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We study the averaged controllability properties of the system:

in (0, T) x G,
y =0,

on (0, T) x 9G,
on G,

y(O, ) = yoa
for a a positive random variable of density p.
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As usual, there is an equivalence between the averaged

controllability of (1) and the averaged observability in Gy of the
time-reversed adjoint system:

ur —alAu =0,

in (0,T) x G,
u=0, on (0, T) x 9G,
u(0,-) = ¢, on G.

v
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Let o be a random variable with a Riemann integrable density

function p such that supp(p) C [@min, +00) for some amin > 0.
Then, system (2) is null observable in average.
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Introduction to the problem

Known observability results

Theorem (Coulson, Gharesifard, Lii, Mansouri, Zuazua)

Let o be a random variable with a Riemann integrable density
function p such that supp(p) C [@min, +00) for some amin > 0.
Then, system (2) is null observable in average.

Their result leaves an interesting open question:
What happens if we allow the random variable to vanish; that is, if
we allow 0 € supp(p)?

Averaged controls for the heat equation
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Introduction to the problem

The dynamics has a fractional nature when G = R?

In order to illustrate the effect of averaging in the dynamics, let us
study the dynamics of (2) when G = R?. The Fourier transform of
the average of the fundamental solutions is given by:

“+oo
/0 exp(—alePt)p(a)da;

i.e. the Laplace transform of p evaluated in |£|?t. In particular, for
r e (0,1) if p(a) ~or e > " we have that:

/ exp(—al¢2t)p(a) dar ~ exp(— ClEP7t")

when [£]2t — +oo.

Averaged controls for the heat equation



The dynamics may also be fractional in bounded domains. Indeed,

in bounded domains the Laplace transform of the density also

appears when considering the Fourier representation

“+o0o
i(t, x; @) ::/0 u(t, x; a, @)p(a)da

= Z/ —it () da(g, &) 12(G)€i(x)-
ieN

v
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Introduction to the problem

A qualitative description of the main results

We have that (2) has the unique continuation in average if the
frequencies of its solutions decay hierarchically with the time
variable.

In addition, (2) is null observable in average if and only if p is
sufficiently small near 0. Moreover, the threshold density functions
are thus those which near 0 satisfy:

a1

pla) ~ e~

Averaged controls for the heat equation
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Main results: rigorous statements and proofs.

Main result: averaged approximate observability

Theorem

Let G C RY be a Lipschitz domain, Gy C G be a subdomain, and
p = L(0,1) or p be a density function which satisfies:

+00 +00 _—sa d
. i In </ e_so‘p(a)da> _ 0+Ooe 06;0(06) o Z Sr—l‘ (3)
ds 0 Jo = esvp(a)da

for some r € (0,1]. Then, system (2) satisfies the averaged unique
continuation property in Gy.

Averaged controls for the heat equation



The proof is based on explicit computations:
e 0) = 3 [N s, @ada = (Z Z(bee = X
ien”o t \nen M

(¢ ei)ei(x)
2 ei)e x)
1
Tt
Consequently, from fOT o, lai(t, x; #)|* = 0 we find that:

At

i€EN

—ATr e+ 3 e NN AT 0, g)ei(x)

—ATNg+ > e NATIH, e)ei(x) =0in (0, T) x Go,
ieN

which differentiating in time implies that:

ieN

> e Mg, e)e(x) =0in (0, T) x Go.
heat equation.

Hence, the result follows from the unique continuation of the solutions of the
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The proof follows from the analiticity of the averaged dynamics:
Let G be a Lipschitz domain, o any positive random variable and ¢ € L*(G).
Then, the function:

is analytic.

U:te(0,00) = ii(t,; ¢) € L*(G)

This follows from the analiticity of the heat semigroup.
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Main results: rigorous statements and proofs.

Unique continuation for a general density function p (ii)

Let us now prove that from & =0 on (0, T) x Gy we obtain that
i =0. From (3) we obtain:

+oo
a(t,-;¢):/ e 20 p(a)da(d, @) j2gpe0 + D / e Nt p(a)da(s, €) 2g) e
/0 iEN

" —algt ) ,(/\rf)\r)tr
= d , +0 170 .
(/0 e p(a)do {<</> €0),2(G)€ (e thHLz(G))]

Thus, by considering the limit when t — oo we get that

(¢, €0)12(6ye0 = 0 in G, which implies that (¢, ep);2(g) = 0. We
can obtain in a similar way by induction that the other frequencies
are also null.

Averaged controls for the heat equation
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Main results: rigorous statements and proofs.

Some numerical simulations
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Main results: averaged null observability (i)

Theorem

Let G C R? be a Lipschitz locally star-shaped domain, Gy C G be a
subdomain, T > 0 and « be a random variable whose density p satisfies that
there is some and r € (1/2,1] such that:

+o00 +00 —sa d
_4d In (/ efsap(oz)da) = 0+Ooe ap(a)da >t (4)
ds 0 Jo = e p(a)da

Then, system (2) is null observable in average. In addition, there are Ty, C > 0
such that for all T € (0, To] we have that:

(er—1)~1

K(G, Go,p, T) < Ce“T~
Here K is the cost of the null averaged observability.

Averaged controls for the heat equation
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Main results: rigorous statements and proofs.

Proof of the averaged null observability

The result can be proved by following iteration method of the type
Lebeau-Robbiano. The only difference is that the dynamics of the
averaged solution does not satisfy the semigroup property, but this
is a minor problem as averaging does not alter the decay rate.
Indeed, the inequality (4) implies that:

+oo . +00
/O eftg)\ap(a)da < PR (t2t1)/0 eftl)‘ap(oz)da,

which can be proved by an easy casuistic.

Averaged controls for the heat equation
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Main results: rigorous statements and proofs.

Some numerical simulations
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Main results: averaged null observability (ii)

Theorem

Let G C RY be a Lipschitz domain, Gy C G be a subdomain such
that Gg # G and a be a random variable whose density function p
satisfies that there are some C > 0 and r € [0,1/2) such that:

+oo .
/ e *pla)da > e~ . (5)
0

Then, system (2) is not null observable in average in Gy.
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The problem is not a lack of unique continuation property, as shown before.
Instead, the problem is the existence of a sequence ¢y satisfying:
lim

||H(T7 o ¢N)”L2(G) -
e (foT fco |di(t, x; ¢>N)|2dxdt>1/2

= t+oo
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Main results: rigorous statements and proofs.

Proof of not having null observability

Remark

The problem is not a lack of unique continuation property, as shown before.
Instead, the problem is the existence of a sequence ¢y satisfying:
a(T,-; on)| 2
i Tl

e (foT fc[, lai(t, x; <Z5N)|2dxdt)1/2

» To ensure that i is small in (0, T) X Go we need:

| supp(én) CC G\ G and ¢ € (&)icn,-

N>No
» To prevent the averaged solution from decaying too fast we need:

IPendnll 26y > \/§H¢NHL2(G)/2'

Averaged controls for the heat equation



supp(¢)

Go

In fact, we consider as initial values:

[eva]
onlx) = >
i1y ig=0

x—p <
i nsin(x),  for s n(x) = | 3VN

i
[eva] )
C
for ¢ a cut-off function and p a parametrization of the cube.
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P The support is clearly in G \ Gy by construction.
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P The support is clearly in G \ Gy by construction.

P We can find some coefficients ¢; y such that (e;)

L
ieny
with more equations than variables by Weyl's Law.

This is just solving a linear homogeneous system
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P The support is clearly in G \ Gy by construction.

P We can find some coefficients ¢; y such that (e;)
>

L
ieny

with more equations than variables by Weyl's Law.

For the third property it suffices to prove that:

This is just solving a linear homogeneous system
CN
”A¢N”L2(G) < T “¢NHL2(G)~
This is done by linear transformations and because supp(s;, ;) N supp(s; ) = 0. Indeed:
[f\/ﬁ] 4 X—Pp (%)
3VN EVN
2 2 2
IAénll2(6) = Do ( = ) / |Aq| 3W#
iyeenig=0 ce G

3 [evA] 3
3V N 3vVN
1S @] (Y beipon < | 2 @] (B2 1
Ze 12(8(0.1)) TN Ze 12(8(0,1))
i iy ig=0
[evm x—p| =L )
VR
SR DR Ty K i) e oo
i, aig=0 G ce

2
L2(6)°
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‘The solution with initial value ¢,

‘The solution with initial value 6, ‘The solution with nitial value ¢y

e, n)

0015

ii(t,z; 04)

0.005

Figure: An example on how the sequence looks like for G = (0, 7),
Go = (0571'/2) and p(Oé) = (Oa 1)
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Figure: The optimal control for p = 1(; ) and y0 = % induced by the
minimum of the functional J in Vyo, Vs and Vg, for Vi := (e)M,.
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The induced control in Vig for 3 =} and p= 13,

“The incduced control in Vi for ' = § and p = 10y “Uhe indced contral in Vig for 57 = L and p= 101,

Figure: The optimal control for p = 19 1) and y0 =
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Some numerical simulations

L10* _ The controlled solution in t = 1 with p = 1,1

Main results: rigorous statements and proofs.
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‘The controlled solution in ¢ = 1 with p =1,

|
A
i
A
—= m\‘»”‘

R
LR

Figure: The state in time t = 1 of the averaged solutions of the heat

equation after applying the control induced by the minimum of J in Vjq,
Vso and Vo with y® = 3. In the left figure we have considered p = 11 5
and in the right one p = 1(g,1).
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Some numerical simulations

Open problems

» Studying the averaged controllability of more general heat
equations:

ye —div(o(x,a)Vy) + A(x,a) - Vy + a(x,a)y = 0.

The difficulty is that in the general case the eigenfunctions of
the elliptic operator depend on «.

» Studying the averaged wave and Schrodinger equations with
arbitrary random diffusion.

» Determine if we have the averaged unique continuation
property for all random diffusions . We have to deal with the
difficulty that the frequencies do not decay hierarchically.

Averaged controls for the heat equation
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Some numerical simulations

Thank you for your attention!
Is there any question?

Averaged controls for the heat equation
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