
Irregular domains Transport-diffusion equations Stochastic heat equation

Some recent results about the controllability of
the heat equation.
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Overview

1. Null controllability for the heat equation in pseudo-cylinders.

2. Cost of null controllability for parabolic equations with
vanishing diffusivity and a transport term.

3. Averaged observability properties of the random heat equation
with a random diffusion (in collaboration with Enrique
Zuazua).
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Null controllability for the heat equation in pseudo-cylinders

Null controllability of the heat equation:
targeting Lipschitz domains.

Reference:
https://hal.archives-ouvertes.fr/hal-02145122
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Null controllability for the heat equation in pseudo-cylinders

Statement of the problem

We study the following classic problem:
yt −∆y + A · ∇y + ay = v1ω in (0,T )× Ω,

y = 0 on (0,T )× ∂Ω,

y(0, ·) = y0 on Ω.

(1)

Let Ω a (bounded) domain. Does it exists for all y0 ∈ L2(Ω) a
control v ∈ L2((0,T )× ω) such that the solution of (1) satisfies
y(T , ·) = 0?
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Null controllability for the heat equation in pseudo-cylinders

An equivalent problem: the observability problem

Let us consider the system:
ut −∆u + Ã · ∇u + ãu = 0 in (0,T )× Ω,

u = 0 on (0,T )× ∂Ω,

u(0, ·) = u0 on Ω.

(2)

Is there a constant C such that we have for all u0 ∈ L2(Ω) that:

‖u(T , ·)‖L2(Ω) ≤ C‖u‖L2((0,T )×ω)?

For linear systems both problems are equivalent (even
quantitatively) by the Hilbert Uniqueness Method, and I will
mention both indistinctively.
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Null controllability for the heat equation in pseudo-cylinders

Approaches to prove the null controllability of the heat
equation

I Transformations involving the wave equation (Russell, ...)
(requires some geometrical hypothesis)

I Spectral inequalities (Lebeau&Robbiano, ...) (known to work
for locally star-shaped domains by
Apraiz&Euscariaza&Wang&Zhang)

I Carleman estimates (Fursikov&Imanuvilov, ...) (known to
work for C 2 domain and many parabolic equations).
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Null controllability for the heat equation in pseudo-cylinders

A pseudo-cylinder

Figure: A canonically oriented pseudo-cylinder
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Null controllability for the heat equation in pseudo-cylinders

The main result: a usual result but in a different geometry

Theorem
Let Ω be a pseudo-cylinder and ω ⊂ Ω be a subdomain. Then, there is C > 0
such that if T > 0, A ∈ (L∞((0,T )× Ω))d+1, a ∈ L∞((0,T )× Ω), and
y 0 ∈ L2(Ω), there is a control v ∈ L2((0,T )× ω) such that the solution of the
system: 

yt −∆y + A · ∇y + ay = v1ω in (0,T )× Ω,

y = 0 on (0,T )× ∂Ω,

y(0, ·) = y 0 on Ω,

satisfies y(T , ·) = 0, and such that the control satisfies the estimate:

‖v‖L2((0,T )×ω) ≤ CeCK(T ,a,A)‖y 0‖L2(Ω),

for:

K(T , a,A) := 1 + T−1 + T‖a‖L∞ + ‖a‖2/3
L∞ + (1 + T )‖A‖2

(L∞)d+1 .
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Null controllability for the heat equation in pseudo-cylinders

Sketch of the proof

I We approximate the domain by regular domains (by taking
the contour lines of regularized distances to the boundary).

I It is well-known that the heat equation is observable in those
domains.

I We show that the cost of the observability can be bounded
uniformly in those domains (Carleman inequalities of the type
Fursikov-Imanuvilov).

I We take limits (using compactness results in Sobolev spaces).
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Cost of null controllability for parabolic equations
with vanishing diffusivity and a transport term.

Reference:
https://hal.archives-ouvertes.fr/hal-02455632
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Presentation of the problem

We consider the following problem:
yt − ε∆y + ∂x1y = 1ωf , in (0,T )× Ω,

boundary conditions

y(0, ·) = y0, on Ω,

(3)

The null controllability of (3) is well-known when Ω is C 2 for many
boundary conditions. Thus, the next interesting question is to
study the cost of the control when ε→ 0. We recall that the cost
is given by:

K (Ω, ω,T , ε) := sup
y0∈L2(Ω)\{0}

inf
f :y(T ,·)=0

‖f ‖L2((0,T )×ω)

‖y0‖L2(Ω)
.
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Heuristics with Dirichlet conditions

I The equation in (3) is the transport equation when ε = 0.

I The transport equation is null controllable if and only if:
T ≥ T ∗(Ω, ω).

I Thus, it looks reasonable that the cost of the control explodes
for T < T ∗(Ω, ω) and decays for T ≥ T ∗(Ω, ω).
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Known facts with Dirichlet boundary conditions

I The equation in (3) is the transport equation when ε = 0.

I The transport equation is null controllable if and only if
T ≥ T ∗(Ω, ω).

I Thus, it looks reasonable that the cost of the control explodes
for T < T ∗(Ω, ω) and decays for T ≥ T ∗(Ω, ω).

The reality is not like that. Coron&Guerrero proved in 2005 that
this conjecture is false. However, they prove that there was
T̃ (ω,Ω) such that for T ≥ T̃ we have K ≤ Ce−cε

−1
for Ω ⊂ R.

Afterwards, Guerrero&Lebeau proved in 2007 the same result for
Ω ⊂ Rd .
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Formulation of the problem

We focus on problems of the type:
yt − ε∆y + ∂x1y = 1ωf , in (0,T )× Ω,

∂ny + aε(x)y = 0, on (0,T )× Γ,

y = 0, on (0,T )× Γ∗,

y(0, ·) = y 0, on Ω.

The control is estimated with the Hilbert Uniqueness Method. Indeed, we focus
on the observability properties of:

−ϕt − ε∆ϕ− ∂x1ϕ = 0, in (0,T )× Ω,

ε∂nϕ + (εaε + n1)ϕ = 0, on (0,T )× Γ,

ϕ = 0, on (0,T )× Γ∗,

ϕ(T , ·) = ϕT , on Ω,

as:

K(Ω, ω,T , ε) = sup
ϕT∈L2(Ω)\{0}

‖ϕ(0, ·)‖L2(Ω)

‖ϕ‖L2((0,T )×ω)

.

Controllability of the heat equation



Irregular domains Transport-diffusion equations Stochastic heat equation

Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Positive answer under a geometric condition

We assume the following condition:

(aε + (2ε)−1n1)1Γ ≥ 0. (4)

The geometrical meaning is that if the flux of the transport enters
(if n1 < 0) then we need for a to be large, which implies that the
normal variation of y on ∂Ω opposes to y very strongly if it is not
null. In addition, for the points in which the flux comes out (if
n1 > 0), we just need for a to be positive or of a small modulus,
which implies that the normal variation of y on ∂Ω either opposes
to y or is of the same sign, but not too strongly.
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Proof of the decay of the cost for a sufficiently large time
under the geometric condition (4)

The proof consists on two steps:

I With a “proper” Carleman inequality for the adjoint system assuming (4)
we can obtain the estimate:

‖ϕ(T − 1, ·)‖L2(Ω) ≤ CeCε−1

‖ϕ‖L2((T−1,T )×ω).

I Under the geometric condition (4) we can see that the first eigenvalue of
−ε∆− ∂x1 is greater than 1

4ε
via the its variational formulation. Thus, we

obtain for a large T that:

‖ϕ(0, ·)‖L2(Ω) ≤ Ce−cε−1T‖ϕ(T − 1, ·)‖L2(Ω).

Thus, combining the two previous inequalities we obtain that the cost of the
control decays for a sufficiently large time.
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Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term

Study of the cost when we have Neumann b. c.

In this situation we have that K ≥ CeC/ε. Indeed, ex1/ε is a static
solution of the adjoint system for any domain Ω.
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Figure: Normalized eigenfunctions of the adjoint of Neumann b. c.
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Averaged dynamics and control for heat equations with random diffusion.

Averaged dynamics and control for heat
equations with random diffusion.

Joint work with Enrique Zuazua.
(https://hal.archives-ouvertes.fr/hal-02958671)
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Averaged dynamics and control for heat equations with random diffusion.

The averaged controllability problem

We study the controllability properties of the system:
yt − α∆y = f 1G0 , in (0,T )× G ,

y = 0, on (0,T )× ∂G ,
y(0, ·) = y0, on G ,

(5)

for α a positive random variable of density ρ. We cannot expect to
control all the possible realizations (consider, for instance, the case
in which α→ 0), so we seek to control the average. This problem
is relevant in applications in which the control has to be chosen
independently of the random value, in a robust way.
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Averaged dynamics and control for heat equations with random diffusion.

Known controllability results

Theorem (Coulson, Gharesifard, Lü, Mansouri, Zuazua)

Let α be a random variable with a Riemann integrable density
function ρ such that supp(ρ) ⊂ [αmin,+∞) for some αmin > 0.
Then, system (5) is null controllable in average.

Their result leaves an interesting open question:
What happens if we allow the random variable to vanish; that is, if

we allow 0 ∈ supp(ρ)?
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Averaged dynamics and control for heat equations with random diffusion.

Numerical illustration of the minimum of the functional
associated to the control problem.

On the following slides we minimize the following functional with the help
of Matlab:

J(φ) =
1

2

∫ T

0

∫
G0

∣∣∣∣∫ +∞

0

ϕ(t, x ;α, φ)ρ(α)dα

∣∣∣∣2 dxdt
+

〈
y0,

∫ +∞

0

ϕ(0;α, φ)ρ(α)dα

〉
,

for ϕ the averaged solution of the adjoint heat equation. In particular, we
consider the initial value y0 = 1/2, G = (0, π) and G0 = (1, 2) and
compare what happens when considering the uniform distributions in
(0, 1) and (1, 2) (i.e. ρ = 1(0,1) and ρ = 1(1,2)).
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Averaged dynamics and control for heat equations with random diffusion.

Figure: The optimal control for ρ = 1(1,2) and y0 = 1
2 induced by the

minimum of the functional J in V40, V50 and V60, for VM := 〈ei 〉Mi=1.
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Averaged dynamics and control for heat equations with random diffusion.

Figure: The optimal control for ρ = 1(0,1) and y0 = 1
2 induced by the

minimum of the functional J in V40, V50 and V60, for VM := 〈ei 〉Mi=1.
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Averaged dynamics and control for heat equations with random diffusion.
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Figure: The state in time t = 1 of the averaged solutions of the heat
equation after applying the control induced by the minimum of J in V40,
V50 and V60 with y0 = 1

2 . In the left figure we have considered ρ = 1(1,2)

and in the right one ρ = 1(0,1).
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Averaged dynamics and control for heat equations with random diffusion.

A qualitative description of the main results

(5) is null controllable in average if and only if ρ is sufficiently
small near 0. In fact, the threshold density functions are those
which near 0 satisfy:

ρ(α) ∼ e−α
−1
.

The proof is based in studying the averaged observability of its
dual problem and in analogies with the fractional heat equation.
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Averaged dynamics and control for heat equations with random diffusion.
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Averaged dynamics and control for heat equations with random diffusion.

Thank you for your attention!
Is there any question?
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