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Introduction to the problem

The averaged controllability problem

We study the averaged controllability properties of the system:
yt − α∆y = f 1G0 , in (0,T )× G ,

y = 0, on (0,T )× ∂G ,
y(0, ·) = y0, on G ,

(1)

for α a positive random variable of density ρ.
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Introduction to the problem

The averaged observability problem

As usual, there is an equivalence between the averaged
controllability of (1) and the averaged observability in G0 of the
time-reversed adjoint system:

ut − α∆u = 0, in (0,T )× G ,

u = 0, on (0,T )× ∂G ,
u(0, ·) = φ, on G .

(2)
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Introduction to the problem

Known observability results

Theorem (Coulson, Gharesifard, Lü, Mansouri, Zuazua)

Let α be a random variable with a Riemann integrable density
function ρ such that supp(ρ) ⊂ [αmin,+∞) for some αmin > 0.
Then, system (2) is null observable in average.

Their result leaves an interesting open question:
What happens if we allow the random variable to vanish; that is, if

we allow 0 ∈ supp(ρ)?
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Introduction to the problem

The dynamics has a fractional nature when G = Rd

In order to illustrate the effect of averaging in the dynamics, let us
study the dynamics of (2) when G = Rd . The Fourier transform of
the average of the fundamental solutions is given by:∫ +∞

0
exp(−α|ξ|2t)ρ(α)dα;

i.e. the Laplace transform of ρ evaluated in |ξ|2t. In particular, for

r ∈ (0, 1) if ρ(α) ∼0+ e−Cα
− r

1−r
we have that:∫

exp(−α|ξ|2t)ρ(α)dα ∼ exp(−C |ξ|2r tr )

when |ξ|2t → +∞.
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Introduction to the problem

Similarities when G = Rd and when G is a bounded
domain

The dynamics may also be fractional in bounded domains. Indeed,
in bounded domains the Laplace transform of the density also
appears when considering the Fourier representation:

ũ(t, x ;φ) :=

∫ +∞

0
u(t, x ;α, φ)ρ(α)dα

=
∑
i∈N

∫ +∞

0
e−αλi tρ(α)dα〈φ, ei 〉L2(G)ei (x).
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A qualitative description of the main results

We have that (2) has the unique continuation in average if the
frequencies of its solutions decay hierarchically with the time
variable.
In addition, (2) is null observable in average if and only if ρ is
sufficiently small near 0. Moreover, the threshold density functions
are thus those which near 0 satisfy:

ρ(α) ∼ e−α
−1
.
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An illustration of some density functions
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Main results: rigorous statements and proofs.

Main result: averaged approximate observability

Theorem

Let G ⊂ Rd be a Lipschitz domain, G0 ⊂ G be a subdomain, and
ρ = 1(0,1) or ρ be a density function which satisfies:

− d

ds
ln

(∫ +∞

0
e−sαρ(α)dα

)
=

∫ +∞
0 e−sααρ(α)dα∫ +∞
0 e−sαρ(α)dα

& sr−1. (3)

for some r ∈ (0, 1]. Then, system (2) satisfies the averaged unique
continuation property in G0.
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Main results: rigorous statements and proofs.

Proof of the unique continuation when ρ = 1(0,1)

The proof is based on explicit computations:

ũ(t, x ;φ) =
∑
i∈N

∫ 1

0
e−λiαt〈φ, ei 〉ei (x)dα =

1

t

∑
n∈N

1

λi

〈φ, ei 〉ei (x)−
∑
n∈N

e−λi t

λi

〈φ, ei 〉ei (x)


=

1

t

−∆−1
φ +

∑
i∈N

e−λi t〈∆−1
φ, ei 〉ei (x)

 .
Consequently, from

∫ T

0

∫
G0
|ũ(t, x ;φ)|2 = 0 we find that:

−∆−1φ+
∑
i∈N

e−λi t〈∆−1φ, ei 〉ei (x) = 0 in (0,T )× G0,

which differentiating in time implies that:∑
i∈N

e−λi t〈φ, ei 〉ei (x) = 0 in (0,T )× G0.

Hence, the result follows from the unique continuation of the solutions of the
heat equation.
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Main results: rigorous statements and proofs.

Unique continuation for a general density function ρ (i)

The proof follows from the analiticity of the averaged dynamics:

Proposition

Let G be a Lipschitz domain, α any positive random variable and φ ∈ L2(G).
Then, the function:

U : t ∈ (0,∞)→ ũ(t, ·;φ) ∈ L2(G)

is analytic.

This follows from the analiticity of the heat semigroup.
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Main results: rigorous statements and proofs.

Unique continuation for a general density function ρ (ii)

Let us now prove that from ũ = 0 on (0,T )× G0 we obtain that
ũ = 0. From (3) we obtain:

ũ(t, ·;φ) =

∫ +∞

0
e−αλ0tρ(α)dα〈φ, e0〉L2(G)

e0 +
∑
i∈N∗

∫ +∞

0
e−αλi tρ(α)dα〈φ, ei 〉L2(G)

ei

=

(∫ +∞

0
e−αλ0tρ(α)dα

) [
〈φ, e0〉L2(G)

e0 + O
(
e−(λr1−λ

r
0)tr ‖φ‖

L2(G)

)]
.

Thus, by considering the limit when t →∞ we get that
〈φ, e0〉L2(G)e0 = 0 in G0, which implies that 〈φ, e0〉L2(G) = 0. We
can obtain in a similar way by induction that the other frequencies
are also null.
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Main results: rigorous statements and proofs.

Main results: averaged null observability (i)

Theorem
Let G ⊂ Rd be a Lipschitz locally star-shaped domain, G0 ⊂ G be a
subdomain, T > 0 and α be a random variable whose density ρ satisfies that
there is some and r ∈ (1/2, 1] such that:

− d

ds
ln

(∫ +∞

0

e−sαρ(α)dα

)
=

∫ +∞
0

e−sααρ(α)dα∫ +∞
0

e−sαρ(α)dα
& s r−1. (4)

Then, system (2) is null observable in average. In addition, there are T0,C > 0
such that for all T ∈ (0,T0] we have that:

K(G ,G0, ρ,T ) ≤ CeCT
−(2r−1)−1

.

Here K is the cost of the null averaged observability.
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Main results: rigorous statements and proofs.

Proof of the averaged null observability

The result can be proved by following iteration method of the type
Lebeau-Robbiano. The only difference is that the dynamics of the
averaged solution does not satisfy the semigroup property, but this
is a minor problem as averaging does not alter the decay rate.
Indeed, the inequality (4) implies that:∫ +∞

0
e−t2λαρ(α)dα ≤ e−cλ

r (t2−t1)

∫ +∞

0
e−t1λαρ(α)dα,

which can be proved by an easy casuistic.
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Main results: rigorous statements and proofs.

Main results: averaged null observability (ii)

Theorem

Let G ⊂ Rd be a Lipschitz domain, G0 ⊂ G be a subdomain such
that G0 6= G and α be a random variable whose density function ρ
satisfies that there are some C > 0 and r ∈ [0, 1/2) such that:∫ +∞

0
e−sαρ(α)dα & e−Cs

r
. (5)

Then, system (2) is not null observable in average in G0.
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Main results: rigorous statements and proofs.

Proof of not having null observability

Remark
The problem is not a lack of unique continuation property, as shown before.
Instead, the problem is the existence of a sequence φN satisfying:

lim
N→∞

‖ũ(T , ·;φN)‖L2(G)(∫ T

0

∫
G0
|ũ(t, x ;φN)|2dxdt

)1/2
= +∞.

I To ensure that ũ is small in (0,T )× G0 we need:⋃
N≥N0

supp(φN) ⊂⊂ G \ G0 and φN ∈ 〈ei 〉⊥i∈ΛN
.

I To prevent the averaged solution from decaying too fast we need:

‖PCNφN‖L2(G) ≥
√

3‖φN‖L2(G)/2.
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Main results: rigorous statements and proofs.

Construction of the functions φN

In fact, we consider as initial values:

φN (x) :=

[
C̃
√

N
]∑

i1,...,id =0

ci,N ςi,N (x), for ςi,N (x) := ς

3
√
N

x − p

(
i[

C̃
√

N
]
)

C̃`

 ,

for ς a cut-off function and p a parametrization of the cube.
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Main results: rigorous statements and proofs.

Properties of the functions φN

I The support is clearly in G \ G0 by construction.

I We can find some coefficients ci,N such that 〈ei 〉⊥i∈ΛN
. This is just solving a linear homogeneous system

with more equations than variables by Weyl’s Law.
I For the third property it suffices to prove that:

‖∆φN‖L2(G)
≤

CN

2
‖φN‖L2(G)

.

This is done by linear transformations and because supp(ςi,N ) ∩ supp(ς
ĩ,N

) = ∅. Indeed:

‖∆φN‖
2
L2(G)

=

[
C̃
√

N
]∑

i1,...,id =0

c2
i,N

(
3
√
N

C̃`

)4 ∫
G
|∆ς|2

3
√

N

x − p

(
i[

C̃
√

N
]
)

C̃`

 dx

=


[
C̃
√

N
]∑

i1,...,id =0

c2
i,N


(

3
√
N

C̃`

)3

‖∆ς‖2
L2(B(0,1))

≤ C


[
C̃
√

N
]∑

i1,...,id =0

c2
i,N


(

3
√

N

C̃`

)3

‖ς‖2
L2(B(0,1))

= CN2

[
C̃
√

N
]∑

i1,...,id =0

c2
i,N

∫
G
|ς|2

3
√
N

x − p

(
i[

C̃
√

N
]
)

C̃`

 dx = CN2‖φN‖
2
L2(G)

.
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Figure: An example on how the sequence looks like for G = (0, π),
G0 = (0, π/2) and ρ(α) = (0, 1).
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Some numerical simulations

Figure: The optimal control for ρ = 1(1,2) and y0 = 1
2 induced by the

minimum of the functional J in V40, V50 and V60, for VM := 〈ei 〉Mi=1.
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Some numerical simulations

Figure: The optimal control for ρ = 1(0,1) and y0 = 1
2 induced by the

minimum of the functional J in V40, V50 and V60, for VM := 〈ei 〉Mi=1.
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Some numerical simulations
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Figure: The state in time t = 1 of the averaged solutions of the heat
equation after applying the control induced by the minimum of J in V40,
V50 and V60 with y0 = 1

2 . In the left figure we have considered ρ = 1(1,2)

and in the right one ρ = 1(0,1).
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Some numerical simulations

Open problems

I Studying the averaged controllability of more general heat
equations:

yt − div(σ(x , α)∇y) + A(x , α) · ∇y + a(x , α)y = 0.

The difficulty is that in the general case the eigenfunctions of
the elliptic operator depend on α.

I Studying the averaged wave and Schrödinger equations with
arbitrary random diffusion.

I Determine if we have the averaged unique continuation
property for all random diffusions α. We have to deal with the
difficulty that the frequencies do not decay hierarchically.
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Some numerical simulations

Thank you for your attention!
Is there any question?
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