イロト イヨト イヨト イヨト

E

Some recent results about the controllability of the heat equation.

Jon Asier Bárcena-Petisco

03/12/2020 - BYMAT

Э

Overview

- 1. Null controllability for the heat equation in pseudo-cylinders.
- 2. Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term.
- 3. Averaged observability properties of the random heat equation with a random diffusion (in collaboration with Enrique Zuazua).

Э

Null controllability of the heat equation: targeting Lipschitz domains.

Reference:

https://hal.archives-ouvertes.fr/hal-02145122 Accepted in ESAIM:COCV.

Э

Statement of the problem

We study the following classic problem:

$$\begin{cases} y_t - \Delta y + A \cdot \nabla y + ay = v \mathbf{1}_{\omega} & \text{ in } (0, T) \times \Omega, \\ y = 0 & \text{ on } (0, T) \times \partial \Omega, \\ y(0, \cdot) = y^0 & \text{ on } \Omega. \end{cases}$$
(1)

Let Ω a (bounded) domain. Does it exists for all $y^0 \in L^2(\Omega)$ a control $v \in L^2((0, T) \times \omega)$ such that the solution of (1) satisfies $y(T, \cdot) = 0$?

An equivalent problem: the observability problem

Let us consider the system:

$$\begin{cases} u_t - \Delta u + \tilde{A} \cdot \nabla u + \tilde{a}u = 0 & \text{ in } (0, T) \times \Omega, \\ u = 0 & \text{ on } (0, T) \times \partial \Omega, \\ u(0, \cdot) = u^0 & \text{ on } \Omega. \end{cases}$$
(2)

Is there a constant C such that we have for all $u^0 \in L^2(\Omega)$ that:

$$||u(T, \cdot)||_{L^{2}(\Omega)} \leq C ||u||_{L^{2}((0,T)\times\omega)}?$$

For linear systems both problems are equivalent (even quantitatively) by the Hilbert Uniqueness Method, and I will mention both indistinctively.

Null controllability for the heat equation in pseudo-cylinders

Irregular domains

0000000

Approaches to prove the null controllability of the heat equation

- Transformations involving the wave equation (Russell, ...) (requires some geometrical hypothesis)
- Spectral inequalities (Lebeau&Robbiano, ...) (known to work for locally star-shaped domains by Apraiz&Euscariaza&Wang&Zhang)
- Carleman estimates (Fursikov&Imanuvilov, ...) (known to work for C² domain and many parabolic equations).

・ロト ・回ト ・ヨト ・ヨト

臣

A pseudo-cylinder

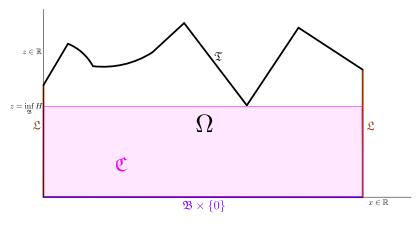


Figure: A canonically oriented pseudo-cylinder

Э

The main result: a usual result but in a different geometry

Theorem

Let Ω be a pseudo-cylinder and $\omega \subset \Omega$ be a subdomain. Then, there is C > 0such that if T > 0, $A \in (L^{\infty}((0, T) \times \Omega))^{d+1}$, $a \in L^{\infty}((0, T) \times \Omega)$, and $y^{0} \in L^{2}(\Omega)$, there is a control $v \in L^{2}((0, T) \times \omega)$ such that the solution of the system:

$$\begin{cases} y_t - \Delta y + A \cdot \nabla y + ay = v \mathbf{1}_{\omega} & \text{ in } (0, T) \times \Omega, \\ y = 0 & \text{ on } (0, T) \times \partial \Omega, \\ y(0, \cdot) = y^0 & \text{ on } \Omega, \end{cases}$$

satisfies $y(T, \cdot) = 0$, and such that the control satisfies the estimate:

$$\|\mathbf{v}\|_{L^2((0,T)\times\omega)} \leq C e^{CK(T,\mathbf{a},A)} \|y^0\|_{L^2(\Omega)},$$

for:

$$K(T, a, A) := 1 + T^{-1} + T \|a\|_{L^{\infty}} + \|a\|_{L^{\infty}}^{2/3} + (1 + T) \|A\|_{(L^{\infty})^{d+1}}^{2}.$$

Sketch of the proof

- We approximate the domain by regular domains (by taking the contour lines of regularized distances to the boundary).
- It is well-known that the heat equation is observable in those domains.
- We show that the cost of the observability can be bounded uniformly in those domains (Carleman inequalities of the type Fursikov-Imanuvilov).
- ▶ We take limits (using compactness results in Sobolev spaces).

・ロト ・日ト ・ヨト ・ヨト

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term.

Reference:

https://hal.archives-ouvertes.fr/hal-02455632

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

イロト イヨト イヨト イヨト

Э

Presentation of the problem

We consider the following problem:

$$\begin{cases} y_t - \varepsilon \Delta y + \partial_{x_1} y = 1_\omega f, & \text{ in } (0, T) \times \Omega, \\ \text{boundary conditions} & (3) \\ y(0, \cdot) = y^0, & \text{ on } \Omega, \end{cases}$$

The null controllability of (3) is well-known when Ω is C^2 for many boundary conditions. Thus, the next interesting question is to study the cost of the control when $\varepsilon \to 0$. We recall that the cost is given by:

$$\mathcal{K}(\Omega,\omega,T,\varepsilon):=\sup_{y^0\in L^2(\Omega)\setminus\{0\}}\inf_{f:y(T,\cdot)=0}\frac{\|f\|_{L^2((0,T)\times\omega)}}{\|y^0\|_{L^2(\Omega)}}.$$

Irregular domains

Transport-diffusion equations

Stochastic heat equation

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Heuristics with Dirichlet conditions

• The equation in (3) is the transport equation when $\varepsilon = 0$.

(日)

E

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Heuristics with Dirichlet conditions

- The equation in (3) is the transport equation when $\varepsilon = 0$.
- The transport equation is null controllable if and only if: T ≥ T*(Ω, ω).

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Heuristics with Dirichlet conditions

- The equation in (3) is the transport equation when $\varepsilon = 0$.
- The transport equation is null controllable if and only if: T ≥ T*(Ω, ω).
- Thus, it looks reasonable that the cost of the control explodes for T < T*(Ω, ω) and decays for T ≥ T*(Ω, ω).</p>

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Known facts with Dirichlet boundary conditions

- The equation in (3) is the transport equation when $\varepsilon = 0$.
- The transport equation is null controllable if and only if T ≥ T*(Ω, ω).
- ► Thus, it looks reasonable that the cost of the control explodes for $T < T^*(\Omega, \omega)$ and decays for $T \ge T^*(\Omega, \omega)$.

The reality is not like that. Coron&Guerrero proved in 2005 that this conjecture is false. However, they prove that there was $\tilde{T}(\omega, \Omega)$ such that for $T \geq \tilde{T}$ we have $K \leq Ce^{-c\varepsilon^{-1}}$ for $\Omega \subset \mathbb{R}$. Afterwards, Guerrero&Lebeau proved in 2007 the same result for $\Omega \subset \mathbb{R}^d$.

Stochastic heat equation

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Formulation of the problem

We focus on problems of the type:

$$\begin{cases} y_t - \varepsilon \Delta y + \partial_{x_1} y = 1_\omega f, & \text{ in } (0, T) \times \Omega, \\ \partial_n y + a^{\varepsilon}(x) y = 0, & \text{ on } (0, T) \times \Gamma, \\ y = 0, & \text{ on } (0, T) \times \Gamma^*, \\ y(0, \cdot) = y^0, & \text{ on } \Omega. \end{cases}$$

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Formulation of the problem

We focus on problems of the type:

$$\begin{cases} y_t - \varepsilon \Delta y + \partial_{x_1} y = 1_\omega f, & \text{in } (0, T) \times \Omega, \\ \partial_n y + a^{\varepsilon}(x) y = 0, & \text{on } (0, T) \times \Gamma, \\ y = 0, & \text{on } (0, T) \times \Gamma^*, \\ y(0, \cdot) = y^0, & \text{on } \Omega. \end{cases}$$

The control is estimated with the Hilbert Uniqueness Method. Indeed, we focus on the observability properties of:

$$\begin{cases} -\varphi_t - \varepsilon \Delta \varphi - \partial_{x_1} \varphi = 0, & \text{ in } (0, T) \times \Omega, \\ \varepsilon \partial_n \varphi + (\varepsilon a^{\varepsilon} + n_1) \varphi = 0, & \text{ on } (0, T) \times \Gamma, \\ \varphi = 0, & \text{ on } (0, T) \times \Gamma^*, \\ \varphi(T, \cdot) = \varphi^T, & \text{ on } \Omega, \end{cases}$$

as:

$$\mathcal{K}(\Omega,\omega,T,\varepsilon) = \sup_{\varphi^T \in L^2(\Omega) \setminus \{0\}} \frac{\|\varphi(0,\cdot)\|_{L^2(\Omega)}}{\|\varphi\|_{L^2((0,T) \times \omega)}}.$$

Stochastic heat equation

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Positive answer under a geometric condition

We assume the following condition:

$$(a^{\varepsilon} + (2\varepsilon)^{-1}n_1)\mathbf{1}_{\Gamma} \ge 0. \tag{4}$$

The geometrical meaning is that if the flux of the transport enters (if $n_1 < 0$) then we need for *a* to be large, which implies that the normal variation of *y* on $\partial\Omega$ opposes to *y* very strongly if it is not null. In addition, for the points in which the flux comes out (if $n_1 > 0$), we just need for *a* to be positive or of a small modulus, which implies that the normal variation of *y* on $\partial\Omega$ either opposes to *y* or is of the same sign, but not too strongly.

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Proof of the decay of the cost for a sufficiently large time under the geometric condition (4)

The proof consists on two steps:

With a "proper" Carleman inequality for the adjoint system assuming (4) we can obtain the estimate:

$$\|\varphi(T-1,\cdot)\|_{L^2(\Omega)} \leq Ce^{C\varepsilon^{-1}} \|\varphi\|_{L^2((T-1,T)\times\omega)}.$$

• Under the geometric condition (4) we can see that the first eigenvalue of $-\varepsilon \Delta - \partial_{x_1}$ is greater than $\frac{1}{4\varepsilon}$ via the its variational formulation. Thus, we obtain for a large T that:

$$\|\varphi(\mathbf{0},\cdot)\|_{L^2(\Omega)} \leq C e^{-c\varepsilon^{-1}T} \|\varphi(T-1,\cdot)\|_{L^2(\Omega)}.$$

Thus, combining the two previous inequalities we obtain that the cost of the control decays for a sufficiently large time.

Stochastic heat equation

イロト イポト イヨト イヨト

Э

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Study of the cost when we have Neumann b. c.

In this situation we have that $K \ge Ce^{C/\varepsilon}$. Indeed, $e^{x_1/\varepsilon}$ is a static solution of the adjoint system for any domain Ω .

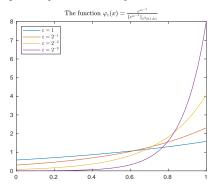


Figure: Normalized eigenfunctions of the adjoint of Neumann b. c.

Averaged dynamics and control for heat equations with random diffusion.

Averaged dynamics and control for heat equations with random diffusion.

Joint work with Enrique Zuazua. (https://hal.archives-ouvertes.fr/hal-02958671) Averaged dynamics and control for heat equations with random diffusion.

The averaged controllability problem

We study the controllability properties of the system:

$$\begin{cases} y_t - \alpha \Delta y = f \mathbf{1}_{G_0}, & \text{in } (0, T) \times G, \\ y = 0, & \text{on } (0, T) \times \partial G, \\ y(0, \cdot) = y^0, & \text{on } G, \end{cases}$$
(5)

for α a positive random variable of density ρ . We cannot expect to control all the possible realizations (consider, for instance, the case in which $\alpha \rightarrow 0$), so we seek to control the average. This problem is relevant in applications in which the control has to be chosen independently of the random value, in a robust way.

Averaged dynamics and control for heat equations with random diffusion.

Known controllability results

Theorem (Coulson, Gharesifard, Lü, Mansouri, Zuazua)

Let α be a random variable with a Riemann integrable density function ρ such that supp $(\rho) \subset [\alpha_{\min}, +\infty)$ for some $\alpha_{\min} > 0$. Then, system (5) is null controllable in average.

Averaged dynamics and control for heat equations with random diffusion.

Known controllability results

Theorem (Coulson, Gharesifard, Lü, Mansouri, Zuazua)

Let α be a random variable with a Riemann integrable density function ρ such that supp $(\rho) \subset [\alpha_{\min}, +\infty)$ for some $\alpha_{\min} > 0$. Then, system (5) is null controllable in average.

Their result leaves an interesting open question: What happens if we allow the random variable to vanish; that is, if we allow $0 \in \text{supp}(\rho)$? Averaged dynamics and control for heat equations with random diffusion.

Numerical illustration of the minimum of the functional associated to the control problem.

On the following slides we minimize the following functional with the help of Matlab:

$$\begin{split} J(\phi) &= \frac{1}{2} \int_0^T \int_{G_0} \left| \int_0^{+\infty} \varphi(t, x; \alpha, \phi) \rho(\alpha) d\alpha \right|^2 dx dt \\ &+ \left\langle y^0, \int_0^{+\infty} \varphi(0; \alpha, \phi) \rho(\alpha) d\alpha \right\rangle, \end{split}$$

for φ the averaged solution of the adjoint heat equation. In particular, we consider the initial value $y^0 = 1/2$, $G = (0, \pi)$ and $G_0 = (1, 2)$ and compare what happens when considering the uniform distributions in (0, 1) and (1, 2) (i.e. $\rho = 1_{(0,1)}$ and $\rho = 1_{(1,2)}$).

Stochastic heat equation

イロト イヨト イヨト イヨト

E

Averaged dynamics and control for heat equations with random diffusion.

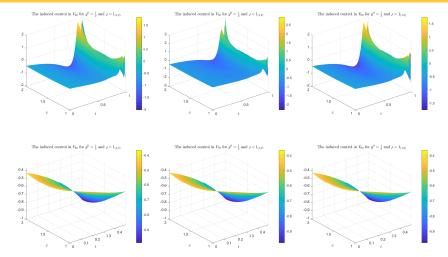


Figure: The optimal control for $\rho = 1_{(1,2)}$ and $y^0 = \frac{1}{2}$ induced by the minimum of the functional J in V_{40} , V_{50} and V_{60} , for $V_M := \langle e_i \rangle_{i=1}^M$.

Irregular domains

Transport-diffusion equations

Stochastic heat equation

イロト イヨト イヨト イヨト

E

Averaged dynamics and control for heat equations with random diffusion.

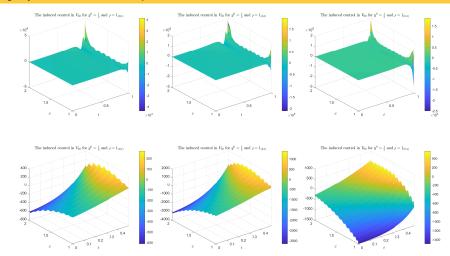


Figure: The optimal control for $\rho = 1_{(0,1)}$ and $y^0 = \frac{1}{2}$ induced by the minimum of the functional J in V_{40} , V_{50} and V_{60} , for $V_M := \langle e_i \rangle_{i=1}^M$.

イロト イヨト イヨト イヨト

Averaged dynamics and control for heat equations with random diffusion.

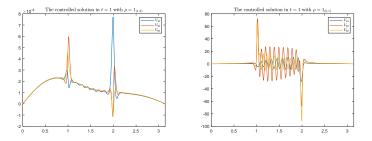


Figure: The state in time t = 1 of the averaged solutions of the heat equation after applying the control induced by the minimum of J in V_{40} , V_{50} and V_{60} with $y^0 = \frac{1}{2}$. In the left figure we have considered $\rho = 1_{(1,2)}$ and in the right one $\rho = 1_{(0,1)}$.

Э

Averaged dynamics and control for heat equations with random diffusion.

A qualitative description of the main results

(5) is null controllable in average if and only if ρ is sufficiently small near 0. In fact, the threshold density functions are those which near 0 satisfy:

$$ho(lpha)\sim e^{-lpha^{-1}}.$$

Averaged dynamics and control for heat equations with random diffusion.

A qualitative description of the main results

(5) is null controllable in average if and only if ρ is sufficiently small near 0. In fact, the threshold density functions are those which near 0 satisfy:

$$ho(lpha) \sim e^{-lpha^{-1}}.$$

The proof is based in studying the averaged observability of its dual problem and in analogies with the fractional heat equation.

3

Averaged dynamics and control for heat equations with random diffusion.

Thank you for your attention! Is there any question?