimal
control problem.

Optimal static solution is referred to as the
turnpike — the name stems from the idea that
a turnpike is the fastest route between two
points which are far apart, even if it is not the
most direct route.

Since f(x,0) = 0 for all x, y¥; may be seen as
the turnpike for Px;. Since this is a steady
state, we do not see an exit from the turnpike
and we stabilize.

NCLOA

Zero training error regime Extensions

O000 0000
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Proof of ¢(x'(t)) < et
Suppose k =0, d = m and N =1 for simplicity. Then ¢(x"(t)) = ||x"(t) — )7”2
Part 1). For T > 1, we first prove that
2

2
|u So 1€ = 711 (2)

2
T — T =
<T@ -7+ [x" -7 2o S

L2(0,T)

for all t € [0, T] uniformly in T.
1 Controllability: Ju! € L2(0,1) such that x!(1) = y and ||u1||l_2 < |[X = ¥|-
2 Grénwall: ||x1(t) — y|| <o [IX— Y
3 Set
A1) = {ul(t) for t € (0,1)
0 for te (1, T).

Then x2"%(t) = y for t € [1, T].

a2 u' minimizer, so

2 i B

— 2
HXT_y L2(0,T) 12(0,1) ||"1”L2(0,1)

o

L2(0,T)

5 Conclude by Gronwall.
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Part 2). Fix 7> C5 +1 (C, > 0 appears in (2)) and let T > 27 + 1.
1 For t € [0, 7 + 1], desired estimate follows from (2):

Ix"(8) = 7| So 1% =7l Sorr eF IR = 7

2 (2) + contradiction argument:

I
Ix"(t) — ¥l < fllx — Y

for t € [1, T].
3 Bootstrap: for n < 2L

2
I (£) - 7| < (j;) 1% - 71

for t € [nT, T].

Extensions
Q000

a Suppose t € [t + 1, T]. Set n(t) = | +1J Then n(t) < 5=, t € [n(t)7, T] and

n(t)>——1 SO

[«7(6) - 7] < o0 (—ntey1o8 (5 ) ) 1771

Iog(‘é—) L
Sroexp | — t ] lIx—yll.
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Proof of ||u” (t)|| S e™?
let t € [0, T)and 0 < hK1s.t. t+2h€ [0, T].
1 Set
ru' (s) for s € (0,1t)

— t
v (s) := ¢ —u (t—|—52 ) for s € (t,t+2h)

\u' (s — h) for se (t+2h, T).

2 Since u” minimizer, by Jr(u) < J7 (1), we will find

1 t+h 2 t+h 2
5 / ||uT(s)|| ds < / ||xT(s) — )7” ds.
t t

3 Combined with ||xT(s) —)7”2 <et,

t+h 2 t+h
/ ||uT(s)|| ds < / e °ds < he !
t t

4 Lebesgue differentiation theorem: for a.e. t € [0, T],

2 t+h 2
HUT(t)” = lim — / HuT(s)H ds < e "
t

Extensions
Q000
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[ '—regularization

Theorem (Esteve, G., Pighin, Zuazua, '20): Fix M > 0 and assume {¢ = 0} # &.
Suppose (nODEy3) is controllable. Consider

-
ot [ olx(0)de + X lulxo 7y
uel*(0,T;R%) Jo

esssup||u|| <M

subject to (nODE3)

Then there exists Ty; > 0 such that for any T > Ty, any optimal u” and corre-

sponding state x”, unique solution to (nODEj), satisfy
(xT(t)) =0, forall te [T*, T]
and
uT(B)|| = M, for a.e. t € (0, T™)
ul(t)|| = 0, forae. te (T*, T).

forsome 0 < T* < Tyy.
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Proof

1. Part 1: Show that for

T* := min {t €0, T]: ¢ (xT(t)) = min_¢ (XT(S))}

s€e[0,T]

it holds
6 (x7(t)) > ¢ (xT(T*)) forall t€[o,T*),
and ¢ (xT(t)) = ¢ (xT(T*)) forall t € [T*, T].
2. Part 2: Show that the optimal control parameters u’ satisfy
||uT(t)|| — M forae te(0,T),

and ||uT(t)|| =0 forae. te (T, T).

This relies on the fact that the L1—norm is invariant to the time-scaling and
Lebesgue measure theory.

3. Part 3: Show that there exists Ty, > 0 such that if T > Ty, then

T*< Ty and o(x"(T*))=0.
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Recall:
® We are given a training dataset {X;, y; };
® the training error ¢ € CO(RY*N; R, ) is defined by

N
1 »
d(x) = o Z loss(Px;, y;)
i=1
Our results stipulate: when depth N, is increased, trained trajectories of neural

networks approach the zero training error regime ¢ = 0.

Question: Can we reach exactly the zero training error regime, and how big are the
control parameters in this case?
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A lower bound

Weights need to be at least of a certain sizel — depend on the way the dataset is
"'spread out".

Theorem (Esteve et al. '20): Let T > 0. Assume that for some control parameters
u:=[w, b]", the solutions x;(t) to either (NODE) or (nODE>) satisfies

le(T):)'/” for all | € {].,,N}
Then
x:.l — )(1
. ] J
[ Pm—— o max inf log
( = ) (,~,j)e{},.:.,N}2 x}ep_l({y’;}) X? -—-X?
i x;eP~1({5})

where L, > 0 is the Lipschitz constant of o.

34/40
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Controllability

Theorem (Esteve et al. '20): Let T > 0 and assume that N < d. Fix x! € R% and
assume that o € C}(R) is such that

is a system of linearly independent vectors in RY.
There exists r > 0 such that for any x0 € R9% satisfying ||[x? — x!|| < r, there exists

weights w € L*°(0, T; Rdz) s.t. the solution x to

x(t) = diag(w(t))o(x(t)) in (0, T)
x(0) = x°,

satisfies

and the estimate

holds for some C > 0 independent of T.
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Variable width

Variable width ResNets via integro-differential equation: for i < N
Otzi(t,x) =0 (/ w(t,x, &)z;(t,&)dE + b(t,x)) in (0, T) x €.
Q

® eg. Q=image x (0,1) C R3;
® All previous asymptotics theorems apply here;

® Variable width ResNets can be obtained by semi-discretizing via time-dependent
mesh.
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Switched systems: Changing widths over layers as switched systems over time:

x(t) = fy) (x(t), u(t))
given M vector fields fi, ..., fjy and switching signal p: [0, T] — {1,..., M};

Quasi-turnpike strategy:
#1 increase the dimension to the "optimal system" f;x,
#2 use the stabilization/turnpike for fixed width

The optimal system f;x? — optimal with respect to cost.
What are the switching times? How many?
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Outlook

1 Long-time behavior depends on the cost functional to be minimized.

2 Results should be complemented by ML subfields (e.g. CNN design, training
algorithms..)

Some additional problems:
® Asymptotics remain to be proven when P : RY — R™ is optimizable variable?
® Stabilization for non L?—loss with L?—regularization?
® Further characterization of limit control u* in first theorem?

® Extensive bibliography can be found in

LARGE-TIME ASYMPTOTICS IN DEEP LEARNING

CARLOS ESTEVE, BORJAN GESHKOVSKI, DARIO PIGHIN, AND ENRIQUE ZUAZUA

ABSTRACT. It is by now well-known that practical deep supervised learning may
roughly be cast as an optimal control problem for a specific discrete-time, nonlinear
dynamical system called an artificial neural network. In this work, we consider the

https://arxiv.org/abs/2008.02491
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Thank you for your attention!

Collaborators:

® C. Esteve (UAM/Deusto), D. Pighin (PhD @ UAM, 2020), E. Zuazua (FAU/

Deusto/UAM).
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