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Abstract

We consider the controllability problem for finite-dimensional linear autonomous control systems with nonnegative controls. 
Despite the Kalman condition, the unilateral nonnegativity control constraint may cause a positive minimal controllability time. 
When this happens, we prove that, if the matrix of the system has a real eigenvalue, then there is a minimal time control in the 
space of Radon measures, which consists of a finite sum of Dirac impulses. When all eigenvalues are real, this control is unique 
and the number of impulses is less than half the dimension of the space. We also focus on the control system corresponding to 
a finite-difference spatial discretization of the one-dimensional heat equation with Dirichlet boundary controls, and we provide 
numerical simulations.
© 2020 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Dans cet article, nous considérons la contrôlabilité d’un système linéaire avec des contrôles positifs. Malgré la condition du rang 
de Kalman, la condition de positivité des contrôles peut conduire à l’existence d’un temps minimal de contrôlabilité strictement 
positif. Lorsque tel est le cas, nous démontrons que si la matrice du système de contrôle possède une valeur propre réelle, alors il 
existe dans l’espace des mesures de Radon positives, un contrôle en le temps minimal et ce contrôle est nécessairement une somme 
finie de masse de Dirac. De plus, lorsque toutes les valeurs propres de la matrice sont réelles, ce contrôle est unique et le nombre 
de masses de Dirac le constituant est d’au plus la moitié de la dimension de l’espace d’état. Nous particularisons ces résultats sur 
l’exemple de l’équation de la chaleur unidimensionnelle, avec des contrôles frontières de type Dirichlet, discrétisée en espace et 
nous proposons quelques simulations numériques.
© 2020 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let n ∈ IN∗, A be an n × n real-valued matrix and B be an n × 1 real-valued matrix, such that the pair (A, B)

satisfies the Kalman condition. We consider the finite-dimensional linear autonomous control system

ẏ(t) = Ay(t) + Bu(t) (1.1)

where controls u are real-valued locally integrable functions. Given any initial state y0 ∈ IRn and any final state 
y1 ∈ IRn, the Kalman condition implies that the control system (1.1) can be steered from y0 to y1 in any positive time. 
In other words, the minimal controllability time required to pass from y0 to y1 is zero.

Now, we impose the unilateral nonnegativity control constraint

u(t) � 0 (t > 0 a.e.). (1.2)

It has been shown in [21] that such a constraint may induce a positive minimal controllability time (this is also the 
case for unilateral state constraints). Actually, for every y0 ∈ IRn, there exists a target y1 ∈ IRn such that the minimal 
time required to pass from y0 to y1 is positive.

The objective of this paper is to study the structure of minimal time controls, which do exist in the class of Radon 
measures. Actually, we will provide evidence of the importance of the two possible assumptions:

(H.1) The matrix A has at least one real eigenvalue.
(H.2) All eigenvalues of A are real.

We will prove that, under assumption (H.1), there exists a minimal time nonnegative control in the class of Radon 
measures, which consists of a finite number N of Dirac impulses, and that, under the stronger assumption (H.2), we 
have N � �(n + 1)/2�.
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Application to a discretized 1D heat equation Nonnegativity control constraints are actually closely related to non-
negativity state constraints (see [20,21]). For example, the comparison principle implies that the control of the heat 
equation under nonnegativity state constraints by Dirichlet boundary controls is equivalent to the control of the heat 
equation with nonnegative Dirichlet boundary controls. In this paper we will pay a particular attention to a discretized 
version of the 1D heat equation

∂tψ(t, x) = ∂2
xψ(t, x) (t > 0, x ∈ (0,1)), (1.3a)

∂xψ(t,0) = 0 (t > 0), (1.3b)

ψ(t,1) = u(t) � 0 (t > 0), (1.3c)

ψ(0, x) = ψ0(x) (x ∈ (0,1)). (1.3d)

For the continuous version, it has been proved in [20] that for every initial state ψ0 ∈ L2(0, 1) and every positive 
constant target ψ1 �= ψ0, the minimal controllability time is positive, and controllability can be achieved at the min-
imal time for some nonnegative control in the space of Radon measures. However, uniqueness of this control and its 
expression as a countable sum of Dirac impulses are open issues.

Here, we consider the finite-difference spatial discretization of (1.3), written as (1.1), where n +1 > 2 is the number 
of discretization points and yi(t) (the ith component of y(t)) stands for ψ(t, (i − 1)/n), with matrices

A = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 2 0 . . . . . . 0
1 −2 1 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . . . . 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B = n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...
...

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.4)

which do satisfy the Kalman condition. In addition, all eigenvalues of the matrix A are real and negative: this property 
is even stronger than (H.2) above. Furthermore, the pair (A, B) satisfies the comparison principle: if y0 � 0 then the 
solution y of (1.1)-(1.2) with initial condition y(0) = y0 satisfies y(t) � 0 for every t � 0. This follows from the fact 
that In − τA is a M-matrix (see [2, Chapter 6]) for every τ � 0, which in turn implies that state and control constraints 
y(t) � 0 and u(t) � 0 are equivalent to the sole control constraint u(t) � 0 (argument used in [20]).

Main result Before stating the main results, we introduce some notations. First, we set IR+ = [0, ∞) and IR∗+ =
(0, ∞). For every T > 0, we define the set of nonnegative L∞ controls by

U+(T ) = {u ∈ L∞(0, T ) | u� 0
}

and the set of nonnegative Radon measure controls by

M+(T ) = {u ∈ M([0, T ]) | u � 0}
where M([0, T ]) is the set of Radon measures on [0, T ]. Note that elements of M([0, T ]) can be identified 
with those in M(IR) with support in [0, T ]. In addition, any element u ∈ U+(T ) can be identified with some 
u ∈ M+(T ) by setting du(t) = u(t)dt . The classical input-to-state mapping �T : L∞(0, T ) → IRn is defined by 
�T u = ∫ T

0 e(T −t)ABu(t) dt and is extended to �T : M([0, T ]) → IRn by �T u = ∫[0,T ] e
(T −t)AB du(t). We define the 

minimal controllability time required to steer y0 to y1, with nonnegative “classical” L∞-controls, by

TU (y0, y1) = inf
{
T � 0 | ∃u ∈ U+(T ) s.t. y1 = eT Ay0 + �T u

}
(1.5)

and with nonnegative Radon measure controls, by

TM(y0, y1) = inf
{
T � 0 | ∃u ∈M+(T ) s.t. y1 = eT Ay0 + �T u

}
. (1.6)

By convention, we set TU (y0, y1) = +∞ (respectively TM(y0, y1) = +∞) when y1 is not accessible from y0 in any 
time with nonnegative L∞-controls (respectively Radon measure controls).
Since any element in U+(T ) can be identified to an element in M+(T ), we always have
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TM(y0, y1) � TU (y0, y1). (1.7)

We will see on some examples that this inequality can be strict (see Remark 5.1.9) and we refer to [22] for some 
no-gap conditions. Let us however point out that when y1 is a positive steady-state, i.e., y1 ∈ S∗+, with

S∗+ = {ȳ ∈ IRn | ∃ū ∈ IR∗+ s.t. Aȳ + Bū = 0
}

(1.8)

then TM(y0, y1) = TU (y0, y1).
Recall that, by definition, ȳ ∈ IRn is a steady-state for the system (1.1) if there exists ū ∈ IR such that Aȳ + Bū = 0.

Our main result is the following.

Theorem 1. Let y0 ∈ IRn and y1 ∈ IRn be such that y0 can be steered to y1 in some positive time with nonnegative L∞
controls (i.e., TU (y0, y1) < +∞).

• Under Assumption (H.1), there exists a control u ∈ M+(TU (y0, y1)) steering the system (1.1) from y0 to y1

in time TU (y0, y1), which is a linear combination with nonnegative coefficients of a finite number N of Dirac 
impulses.

• Under the stronger assumption (H.2), we have N � �(n + 1)/2�. If moreover y1 ∈ S∗+, then the minimal time 
control u is unique.

The proof of Theorem 1 follows from Propositions 5.1.7, 5.1.11, 5.2.5 and 5.3.1 and Corollary 5.2.2, proved in 
Section 5. This section actually contains more precise results, most of them being summarized in Table 1.

Remark 2.

• The result remains true when replacing TU (y0, y1) with TM(y0, y1), except that the additional assumption y1 ∈
S∗+ is not required to have uniqueness.

• Assumption (H.1) is used in an instrumental way in order to provide the existence of a nonnegative minimal time 
control in the class of Radon measures (see Proposition 5.1.7). �

Organization of the paper In Section 2, we show on the example of the discretized heat equation (i.e., with the 
matrices A and B given by (1.4)) how the result of Theorem 1 can be used, and we perform some numerical simu-
lations. The proof of the results given in Section 2 is presented in Appendix A. In Section 3 we give some possible 
strategies to numerically obtain a time optimal control, and in Section 4, we list some open questions. The proof of 
the main results of this paper (see Table 1) is performed in Section 5. More precisely, in Section 5.1, we recall some 
results ensuring that the target y1 can be reached from the initial condition y0 in some time T > 0 with a nonnegative 
control (see § 5.1.1), we show that if Assumption (H.1) is satisfied, then there exists a nonnegative Radon measure 
control at the minimal times TU and TM (see § 5.1.2), and we show that if the target y1 belongs to S∗+ then we have 
equality in (1.7) (see § 5.1.3). Assuming that Assumption (H.1) is satisfied, we show in Section 5.2 that any nonneg-
ative Radon measure control at the minimal time TM is a finite sum of Dirac impulses. In addition, with the more 
restrictive assumption (H.2), we bound the number of Dirac impulses and show that this nonnegative Radon control is 
unique. Section 5.3 gives some results in order to approximate, with bounded L∞-controls, the minimal controllabil-
ity time TU and the corresponding minimal time control. We provide this section, since we will show in Remark 5.1.9
that a gap phenomena can occur, and in this case, the results given in Section 5.2 are useless for obtaining the minimal 
time TU and a minimal time control in time TU . In Appendix B, we present some technical results related to the 
numerical method proposed in Section 3 for the nonnegative controls of minimal L1-norm in times greater than TM. 
Finally, in Appendix C, we give the technical details of some relevant examples presented in Section 5.

2. Control of the semi-discrete 1D heat equation under a nonnegative control constraint

We consider the control system (1.1) with matrices A and B given by (1.4). We consider an initial state y0 and a 
positive steady-state target y1, i.e., there exists ū1 ∈ IR∗+ such that y1 = ū1(1, . . . , 1)
. All results stated in Table 1
apply to this control problem. Moreover, in this case, we can give a more precise result (see Proposition 3) and an a 
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Table 1
Main results. Note that the assumption TU (y0, y1) < +∞ (respectively TM(y0, y1) < +∞) is an implicit assumption on y0 and y1 meaning that 
y1 is reachable from y0 in a finite time T ∈ IR+ with a control in U+(T ) (respectively M+(T )).

Assumptions on A Assumptions 
on y0 and y1

Results

No assumption No assumption 0 � TM(y0, y1) � TU (y0, y1) � +∞.
y1 ∈ S∗+ TU (y0, y1) = TM(y0, y1) (Proposition 5.1.11, see also Proposition 5.1.12 for a 

more general result).
y0, y1 ∈ S∗+ TU (y0, y1) < +∞ (Proposition 5.1.1).

All eigenvalues of A have 
a negative real part

y1 ∈ S∗+ TU (y0, y1) < +∞ (Proposition 5.1.2).

(H.1) (at least one 
eigenvalue of A is real)

TM(y0, y1) < +∞ There exists a control u ∈ M+(TM(y0, y1)) steering y0 to y1 in time 
TM(y0, y1), which is a linear combination with nonnegative coefficients of a finite 
number of Dirac impulses (Corollary 5.2.3).

TU (y0, y1) < +∞ There exists a control u ∈ M+(TU (y0, y1)) steering y0 to y1 in time TU (y0, y1)

(Proposition 5.1.7), which is a linear combination with nonnegative coefficients of a 
finite number of Dirac impulses (Proposition 5.3.1).

(H.2) (all eigenvalues 
of A are real)

TM(y0, y1) < +∞ There exists a unique control u ∈ M+(TM(y0, y1)) steering y0 to y1 in time 
TM(y0, y1), which is a linear combination with nonnegative coefficients of at most 
�(n + 1)/2� Dirac impulses (Proposition 5.2.5).

TU (y0, y1) < +∞ There exists a control u ∈ M+(TU (y0, y1)) steering y0 to y1 in time TU (y0, y1), 
which is a linear combination with nonnegative coefficients of at most �(n + 1)/2�
Dirac impulses (Proposition 5.3.1).

priori lower bound on the minimal time (see Proposition 7). To this end we recall that the eigenvalues λk and associated 
eigenvectors ψk ∈ IRn of the matrix A given by (1.4) are given by

λk = −2n2
(

1 − cos
(k − 1/2)π

n

)
(k ∈ {1, . . . , n}) (2.1a)

and

ψk =

⎛
⎜⎜⎜⎜⎜⎝

1
cos((k − 1/2)π/n)

cos(2(k − 1/2)π/n)
...

cos((n − 1)(k − 1/2)π/n)

⎞
⎟⎟⎟⎟⎟⎠ (k ∈ {1, . . . , n}) (2.1b)

and the eigenvalues of A
 are these λk with associated eigenvectors ϕk ∈ IRn given by

ϕk =

⎛
⎜⎜⎜⎜⎜⎝

1/2
cos((k − 1/2)π/n)

cos(2(k − 1/2)π/n)
...

cos((n − 1)(k − 1/2)π/n)

⎞
⎟⎟⎟⎟⎟⎠ (2.1c)

Proposition 3. Assume the pair (A, B) is given by (1.4) and let y0 ∈ IRn and y1 ∈ S∗+, i.e., there exists ū1 ∈ IR∗+ such 
that y1 = ū1(1, . . . , 1)
. Then TU (y0, y1) is the minimum of the constraint minimization problem

min T

T � 0,

∃m1, . . . ,mN ∈ IR+ and t1, . . . , tN ∈ [0, T ], s.t.

ū1

−λk

− 〈ϕk, y
0〉 eλkT

〈ϕk,B〉 =
N∑

mie
λk(T −ti ) (k ∈ {1, . . . , n})

(2.2)
i=1
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with N = �(n + 1)/2� and λk given by (2.1a).
Furthermore:

• the time control u ∈ M+(TU (y0, y1) is unique and given by u =
N∑

i=1

miδti , with t1, . . . , tN and m1, . . . , mN the 

minimizers of the minimization problem (2.2);
• there exists p1 ∈ IRn \ {0} such that the solution p of the adjoint problem ṗ = −A
p, with final condition 

p(TU (y0, y1)) = p1, satisfies B
p � 0, and

{t1, . . . , tN } = {t ∈ [0,TU (y0, y1)] | B
p(t) = 0}.

Remark 4. When y0 is also a steady state, i.e., there exists ū0 ∈ IR such that y0 = ū0(1, . . . , 1)
, then the minimization 
problem (2.2) becomes

min T

T � 0,

∃m1, . . . ,mN ∈ IR+ and t1, . . . , tN ∈ [0, T ], s.t.

ū1 − ū0eλkT = −λk

N∑
i=1

mie
λk(T −ti ) (k ∈ {1, . . . , n}).

� (2.3)

Remark 5. Given a control u =
N∑

i=1

miδti ∈ M(0, T ) for some m1, . . . , mN ∈ IR, some T > 0 and some t1, . . . , tN ∈

[0, T ], the solution of (1.1) with initial condition y0 and control u is given by

y(t−) = etAy0 +
N∑

i=1
ti<t

e(t−ti )ABmi and y(t+) = etAy0 +
N∑

i=1
ti�t

e(t−ti )ABmi (t ∈ [0, T ]). �

Remark 6. In Proposition 3, we have considered a steady state target y1. Recall that, in this case, we have 
TU (y0, y1) = TM(y0, y1). �

Proposition 7. With the assumptions and notations introduced in Proposition 3, TU = TU (y0, y1) satisfies

sup
k∈{1,...,n}

(
ū1

−λk

− eλkTU 〈ϕk, y
0〉

〈ϕk,B〉
)
� inf

k∈{1,...,n}

(
ū1e−λkTU

−λk

− 〈ϕk, y
0〉

〈ϕk,B〉

)
. (2.4)

Remark 8. As for Remark 4, when y0 is a steady state, y0 = ū0(1, . . . , 1)
, the constraint (2.4) becomes

sup
k∈{1,...,n}

1 − eλkTU ū0/ū1

−λk

� inf
k∈{1,...,n}

e−λkTU − ū0/ū1

−λk

. � (2.5)

The Propositions 3 and 7 are proved in Appendix A.

Numerical simulation In order to numerically obtain the minimal time control, we numerically solve the minimiza-
tion problem (2.2), see also the discussion in Section 3 for other possible numerical approaches. In order to numerically 
solve this constrained optimization problem, we use the interior-point optimization routine IpOpt (see [30]) com-
bined with the automatic differentiation and modeling language AMPL (see [13]).1 We refer to [3,28,29] for a survey 
on numerical methods in optimal control and how to implement them efficiently according to the context.

1 See https://deustotech .github.io /DyCon -Blog /tutorial /wp03 /P0002 for some examples of usage of IpOpt and AMPL.
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Fig. 1. Minimal time control evolution in order to steer y0 ≡ 1 to y1 ≡ 5. The minimal time computed is TU (y0, y1) � 0.186799. Dirac impulses 
are represented by arrows. On this figure, we also plot B
p(t), with p(t) the adjoint state obtained from IpOpt. The corresponding state trajectory 
is given in Figs. 2 and 3.

In these simulations, we take n = 20, meaning that we expect that the minimal time control is the sum of at most 
N = 10 Dirac masses.

Below, we give the numerical results obtained in for y0 ≡ 1 and y1 ≡ 5, for y0 ≡ 5 and y1 ≡ 1, and for y0(x) =
5 cos(11πx/2)/(4x + 1) and y1 ≡ 1.
In order to make the numerical computation successful, we allow some additional masses, then after the optimal 
solution has been found, we remove Dirac masses of zero measure and sum the Dirac masses which are located at the 
same time instant. For the case y0 ≡ 1 and y1 ≡ 5, we allow 35 Dirac masses, and for the other cases, we allow 25
Dirac masses. After having removed the Dirac masses of zero measure and merging the Dirac masses located at the 
same time instant, we obtain a number of Dirac mass which is coherent with the expected result (10 in the first case, 
7 in the second case, and 8 in the last case). Note that if the number of allowed Dirac masses is too small or too large, 
the numerical algorithm fails to converge, and the proper number of allowed Dirac masses has to be found by hand.

From y0 ≡ 1 to y1 ≡ 5. We set y0 = (1, . . . , 1)
 ∈ IRn and y1 = (5, . . . , 5)
 ∈ IRn (with n = 20). First of all, we 
numerically evaluate the constraint on the minimal time given in Proposition 7, to obtain TU (y0, y1) � 0.0924.

Computationally, we obtain TU (y0, y1) � 0.186799 which is in accordance with the lower bound obtained from 
Proposition 7. The control and state trajectories are displayed on Figs. 1 to 3. On Fig. 1, we also plot B
p(t), with 
p(t) the adjoint state obtained from IpOpt and we observe, as expected from Proposition 3 that the Dirac masses 
are located at the times t such that B
p(t) = 0. On Fig. 1, we observe that the minimal time control is the sum of 10
Dirac masses.

From y0 ≡ 5 to y1 ≡ 1. We set y0 = (5, . . . , 5)
 ∈ IRn (with n = 20) and y1 = (1, . . . , 1)
 ∈ IRn. First of all, we 
numerically evaluate the constraint on the minimal time given in Proposition 7, to obtain TU (y0, y1) � 0.6613.

Computationally, we obtain TU (y0, y1) � 0.788791 which is in accordance with the lower bound obtained from 
Proposition 7. The control and state trajectories are displayed on Figs. 4 to 6. As in the previous example, we also 
plot, on Fig. 4, B
p(t), with p(t) the adjoint state obtained from IpOpt and similarly, we observe that the minimal 
time control u computed by IpOpt is supported by the time instants where B
p(t) = 0. On Fig. 4, we observe that 
the minimal time control is the sum of 7 Dirac masses.

From y0(x) = 5 cos(11πx/2)/(4x+1) to y1 ≡ 1. Let f (x) = 5 cos(11πx/2)/(4x+1), we set y0 = (f (0),f (1/n),

. . . , f ((n − 1)/n))
 ∈ IRn (with n = 20) and y1 = (1, . . . , 1)
 ∈ IRn. First of all, we numerically evaluate the con-
straint on the minimal time given in Proposition 7, to obtain TU (y0, y1) � 0.0939.

Computationally, we obtain TU (y0, y1) � 0.183000 which is in accordance with the lower bound obtained from 
Proposition 7. The control and state trajectories are displayed on Figs. 7 and 8.As in the previous examples, we also 
plot, on Fig. 7, B
p(t), with p(t) the adjoint state obtained from IpOpt and similarly, we observe that the minimal 
time control u computed by IpOpt is supported by the time instants where B
p(t) = 0. On Fig. 7, we observe that 
the minimal time control is the sum of 8 Dirac masses.
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Fig. 2. Evolution of the state between two Dirac impulses. The corresponding control required to steer y0 ≡ 1 to y1 ≡ 5 is given in Fig. 1 and the 
minimal time computed is TU (y0, y1) � 0.186799. The color of the state goes from blue (for the initial time instant) to red (for the final time 
instant). (See Fig. 3 for the final times.) (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Fig. 2 continued.

3. Numerical approximation of time optimal controls

In Section 2, we present some numerical simulations. The simulations have been performed by solving the mini-
mization problem (2.2) or (2.3). This has been possible because, we know exactly the eigenvalues and eigenvectors 
of A
. In a general situation, the computation of eigenvalues and eigenvector is in itself a problem. Let us in addition 
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Fig. 4. Minimal time control evolution in order to steer y0 ≡ 5 to y1 ≡ 1. The minimal time computed is TU (y0, y1) � 0.788791. Dirac impulses 
are represented by arrows. On this figure, we also plot a multiple of B
p(t), with p(t) the adjoint state obtained from IpOpt. The corresponding 
state trajectory is given in Figs. 5 and 6.

Fig. 5. Evolution of the state between two Dirac impulses. The corresponding control required to steer y0 ≡ 5 to y1 ≡ 1 is given in Fig. 4 and the 
minimal time computed is TU (y0, y1) � 0.788791. The color of the state goes from blue (for the initial time instant) to red (for the final time 
instant). (See Fig. 6 for the final times.)

mention that if the dimension of the matrix is large, solving the minimization problem (2.2) directly is hard. This is 
mainly due to the presence of exponentials in the constraints.

In order to overcome these facts, let us present here some other ways of numerically finding the minimal time and 
the time optimal control. We have tried all the other approaches proposed below. However, it seems that the method 
presented in Section 2 is the most efficient, in terms of computational time and result quality, for the discretized heat 
equation. Having a convergence proof for the numerical methods presented here is pointed in Open problem 9. Note 
that the construction of an efficient numerical method is also related to a better understanding of the adjoint problem, 
as pointed in Open problem 8.

Recall that it is possible to have TM < TU . We thus present in two different paragraphs the methods which are 
designed for obtaining the time TU and the one designed for obtaining TM.

Obtaining the time TM.

Numerical method 1 (Momentum approach). This approached is based on the expression of optimal control problem 
in the basis generated by the eigenvectors of A has been explained in Section 2. Note that this approach is only 
applicable in the cases where A is a diagonalizable matrix.
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Fig. 6. Fig. 5 continued.

Fig. 7. Minimal time control evolution in order to steer y0(x) = 5 cos(11πx/2)/(4x + 1) to y1 ≡ 1. The minimal time computed is TU (y0, y1) �
0.183000. Dirac impulses are represented by arrows. On this figure, we also plot a multiple of B
p(t), with p(t) the adjoint state obtained from
IpOpt. The corresponding state trajectory is given in Fig. 8.

Numerical method 2 (Total discretization). This approach is used to find the minimal time TM(y0, y1) and a control 
in time TM(y0, y1). Recall that if a nonnegative measure control exists in time TM(y0, y1), then it is the sum of at 
most N Dirac masses (N � �(n + 1)/2� when the matrix A satisfies the Assumption (H.2)). We thus pick N > 0 large 
enough, and define 0 = t0 � t1 � · · · � tN � T = tN+1, t1, . . . , tN being the time instants where a Dirac impulse can 
occur. Between times tk and tk+1, the control is 0 and solution is given by y(t) = yk(t − tk), with yk solution of
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Fig. 8. Evolution of the state between two Dirac impulses. The corresponding control required to steer y0(x) = 5 cos(11πx/2)/(4x + 1) to y1 ≡ 1
is given in Fig. 7 and the minimal time computed is TU (y0, y1) � 0.183000. The color of the state goes from blue (for the initial time instant) to 
red (for the final time instant).

ẏk(t) = Ayk(t) (t ∈ (0, tk+1 − tk)) (3.1)

with initial condition given below. For every k ∈ {1, . . . , N + 1} we have yk(0) = yk−1(tk − tk−1) + γkB for some 
γk � 0. At initial and final times we have y0(0) = y0 and yN(T − tN ) = y1. Notice that if a Dirac impulse occurs at 
the initial or final time, we will have t1 = 0 or tN = T respectively.
Let us define τk = tk+1 − tk for every k ∈ {0, . . . , N}, we have T =∑N

k=0 τk and yk(τk) = eτkAyk(0). We also set 
y0 = yk(0). The minimization problem is then
k
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min
N∑

k=0

τk (3.2a)

subject to the constraints:

0 � τk and y0
k ∈ IRn (k ∈ {0, . . . ,N}), (3.2b)

y0
0 = y0 and y1 = eτNAy0

N, (3.2c)

PB

(
y0
k+1 − eτkAy0

k

)
� 0 and P ⊥

B

(
y0
k+1 − eτkAy0

k

)
= 0 (k ∈ {0, . . . ,N − 1}), (3.2d)

where PB (respectively P ⊥
B ) is an orthogonal projector on RanB (respectively (RanB)⊥).

The constraint (3.2c) ensures that the initial condition y(0) = y0 and the final condition y(T ) = y1 are satisfied, and 
the constraint (3.2d) ensures the existence of some γk � 0 such that yk+1(0) = yk(τk) + γkB .
In order to perform numerical simulations, one needs to compute eτkA. To this end, it is possible to perform a time 
discretization of the ordinary differential equation (3.1).

Numerical method 3 (Using a time reparametrization). As we will see in § 5.2.1, the minimal time TM(y0, y1) is 
obtained through the minimization problem:

min

S∫
0

w(s)ds

S � 0,

w(s) ∈ [0,1] (s ∈ [0, S]),
z(S) = y1, with z the solution of{

ż(s) = w(s)Az(s) + B(1 − w(s)) (s ∈ [0, S]),
z(0) = y0.

(3.3)

We then have TM(y0, y1) =
S∫

0

w(s) ds.

The interest of this approach is that now, the new control w is uniformly bounded and any classical method to find 
the corresponding optimal control problem can be used. As explained in § 5.2.1, under this change of variables, the 
time instances s in which w(s) = 0 corresponds to the presence of active Dirac masses while w(s) > 0 corresponds 
to a bounded L∞ control, the limit being w(s) = 1, corresponding to the absence of control action.

As far as we know, this numerical method is the only one proposed in this article that can be adapted to nonlinear 
control problems. We refer to [10,22,5,16] for the adaptation of the time reparametrization for nonlinear control 
systems.

This method can also be adapted to find the minimal time TU(y0, y1), see Numerical method 6.

Numerical method 4 (Approximation by a sequence of nonnegative controls of minimal L1 norm). For additional 
details about this method, we refer to Appendix B.

Assume that y1 ∈ S∗+, and that 0 < TM(y0, y1) < ∞, then for every time T > TM(y0, y1) (recall that 
TU (y0, y1) = TM(y0, y1) when y1 ∈ S∗+), there exists a control u ∈ M+(T ) steering y0 to y1 in time T . In par-
ticular, there exists a control of minimal measure. Note also that for every nonnegative time T < TM(y0, y1), there 
does not exist a control in M+(T ) steering y0 to y1 in time T . The idea is then to find the minimal time T such that 
the optimal control problem

inf ‖u‖M([0,T ])
u ∈M+(T ),

y1 − eT Ay0 = �T u

(3.4)

admits a solution.
312



J. Lohéac, E. Trélat and E. Zuazua Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 301–346
The dual problem of (3.4) is:

inf 〈eT Ay0 − y1,p1〉
p1 ∈ IRn,

B
e(T −t)A

p1 � 1 (t ∈ [0, T ]) .

(3.5)

Using weak duality results, one can show that if the infimum of the minimization problem given by (3.5) is −∞, then, 
there does not exist a control in M+(T ) steering y0 to y1 in time T (i.e., T < TM(y0, y1)). By strong duality result, 
one can also show that for T > TM(y0, y1), the minimization problem (3.5) admits a minimum. Reciprocally, using 
first order optimality conditions, we can prove that if the minimization problem (3.5) admits a minimum, then there 
exists a control u ∈M+(T ) steering y0 to y1 in time T and this control is the sum of a finite number of Dirac masses.

It is possible to use these facts to build an algorithm in order to find an approximation of the minimal time 
TM(y0, y1) (see Algorithm 1). This algorithm, is based on a dichotomy approach, testing whether the dual prob-
lem (3.5) admits a minimizer of not.

Algorithm 1 Approximation of TM(y0, y1).
Require: ε > 0
Require: y0 ∈ IRn, y1 ∈ S∗+ and TM(y0, y1) < ∞
Ensure: 0 � T − TM(y0, y1) < ε

{Test if TM(y0, y1) = 0:}
T0 ← 0
if (3.5) (with T = 0) admits a minimizer then

return T = 0
else

T0 ← 0
{Find T1 > 0 such that (3.5) (with T = T1) admits a minimizer:}
T1 ← 1
while (3.5) (with T = T1) does not admit a minimizer do

T1 ← T1 + 1
end while

end if
{We now have T0 � TM(y0, y1) � T1.}
{Do the dichotomy procedure:}
while T1 − T0 � ε do

if (3.5) (with T = (T0 + T1)/2) admits a minimizer then
T1 ← (T0 + T1)/2

else
T0 ← (T0 + T1)/2

end if
end while
return T = T1

Remark 9. Note that the minimization problem (3.5) is a linear programming problem. To test whether the mini-
mum is achieved or not, one can use the simplex algorithm, see for instance [11]. Furthermore, the linear inequality 
B
e(T −t)A


p1 � 1 for every t ∈ [0, T ], in (3.5), is numerically teated as B
e(T −ti )A


p1 � 1 for every i ∈ {0, . . . , nT }, 

with ti = iT /nT and with nT ∈ IN∗ large.
Note also that it is possible to use the numerical strategy proposed in [18,19] in order to find the control of minimal 

measure. This strategy would avoid the usage of the simplex method. More precisely, it might be possible to adapt 
the work done in [18,19] to find a nonnegative control of minimal L1-norm such that y(T ) (the controlled state at the 
final time) is at distance ε from the target y1. The algorithm proposed in [18,19], is based on a greedy algorithm, and 
might be efficient when T > TM(y0, y1). However, there is still some work to do so that for T < TM(y0, y1), the 
algorithm answers that no minimizer exists. �
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Remark 10. We have assumed here that y1 ∈ S∗+. But, probably, it is sufficient to assume that for every time T >

TM(y0, y1), there exists a control u ∈M+(T ) steering y0 to y1 in time T . However, without the assumption y1 ∈ S∗+, 
we are currently unable to prove the strong duality result (see Remark B.3 for more details). �

Remark 11. On one hand, if we are able to pass to the limit T → TM, we would obtain the existence of an adjoint 
state p such that B
p � 1 and such that the Dirac masses are located in the set of times t such that B
p(t) = 1.
On the other hand, Corollary 5.2.2 ensures the existence of an adjoint p such that B
p � 0 and such that the Dirac 
masses are located in the set of time t such that B
p(t) = 0.

This means that at the minimal time, there would exist two different adjoints states leading to a control at the 
minimal time TM. When the matrix A satisfies the assumption (H.2), the minimal time control is unique, thus these 
two adjoints states shall lead to the same control. The relation between these two adjoints is not understood and 
postponed in Open problem 8. �

Obtaining the time TU .

Numerical method 5 (Approximation by bang-bang controls). Note that this approach, based on the approximation 
result given in Proposition 5.3.1, has already been used in [20]. Let us also point out that the minimization prob-
lem (2.3) is adapted for finding the minimal time TM(y0, y1) and in the numerical simulations given in Section 2, we 
use the fact that y1 ∈ S∗+, and hence TM(y0, y1) = TU (y0, y1). However, as pointed out in § 5.1.3, there might exist 
y0 and y1 such that TM(y0, y1) < TU (y0, y1). In this situation, a way to find TU (y0, y1) is to solve, for M > 0, the 
minimization problem:

min T

T > 0,

0 � u(t) � M (t ∈ (0, T ) a.e.),
y(0) = y0 and y(T ) = y1, with y solution of (1.1)

(3.6)

and let M go to ∞. We refer to Section 5.3 for more results of the convergence of the minimizer of this minimization 
problem as M → ∞. The interest of this approach is that now, the control u is uniformly bounded and any classical 
method to find the corresponding optimal control problem can be used.

Numerical method 6 (Using a time reparametrization - second version). The idea used in Numerical method 3 can 
also be used to design a numerical method aiming to find the minimal time TU . In fact as explained in Numerical 
method 3, w = 0 correspond to Dirac masses. In order to avoid Dirac masses, we fix ε ∈ (0, 1) and solve the mini-
mization problem:

min

S∫
0

w(s)ds

S � 0,

w(s) ∈ [ε,1] (s ∈ [0, S]),
z(S) = y1, with z the solution of{

ż(s) = w(s)Az(s) + B(1 − w(s)) (s ∈ [0, S]),
z(0) = y0.

(3.7)

In this problem, the constraint w(s) � ε avoids the presence of Dirac masses and as ε → 0, we will recover the 
minimal time TU (y0, y1). In fact, the constraint w(s) � ε ensures that in the original time scale, the control u is 
uniformly bounded by (1 − ε)/ε.

Numerical comparison between the different approaches.
In order to compare the different numerical approaches proposed in the previous paragraphs, we consider the 

system (1.1) with matrices A and B given by (1.4), with n = 5. For this system, we consider the case y0 ≡ 1 and 
y1 ≡ 5, and the case y0 ≡ 5 and y1 ≡ 1. Note that we expect to have no more that N = �(n + 1)/2� = 3 Dirac 
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masses involved in the minimal time control. Since y1 ∈ S∗+, we have TU (y0, y1) = TM(y0, y1) and the control at the 
minimal time is unique. Hence, all the numerical methods proposed shall, up to numerical errors, give the same time 
and optimal control.

Note that for Numerical methods 3, 5 and 6, we end up with an optimal control problem written in its classical 
form. To computationally solve these problems, we used the total discretization method introduced in [28, Part 2, 
§ 9.II.1], combined with the Crank-Nicolson method. The number of time discretization points is precised below.

• For Numerical method 1, we allow N = 3 Dirac masses.
• For Numerical method 2, in order to compute eτkAy0

k , appearing in (3.2d), we solve (3.1), with initial condition 
y0
k , using the Crank-Nicolson method with nt = 100 discretization points.

Note that this means that on the full time interval, we have 400 discretization points in time. Since we observe that 
a Dirac mass is located close to the final time, this in fact means that we have, in fact, no more than 300 effective 
discretization points in time (the last τk in (3.2) is almost 0). This explains why we use 300 discretization points 
in time for Numerical methods 4 and 5.

• For Numerical method 3, in the case y0 ≡ 1 and y1 ≡ 5 (respectively y0 ≡ 5 and y1 ≡ 1), we use nt = 900
(respectively nt = 500) discretization points in time in the Crank-Nicolson method.
This difference between the number of discretization points, is due to the fact that the system is discretized over 
[0, S], where S is in fact the sum of the minimal time TU (y0, y1) and measure of the optimal control. When 
y0 ≡ 1 and y1 ≡ 5 (respectively y0 ≡ 5 and y1 ≡ 1), after computation, we obtain S � 3.321291 (respectively 
S � 1.098819).

• For Numerical method 4, we rewrite the constraint B
e(T −t)A

p1 � 1 (for every t ∈ [0, T ]), appearing in (3.5), 

as 〈etAB, p1〉 � 1 (for every t ∈ [0, T ]) and we compute the values of etAB using Crank-Nicolson method with 
nt = 300 discretization points. Furthermore, the parameter ε appearing in Algorithm 1 is fixed to 10−4, and the 
solution of the linear optimization problem is computed with a simplex algorithm.

• For Numerical method 5, we use nt = 300 discretization points in the Crank-Nicolson method. Furthermore, the 
value of M is fixed to 10 for the case y0 ≡ 1 and y1 ≡ 5, and to 30 for the case y0 ≡ 5 and y1 ≡ 1. We use M = 10
(for the first case) and M = 30 (for the second case) simply for graphical reasons.

• For Numerical method 6, we use here the same number of discretization points as for Numerical method 3 in the 
Crank-Nicolson method. As for Numerical method 5, we use ε = 1/10 (respectively ε = 1/30) in the case y0 ≡ 1
and y1 ≡ 5 (respectively y0 ≡ 5 and y1 ≡ 1).

In practice, we use IpOpt and AMPL to numerically solve the optimal problems given in Numerical methods 1 to 3, 
5 and 6, and to solve the linear programming problem appearing in Numerical method 4, we use the linpro routine 
(see [6]) of Scilab.

Corresponding results are plotted on Figs. 9 to 14 and the computed minimal times are gathered in Table 2. We also 
plot on these figures the corresponding adjoint states. We can then see, as expected, that for Numerical methods 1 to 4, 
there exists an adjoint state p such that the optimal control is active when B
p � 0 and null for all the other times. 
For Numerical method 4, we can also see that there exists an adjoint state p such that the optimal control is active 
when B
p = 1. Understanding the relation between these two adjoint states is the goal of Open problem 8 below.

We observe on Table 2 that the times obtained for Numerical methods 5 and 6 are similar and greater than the times 
obtained for the other numerical methods. This fact was expected, since in this case, we are looking for a bounded 
control in L∞, hence, the time obtained has to be greater than TU(y0, y1) (the time which shall be obtained with 
Numerical methods 1 to 4). We also observe that the times obtained for Numerical methods 1 and 4 are similar and 
lower than the times obtained for Numerical methods 2 and 3. We do not know how to explain the gap between these 
two times. This can be due to the fact that we are solving a nonlinear minimization problem and that for Numerical 
methods 2 and 3, we only find a local minimum. Note also that the convergence of the optimization algorithm is really 
dependent on the initialization point. To compute the above results, we progressively increase the parameters n and 
nt up to their desired values and between two increments of the parameters, we initialized the optimization algorithm 
with the previously computed result.
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Fig. 9. Results for Numerical method 1. See Table 2 for the corresponding minimal times.

Fig. 10. Results for Numerical method 2. See Table 2 for the corresponding minimal times.

Fig. 11. Results for Numerical method 3. See Table 2 for the corresponding minimal times. Recall that here, the dynamical system is rescaled in 
time, and the new control w belongs to [0, 1]. The figures here are displayed in the original time and a posttreatment of the result has been done to 
observe Dirac masses.

4. Further comments and open questions

In this paper, we show that controlling with nonnegative controls a finite-dimensional linear autonomous control 
system ẏ = Ay + Bu satisfying the Kalman condition requires a positive minimal time as soon as the difference 
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Fig. 12. Results for Numerical method 4. Note that here, instead of plotting B
p, we plot B
p − 1. See Table 2 for the corresponding minimal 
times.

Fig. 13. Results for Numerical method 5. See Table 2 for the corresponding minimal times. Note that in both cases, we expect that the control takes 
its values in {0, M} for almost every time. But this fact is not observed on the right figure (M = 10 in the case y0 = 5 and y1 = 1). However, by 
increasing the number of time discretization points, we will recover this saturation property.

between the initial state and target state does not belong to RanB . When A admits at least one real eigenvalue (and 
when the target is reachable with nonnegative Radon measure control, i.e., TM(y0, y1) < ∞), there exists a minimal 
time nonnegative control in the space of Radon measures and this control is a linear combination with nonnegative 
coefficients of a finite number of Dirac impulses. Without this spectral assumption the conclusion may fail. In addition, 
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Fig. 14. Results for Numerical method 6. See Table 2 for the corresponding minimal times. Recall that in this case, the control is bounded by 
(1/ε − 1)/ε, and we had chosen ε = 1/30 (respectively ε = 1/10) for y0 = 1 and y1 = 5 (respectively y0 = 5 and y1 = 1). Recall also that as for 
Fig. 11, the dynamical system is rescaled in time, and the new control w belongs to [ε, 1]. The figures here are displayed in the original time scale.

Table 2
Minimal time TU (y0, y1) computed with Numerical methods 1 to 6 for the case y0 ≡ 1 and y1 ≡ 5 and y0 ≡ 5 and y1 ≡ 1. 
More details on the parameters used for these numerical methods are given in the last paragraph of Section 3.

Numerical method 1 2 3 4 5 6

y0 ≡ 1 and y1 ≡ 5 0.185024 0.201834 0.206753 0.176994 0.263030 0.265068
y0 ≡ 5 and y1 ≡ 1 0.793984 0.873111 0.948933 0.791016 0.949745 0.949479

when all eigenvalues of A are real, the number of Dirac masses involved in the time optimal control is no more than 
half of the space dimension and the time optimal control is unique.

Let us mention several open questions and propose some other numerical strategies aiming to find the minimal 
controllability time.

Open problem 1 (Nonnegative vectorial controls). In this paper, we only study the case of a nonnegative scalar 
control. The same question with a control u ∈ IRm+ (with m � 2) is not presented here. However, it shall be easy to 
adapt the proof given for the scalar case to the m-dimensional control case. This extension is, in particular, relevant 
for discretized versions of higher dimensional heat equation or 1D heat equation with controls at both ends.
Note that when controlling the discretized version of a 1D heat equation with Dirichlet controls at both ends, we can 
use the symmetry properties already discussed in [20] to come back (when the initial state and target states are both 
symmetric) to the problem present work.

Open problem 2 (Do we have TU (y0, y1) = TM(y0, y1)). We have shown that if the target state is a steady-state then 
the minimal controllability time for nonnegative Radon measure controls coincides with the one for nonnegative L∞-
controls. In general a gap may occur, as exemplified in Remark 5.1.9. But, there is no clear picture for the existence 
of a gap, and we refer to [22] for further results in this direction.

Open problem 3 (Existence of a minimal time control). When no eigenvalue of A is real, we are not able to show that 
a minimal time control in the space of nonnegative Radon measure exists. As shown in Remark 5.1.8, the answer to 
this question might be negative in some situations. The difficulty encountered in order to solve this problem is due to 
the lack of uniform bound on the norm of the controls in times greater than the minimal time.

Open problem 4 (Number of Dirac impulses in the minimal time control). We show in Corollary 5.2.2 that if a 
minimal time control exists, then this control is a linear combination with nonnegative coefficients of a finite number 
of Dirac impulses. But we do not have an estimate on the number of impulses. We also show in Proposition 5.2.5 that 
under the stronger assumption (H.2) (all eigenvalues of A are real), we have an explicit bound on the number of Dirac 
impulses.
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Is it possible to obtain an upper bound on the number of Dirac masses involved in the time optimal control without 
the assumption (H.2)?

Open problem 5 (Uniqueness of the minimal time control). The uniqueness of the minimal time control (if it exists) 
remains open when at least one of the eigenvalues of A is not real. If we aim to follow the proof of Proposition 5.2.5, 
we need to show that any minimal time control consists of at most �(n + 1)/2� Dirac impulses. Consequently, this 
question might also be related to the Open problem 4.

Open problem 6 (Localization of the Dirac masses). We only know under the assumption (H.1) that a finite number 
of Dirac masses are involved in any time optimal control. Finding their location passes through an optimization 
algorithm, and we do not know a priori repartition of the Dirac masses. In particular, for the discretized heat equation, 
it seems that the localization of the Dirac masses and their amplitude is rather organized (see Figs. 1, 4 and 7).

Open problem 7 (Convergence speed of the minimal controllability time with bounded L∞-controls to the one with 
unbounded controls). We have proved that the minimal time for the minimal time control problem under the additional 
control constraint 0 � u(t) � M converges to the minimal time as M → +∞. Obtaining convergence rates is an 
interesting problem and the answer to this question would be helpful for numerical simulations. Some key arguments 
may be found in [25–27].

Open problem 8 (Obtaining the minimal time control through the adjoint). In classical optimal control problems, 
the optimal control is given in function of the adjoint. This means that there exists a function f such that u(t) =
f (B
p(t)), where p is solution of ṗ = −A
p with the terminal condition p(T ) = p1 ∈ IRn. At this level, this 
structure is badly understood.
In Appendix B, we have tried, without success, to obtain the optimal control by computing the control of L1-minimal 
norm in time T > TM and passing to the limit as T → TM. For T > TM, the control of minimal L1-norm is a sum 
of Dirac impulses and these Dirac impulses are located on a level set of the adjoint observations (more precisely on 
the set of time t ∈ [0, T ] such that B
p(t) = 1). However, we have shown that the terminal condition p1 minimizes 
a linear cost and is subject to a unilateral linear constraint. This fact is not enough to obtain compactness on p1 and 
does not allow us to pass to the limit as T → TM. In addition, once the control is characterized by the adjoint state, 
an optimal control is given by an adjoint minimizing some functional. The existence of such minimum is usually 
related to an observability inequality. In Appendix B, for T > TM, we do not know how to interpret the existence of 
a minimum of (B.3) for the dual problem in terms of an observability inequality.

Finally, in the proof of Proposition 5.2.5, we use the adjoint state related to the minimization problem (5.6). Simi-
larly, this leads to an adjoint state p(t) such that B
p(t) is of constant sign and such that the control is active only at 
the time instants such that B
p(t) = 0.

The understanding of the relations between these two adjoint states remains open.

Open problem 9 (Numerical approximation of the time optimal control). Nothing ensures the convergence of the 
numerical method proposed in Sections 2 and 3, except for the Numerical method 4, which is based on Algorithm 1
(see also Appendix B), where we only consider the controllability to a positive steady state target.
This lack of convergence proof is mainly due to the fact that we are solving a nonlinear control problem. Having 
some efficient and general numerical method ensuring that the computed control is at some distance ε from the real 
control is as far as we know an open problem. This question is also related to the previous one (Obtaining the minimal 
time control through the adjoint), since it is usually more efficient to minimize a cost function related to the adjoint 
variable, than looking directly for an optimal control. Note also that the main question is the time location of the 
Dirac masses. In fact, once these locations are found, the amplitude of the Dirac masses is obtained by solving a linear 
system.

Open problem 10 (Limit as n → +∞ of the discretized heat equation). One of the issues of this paper concerns the 
study of the controllability of the discretized heat equation with nonnegative Dirichlet controls. An open issue is the 
convergence of the obtained results as n → +∞. In particular, we would expect that for the heat system described 
by (1.3) the minimal time nonnegative control is a linear combination with nonnegative coefficients of a countable 
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number of Dirac impulses. If this is true, we would also aim to know how these Dirac impulses are distributed over 
the time interval. The answer to this question may require a better understanding of the adjoint system.

5. Proof of the main results

5.1. Preliminaries

5.1.1. Accessibility conditions
In this paragraph, we do not aim to give an exhaustive description of the accessible points from some y0. For this 

question, we refer to [14,15]. Here we only recall that a steady-state connectedness assumption ensures controllability 
in large enough time.

Since B is a vector of IRn and since the pair (A, B) satisfies the Kalman rank condition, the set of steady-states is 
a subspace of IRn of dimension one. Let us point out that S∗+ is either a half-line or the empty set. In fact, it is easy to 
see that S∗+ is empty when B /∈ RanA and a half-line when B ∈ RanA.

The next result can be obtained with the quasi-static strategy and easily follows from small-time local controllability 
combined with a compactness argument. We refer to [8,9,23] for more details.

Proposition 5.1.1. Assume S∗+ �= ∅. Let ȳ0, ȳ1 ∈ S∗+, let ū0, ū1 ∈ IR∗+ their associated steady-state controls (i.e., 
Aȳi + Būi = 0 for i ∈ {0, 1}) and let μ = min(ū0, ū1) > 0. Then there exist ρ = ρ(μ) > 0 and a positive time 
T �

(
3 + |ȳ1 − ȳ0|/2ρ

)
μ such that for every y0 ∈ B(ȳ0, ρ) and every y1 ∈ B(ȳ1, ρ), there exists a control u ∈ U+(T )

such that the solution of (1.1) with initial condition y0 and control u reaches y1 at time T .

Proof. Let us recall that a linear control system is small-time locally controllable around any steady-state (ȳ, ū) ∈
IRn × IR, i.e. (see [7, Definition 3.2 p. 125]), for every ε > 0, there exists ρ(ε) > 0 such that for every y0 and every 
y1 in B(ȳ, ρ(ε)), there exists a measurable function u : [0, ε] → IR such that |u(t) − ū| � ε for every t ∈ [0, ε] and 
the solution of (1.1) starting from y0 reaches y1 at time ε. Note that for linear control systems, ρ can be chosen 
independent of ȳ.

In particular, choosing ε = μ (and ρ = ρ(μ)), for every steady-sate (ȳ, ū), with ū > μ, and for every y0 and y1 in 
B(ȳ, ρ), there exists a control u ∈ U+(μ) such that the solution of (1.1) starting from y0 reaches y1 at time μ.

To prove the statement of Proposition 5.1.1, we consider the sequence of points

ỹ0 = y0, ỹ1 = ȳ0 + (ȳ1 − ȳ0)α, . . . , ỹN = ȳ0 + (2N − 1)(ȳ1 − ȳ0)α, ỹN+1 = y1,

where α ∈ IR+∗ and N ∈ IN are designed so that

• ỹk and ỹk+1 belong to the ball of radius ρ centered on the steady-state point (ỹk + ỹk+1)/2 for every k ∈
{1, . . . , N − 1};

• ỹ1 belong to the ball of radius ρ centered on the steady-state point ȳ0;
• ỹN belong to the ball of radius ρ centered on the steady-state point ȳ1.

These conditions lead to α <
ρ

|ȳ1−ȳ0| and 1
2

(
1 + 1

α
− ρ

α|ȳ1−ȳ0|
)

< N < 1
2

(
1 + 1

α
+ ρ

α|ȳ1−ȳ0|
)

.

By construction, it is then easy to build a control in U+(μ) steering yk to yk+1 in time μ. Thus, by concatenation of 

these controls, we have built a control steering y0 to y1 in a time T lower than μ
2

(
1 + 1

α
+ ρ

α|ȳ1−ȳ0|
)

+ 2μ. For the 
sake of readability, we illustrate this construction on Fig. 15.

Taking the limit α → ρ/|ȳ1 − ȳ0|, we obtain the upper bound estimation on T . �
Proposition 5.1.2. Assume that all the eigenvalues of A have a negative real part. Let ȳ1 ∈ S∗+ and let ū1 ∈ IR∗+
its associated steady-state control (i.e., Aȳ1 + Bū1 = 0). Then there exists ρ = ρ(ū1) > 0 such that for every 
y0 ∈ IRn and y1 ∈ B(ȳ1, ρ) there exists a positive time T � inf

{
t > 0 | C(t) < ρ/|ȳ1 − y0|} + ū1, with C(t) =

sup
{|etAz| | z ∈ IRn, |z| � 1

}
, and a control u ∈ U+(T ) such that the solution of (1.1) with initial condition y0 and 

control u reaches y1 at time T .
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Fig. 15. State trajectory for the control built in the proof of Proposition 5.1.1.

Proof. We use the dissipativity of the system. More precisely, taking the constant control u(t) = ū1, the solution of 
(1.1) with initial condition y0 (and control u) exponentially converges to ȳ1. More precisely, we have |ȳ1 − y(t)| �
C(t)|ȳ1 − y0|.

We then use the small-time local controllability around the steady-state (ȳ1, ū1). This means that there exists 
ρ = ρ(ū1) > 0 such that for every y0 and y1 in B(ȳ1, ρ), there exists a control u ∈ U+(ū1) such that the solution of 
(1.1) starting from y0 reaches y1 at time ū1.

The upper bound on the reachability time easily follows. �
Remark 5.1.3. In addition to the reachability condition, the Propositions 5.1.1 and 5.1.2 also give an upper bound 
on the reachability time. However, to explicitly know this bound, one needs to know the parameter ρ, which is not 
explicit. �

Lemma 5.1.4. Assume S∗+ �= ∅. Let y0, y1 ∈ IRn and assume that y0 or y1 belongs to S∗+. Assume, in addition, the 
existence of T > 0 such that y1 is reachable from y0 in time T with a control in M+(T ). Then for every τ � 0, y1 is 
reachable from y0 in time T + τ .

The proof of this lemma is straightforward: a control in time T + τ is obtained by concatenation of a control in 
time T with the constant control ū associated to the steady-state y0 or y1.

Remark 5.1.5. As for Propositions 5.1.1 and 5.1.2, the condition y0 ∈ S∗+ or y1 ∈ S∗+ (in the statement of 
Lemma 5.1.4) can be relaxed to yi ∈ B(ȳi , ρ), with ȳi ∈ S∗+ (for i = 0 or i = 1) and ρ > 0 small enough (depending 
on τ and ȳ0 or ȳ1). To this end, we use small time controllability around the steady state ȳ0 or ȳ1. �

Remark 5.1.6. The result of Lemma 5.1.4 can be trivially extended to the problem of controllability to trajectories. In 
fact, set ȳ is a solution of (1.1) with a nonnegative control ū ∈ L∞(IR+), and set y0 ∈ IRn. If there exists a time T and 
a control u ∈ U+(T ) such that the solution y of (1.1), with initial condition y0 and control u, satisfies y(T ) = ȳ(T ), 
then for every τ > 0, there exists a control uτ ∈ U+(T + τ) such that the solution y of (1.1), with initial condition y0

and control uτ satisfies y(T + τ) = ȳ(T + τ). To this end, we only take, uτ (t) = u(t) for t ∈ (0, T ), and uτ (t) = ū(t)

for t ∈ (T , T + τ). �
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5.1.2. Existence of a positive minimal controllability time and minimal time controls
An important notion to define the minimal time is the accessible set with nonnegative controls

Acc+(T ) = {�T u , u ∈ U+(T )} .

The minimal controllability time TU (y0, y1) defined by (1.5) is then

TU (y0, y1) = inf
{
T > 0 | y1 − eT Ay0 ∈ Acc+(T )

}
(y0, y1 ∈ IRn),

and by convention, TU (y0, y1) = +∞ when y1 is not accessible from y0 in any time, i.e., y1 − eT Ay0 /∈ Acc+(T ) for 
every T > 0.

As explained in [21], for T > 0 small enough, Acc+(T ) is isomorphic to the positive orthant of IRn. This ensures 
that whatever y0 ∈ IRn is, there always exists y1 ∈ IRn such that TU (y0, y1) > 0. The problem is to characterize this 
minimal control time and to determine whether there exists a control at the minimal time. Similarly to [20], it can be 
checked that the existence of a minimal controllability time is ensured in the set of Radon measures.

Proposition 5.1.7. Let y0 and y1 be two points of IRn such that 0 � TU (y0, y1) < +∞, i.e., y1 is accessible from y0. 
Under Assumption (H.1), there exists a control u ∈ M+(TU (y0, y1)) steering the system (1.1) from y0 to y1 in time 
TU (y0, y1).

The same result holds with TU (y0, y1) replaced with TM(y0, y1).

Proof. The argument is similar to the one used in [20]. We prove here this result in the case of L∞ nonnegative 
controls. The same proof can be made for nonnegative Radon measure controls.

Let us denote TU = TU (y0, y1). There exists a non-increasing sequence (Tn)n∈IN such that limn→+∞ Tn = TU and 
for every n ∈ IN, there exists un ∈ U+(Tn) such that the system (1.1) is steered from y0 to y1 in time Tn, i.e.

y1 − eTnAy0 =
Tn∫

0

e(Tn−t)ABun(t)dt (5.1)

Since the pair (A, B) satisfies the Kalman rank condition, for every eigenvector ϕ of A
, we have 〈ϕ, B〉 �= 0. Let 
us denote by λ the associated eigenvalue (A
ϕ = λϕ). Since A satisfies the assumption (H.1), we can choose the 
eigenvector ϕ ∈ IRn so that it is associated to a real eigenvalue λ.

We define Y 0 = 〈ϕ, y0〉 and Y 1 = 〈ϕ, y1〉. Then from (5.1), we deduce that

Y 1 − eλTnY 0

〈ϕ,B〉 =
Tn∫

0

eλ(Tn−t)un(t)dt.

Since un is nonnegative and t �→ eλ(Tn−t) is also nonnegative, we have

Tn∫
0

eλ(Tn−t)un(t)dt � e−|λ|Tn

Tn∫
0

un(t)dt

and hence

‖un‖L1(0,Tn) � e|λ|Tn
|Y 1 − eλTnY 0|

|〈ϕ,B〉|
and considering that (Tn)n∈IN is non-increasing, we have,

‖un‖L1(0,Tn) � e|λ|T0
|Y 1| + e|λ|T0 |Y 0|

|〈ϕ,B〉| (n ∈ IN).

Extending un on (0, T0) by 0 on (Tn, T0), we obtain that the sequence (un)n is uniformly bounded in L1(0, T0)

and hence, up to a subsequence, it converges in vague topology of measures to some u ∈ M(0, T0) (see e.g., 
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Fig. 16. State trajectories related to the impulsive control introduced in Remark 5.1.8.

[1, Corollary 31.3 p. 206]). In addition, since un is nonnegative and since un has its support in [0, Tn], we obtain 
that u is a nonnegative measure which has its support contained in [0, TU ]. Finally, taking the limit n → +∞ in (5.1), 
we obtain

y1 − eTUAy0 =
∫

[0,TU ]
e(TU−t)AB du(t),

i.e., u satisfies the control requirement. �
Remark 5.1.8. Assumption (H.1) is instrumental here. However, without this assumption, it is possible that no non-
negative measure control exists at the minimal time (even if the target y1 is reachable from the initial condition y0 for 
every time T > TM(y0, y1)). As example, consider

A =
(

0 −1
1 0

)
, B =

(
0
1

)
, y0 = 0, y1 =

(
1
0

)
.

It is easy to see that TM(y0, y1) = π and no nonnegative Radon measure control exists in time π . In fact, we have:

• for T � 3π/2, the impulsive control u = δT −3π/2 steers 0 to y1 (the corresponding state trajectory is plotted on 
Fig. 16);

• for T ∈ (π, 3π/2), the impulsive control u = −1
sinT

δ0 + cosT
sinT

δT steers 0 to y1 (the corresponding state trajectory is 
plotted on Fig. 16);

• for T ∈ [0, π], for every nonnegative Radon measure control u, the first component of �T u is nonpositive. Con-
sequently, there does not exist any control in time T � π .

This example shows that (without restrictive conditions) even if there exists a nonnegative control for every 
T > TM(y0, y1) steering y0 to y1, nothing ensures the existence of such a control at the minimal time TM(y0,

y1). Having a better understanding of the conditions ensuring a control in the minimal time is the point of Open 
problem 3. �

5.1.3. No gap conditions
As proved in Proposition 5.1.7, there exists (under some sufficient assumption) a Radon measure control at the 

minimal time TU (y0, y1). It is then natural to wonder if TU (y0, y1) = TM(y0, y1). It turns out that this is not the case 
in general. In fact, one can see in the examples provided in Remark 5.1.9 some trivial situations where a gap occurs. 
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The examples provided in the 1st and 2nd items of Remark 5.1.9, deal with situations where the target state can be 
reached in zero time with a Dirac impulse, but cannot be reached in arbitrarily small time with classical L∞ controls. 
A less trivial situation, where 0 < TM < TU < ∞ is given in the 3rd item of Remark 5.1.9. All these examples show 
that the inequality (1.7) can be strict.

Remark 5.1.9. The technical details related to the examples given in this remark are postponed in Appendix C.1.

1. Consider A =
(

0 1
1 0

)
and B =

(
0
1

)
, with y0 =

(
0
1

)
and y1 =

(
0

1 + ε

)
(for some ε > 0). Then we have 

TU (y0, y1) = +∞, i.e., y1 is not accessible from y0, but since y1 ∈ {y0} + IR+B , it is trivial that TM(y0, y1) = 0. 
The technical details of this example are provided in Appendix C.1.1.

2. Consider now the matrix A =
(

0 1
−1 0

)
, B , y0 and y1 being the same as in the previous item. Then, one can 

show that TU (y0, y1) = π , but here again, TM(y0, y1) = 0 (see Appendix C.1.2 for the technical details related 
to this example).

3. Consider A =
⎛
⎝0 −1 0

1 0 1
0 0 0

⎞
⎠ and B =

⎛
⎝0

0
1

⎞
⎠, with y0 =

⎛
⎝ 0

1
−1

⎞
⎠ and y1 =

⎛
⎝−1

0
0

⎞
⎠. Then we have π/2 =

TM(y0, y1) < TU (y0, y1) < ∞. The technical details of this example are provided in Appendix C.1.3. On Fig. 17, 
we have plotted the corresponding trajectories and controls. More precisely, on Fig. 17, one of the plots cor-
responds to the minimal time control with measures (red) and the other one is obtained through a numerical 
simulation and gives the minimal time control satisfying the additional constraint 0 � u(t) � M , with M = 5
(blue).

The examples given in the 1st and 2nd items also show that we cannot expect some nonsingularity of (y0, y1) �→
TU (y0, y1). However, due to small time local controllability, we also know that if y1 ∈ S∗+ then y0 �→ TU (y0, y1) is 
continuous at y1. �

Remark 5.1.10. It is natural to ask whether a gap can occur also for reachability of trajectories. More precisely, given 
ȳ, a solution of (1.1) for some initial condition ȳ0 and some nonnegative control ū ∈ L∞(IR+), we can define similarly 
the minimal time to reach this trajectory from an initial condition y0 with nonnegative L∞ control,

T →ȳ

U (y0) = inf
{
T � 0 | ∃u ∈ U+(T ), eT Ay0 + �T u = ȳ(T )

}
or with nonnegative Radon measure control,

T →ȳ

M (y0) = inf
{
T � 0 | ∃u ∈ M+(T ), eT Ay0 + �T u = ȳ(T )

}
.

But in fact, on the example given in the 3rd item of Remark 5.1.9, it appears that a gap can occur. To this end, 
consider the trajectory ȳ solution of (1.1) with initial condition ȳ0 = (0, 1, 0)
 and null control. With the initial 
condition y0 given in the 3rd item of Remark 5.1.9, it is obvious that T →ȳ

M (y0) = 0. But we have T →ȳ

U (y0) � π/4
(see Appendix C.1.4 for computational details).
Of course, studying gap condition for the control to trajectory require much more work, and this is not developed in 
this paper. �

In Remark 5.1.9, we have given examples where TM(y0, y1) < TU (y0, y1). We are now going to give some condi-
tions ensuring that TM(y0, y1) = TU (y0, y1). However, the results below do not solve all the possible situations and 
general condition ensuring that TM(y0, y1) = TU (y0, y1) is the goal of Open problem 2.

Proposition 5.1.11. Given any y0 ∈ IRn and y1 ∈ S∗+, we have TU (y0, y1) = TM(y0, y1).

Proof. Let T = TM(y0, y1). Let us first note that if T = ∞, then, obviously, TU (y0, y1) = T = ∞. We thus assume 
that T ∈ IR+.
324



J. Lohéac, E. Trélat and E. Zuazua Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 301–346
Fig. 17. Control and state trajectories for the 3rd item of Remark 5.1.9. The impulsive control and its corresponding state trajectories are plotted in 
red (arrow stand for Dirac mass) and the minimal time control and its associated state trajectories, with the additional control constraint u(t) � 5, 
are plotted in blue. (On the “Control figure”, we plot in blue t �→ u(t)/5.)

Let u ∈ M+(T ) be a control steering y0 to y1 in time T . For every ε > 0, there exist τ1 = τ1(ε) and ũ ∈
L∞(−τ, T +τ) such that 

∣∣∣∫ T +τ1
−τ1

f (t)ũ(t)dt − ∫[−τ1,T +τ1] f (t)du(t)

∣∣∣� ε for every f ∈ C([−τ1, T +τ1]). Here u has 

been extended by 0 to a Radon measure on [−τ1, T − τ1]. Let us then define u1 ∈ U+(T + 2τ1) by u1(t) = ũ(t − τ1). 
We set

ỹ1 = e(T +2τ1)Ay0 +
T +2τ1∫

0

e(T +2τ1−t)ABu1(t)dt = e2τ1AeT Ay0 + eτ1A

T +τ1∫
−τ1

e(T −t)ABũ(t)dt.

Then there exists η = η(ε, τ1) > 0 such that |y1 − ỹ1| � η. Recall that y1 = eT Ay0 + ∫[0,T ] e
(T −t)AB du(t). Noticing 

that τ1 and η can be chosen so that τ1 → 0 and η → 0 as ε → 0, we conclude that ỹ1 can be arbitrarily close to y1.
Now, for η > 0 small enough, we use the small time local controllability around the positive steady state y1, i.e., there 
exists a time τ2 = τ2(η) such that ỹ1 can be steered to y1 with a control u2 ∈ U+(τ2), and we have τ2 → 0 as η → 0.

All in all, we have designed a control u ∈ U+(T + 2τ1 + τ2) steering y0 to y1 in time T + 2τ1 + τ2. The conclusion 
follows, since τ1 and τ2 can be arbitrarily small. �
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Adapting the regularization argument used in the proof of Proposition 5.1.11, it is possible to slightly extend the 
result of Proposition 5.1.11.

Proposition 5.1.12. Given any y0 ∈ IRn and y1 ∈ IRn such that TM(y0, y1) < ∞. If there exist a sequence of time 
(Tn)n�0 and a sequence of controls (un)n�0 such that un ∈M+(Tn) and

1. Tn → TM(y0, y1) as n → ∞;
2. for every n � 0, un steers y0 to y1 in time Tn;
3. for every n � 0, there exists t̄n ∈ [0, Tn] such that [yn(t̄

−
n ), yn(t̄

+
n )] ∩ S∗+ �= ∅, with yn, the solution of (1.1) with 

control un and initial condition y0,

then we have TU (y0, y1) = TM(y0, y1).

Proof. To prove this result, we will show that TU (y0, y1) � Tn for every n.
For every n, let us set ȳn ∈ [yn(t̄−n ), y(t̄+n )] ∩ S∗+. With the regularization argument used in the proof of Propo-

sition 5.1.11, we can show that TU (y0, ȳn) � t̄n, and by performing the change of variables t �→ Tn − t , we 
can use again the same regularization argument to show that TU (ȳn, y1) � Tn − t̄n. Noticing that TU (y0, y1) �
TU (y0, ȳn) + TU (ȳn, y1), we easily conclude. �
Remark 5.1.13. The result of Proposition 5.1.12 covers the case where no nonnegative Radon measure control exists 
at time TM(y0, y1). If there exists a control u ∈M+

(
TM(y0, y1)

)
steering y0 to y1 in time TM(y0, y1), it is possible 

to try the assumptions of Proposition 5.1.12 with Tn = TM(y0, y1) and un = u for every n. �

Remark 5.1.14. When y1 does not belong to S∗+, one could expect to obtain that TU (y0, y1) = TM(y0, y1) by regu-
larization, as in the proof of Proposition 5.1.11. But this does not seem easy.
In fact, let us pick a nonnegative Radon measure control, u steering y0 to y1 in some time T � TM(y0, y1). By 
smoothing the control u, for every ε > 0, there exists a nonnegative control ũ ∈ L∞(0, T ) steering y0 to ỹ1 in time 
T , with |ỹ1 − y1| < ε. The difficulty is then to show that ỹ1 can be steered to y1 with a nonnegative L∞ control in a 
time τ(ε), with τ(ε) → 0 as ε → 0. But as illustrated by the example given in the 1st and 2nd items of Remark 5.1.9, 
the closeness between y1 and ỹ1 is not enough to ensure the reachability of y1 from ỹ1 in small time. �

Remark 5.1.15. As example of application of Proposition 5.1.12, note that if y0 and y1 in IRn are such that there 
exists ȳ ∈ S∗+ such that y0 = ȳ − γ 0B and y1 = ȳ + γ 1B for some γ 0 � 0 and γ 1 � 0. Then we have TM(y0, y1) =
TU (y0, y1) = 0.
Note also that given y0 and y1 in IRn, we have TM(y0, y1) = 0 if and only if y1 ∈ {y0} + IR+B . �

5.2. Controls in time TM

Recall that TU (y0, y1) � TM(y0, y1) and that if y1 ∈ S∗+ then these two times coincide (see Proposition 5.1.11). 
Let us also mention that at the minimal time TM(y0, y1), a nonnegative measure control still exists as soon as the 
matrix A satisfies Assumption (H.1). We are now going to analyze in this section the Radon measure controls at the 
minimal time TM(y0, y1) defined by (1.6). To this end, we use a time reparametrization to obtain an optimal control 
problem with controls bounded in [0, 1]. This allows us to use the Pontryagin maximum principle and by application 
of this principle we will see that for the original control problem, the control in time TM(y0, y1) is a finite sum of 
Dirac impulses. Then under the additional assumption (H.2), we will show that the control in time TM(y0, y1) is 
unique and is the sum of at most �(n + 1)/2� Dirac impulses.

5.2.1. Time rescaling
Following [5,10,16,22] (see also [24] for initial work on Pontryagin maximum principle with Radon measure 

controls), we redefine the solution of (1.1) with initial condition y(0) = y0 and with measure inputs. This definition is 
based on the time reparametrization of (1.1) recalled hereafter.
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Given a nonnegative control u, we are going to define a change of variable s = σ(t) and a control s �→ w(s) (both 
σ and w will be function of u), and we will define a new control system

ż(s) = w(s)Az(s) + B(1 − w(s)) (s ∈ [0, σ (T )]), (5.2)

so that, for every y0 ∈ IRn, the solution of (5.2) with initial condition y0 satisfies,

y(t) = z(σ (t)) (t � 0 a.e.),

where y is the solution of (1.1), with initial condition y0 and control u. The interest of this change of variables is that 
the new control will be bounded,

0 �w(s) � 1 (s � 0 a.e.), (5.3)

and the time t can be recovered from w by t = ∫ σ(t)

0 w(s) ds. All in all, in order to find the minimal time TM(y0, y1), 
we finally aim to find the minimum of

(S,w) ∈ IR+ × L∞(0,∞) �−→
S∫

0

w(s)ds

subject to the constraints w(s) ∈ [0, 1] for almost every s ∈ IR+ and the solution of (5.2) with initial condition y0 and 
control w satisfies z(S) = y1. Before presenting the change of variables in the general case, we first present it in two 
particular cases:

• Case u ∈ U+(T ): we define the new time variable

s = σ(t) = t +
t∫

0

u(τ)dτ (t ∈ [0, T ])

and we set S = σ(T ). Since u is nonnegative, we have that σ : [0, T ] → [0, S] is a continuous and increasing 
function, and hence σ−1 is well-defined. We then set z(σ (t)) = y(t) and have, for y solution of (1.1),

ẏ(t) = σ̇ (t)ż(σ (t)) = (1 + u(t))ż(σ (t)) and ẏ(t) = Ay(t) + Bu(u) = Az(σ(t)) + Bu(t).

Setting s = σ(t), this leads to:

ż(s) = 1

1 + u(σ−1(s))
Az(s) + B

(
1 − 1

1 + u(σ−1(s))

)
.

Then, setting w = 1/(1 + u ◦ σ−1)), we obtain that w satisfies (5.3) and z is solution of (5.2).
Note also that w(s) = 1 when u(σ−1(s)) = 0, and that w(s) → 0 as u(σ−1(s)) → +∞. Roughly speaking, this 
means that the new control w is 0 at the time corresponding to impulses of u. In addition, we have T = ∫ T

0 dt =∫ σ(T )

0
1

σ ′(s) ds = ∫ S

0 w(s) ds.
• Case u = mδτ , with τ ∈ (0, T ), and m > 0:

For the sake of simplicity, we have assumed that τ ∈ (0, T ). We define

σ(t) = t +
∫

[0,t]
du =

{
t if 0 � t � τ,

t + m if τ < t � T

and we set S = σ(T ) = T + m. Here σ is not a valid change of variables, since it is not continuous anymore. 
However, one can see that the solution of (1.1) with initial condition y0 is

y(t) =
{

etAy0 if 0 � t < τ,

e(t−τ)A
(
eτAy0 + mB

)
if τ < t � T .

Let us also define a control w by
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w(s) =

⎧⎪⎨
⎪⎩

1 if 0 � s < τ,

0 if τ < s < τ + m,

1 if τ + m < s � T + m.

Obviously, w satisfies (5.3). Let z be the solution of (5.2) with this control w and with the initial condition 
z(0) = y0. Then we have

z(s) =

⎧⎪⎨
⎪⎩

esAy0 if 0 � s � τ,

eτAy0 + B(s − τ) if τ � s � τ + m,

e(s−(τ+m))A
(
eτAy0 + Bm

)
if τ + m� s � T + m,

and it is easy to check that we have y(t) = z(σ (t)) for almost every t ∈ [0, T ] and that 
∫ S

0 w(s) ds = T . In other 
words the impulse at time τ is replaced by a linear increase of the solution in the direction of B during on the 
interval (τ, τ + m).

Based on these ideas, we build a time reparametrization for every u ∈M+(T ) (following [5,10,16,22,24]): given any 
nonnegative Radon measure u ∈M+(T ), we define

σ(0) = 0 and σ(t) = t + υ(t) (t ∈ (0, T ]),
with υ(t) = u([0, t]). Since υ is a function of bounded variation, σ is left continuous and can only have a countable 
number of jumps. We set T the set of jump times. For every t ∈ [0, T ],

• if s = σ(t−), with t ∈ [0, T ] \ T , we set τ(s) = t and γ (s) = υ(t);
• if s ∈ [σ(t−), σ(t+)], with t ∈ T , we set τ(s) = t and γ (s) = υ(t−) + υ(t+)−υ(t−)

σ (t+)−σ(t−)
(s − σ(t−)) = s − t−.

It is easy to see that for every s ∈ [0, σ(T )) and every η ∈ [0, σ(T ) − s], we have 0 � τ(s + η) − τ(s) � η. Conse-
quently, τ ∈ W 1,∞(0, σ(T )) and 0 � τ ′(s) � 1 for almost every s ∈ [0, σ(T )]. In addition, when s ∈ [σ(t−), σ(t+)], 
for some t ∈ T , we have γ ′(s) = 1 and when s = σ(t−), for some t /∈ T , we have s = τ(s) + γ (s) leading to 
γ ∈ W 1,∞(0, σ(T )) and γ ′(s) = 1 − τ ′(s) for almost every s ∈ [0, σ(T )].

The path γ leads to a reparametrization of the graph of υ , and to the reparametrized dynamical system

ż(s) = τ ′(s)Az(s) + B(1 − τ ′(s)) (s ∈ (0, σ (T ))), (5.4a)

with initial condition

z(0) = y0. (5.4b)

Given u ∈M+(T ), the solution y of (1.1) with initial state y0 and control u is given by y(t) = z(σ (t)) with z solution 
of the Cauchy problem (5.4). Setting w(s) = τ ′(s) ∈ [0, 1], as new control, we end up with the system (5.2) and T is 
given by T = ∫ σ(T )

0 w(s) ds.
On Fig. 18, we show on an example, how the new control w is related to the control u ∈M+(T ).
All in all, the minimal time control problem is written as

min

S∫
0

w(s)ds

S � 0,

w(s) ∈ [0,1] (s ∈ [0, S]),
z(S) = y1, with z the solution of (5.2) with initial condition z(0) = y0.

(5.5)

The interest of this formulation is that now the control is bounded in [0, 1] and we can apply the classical Pontryagin 
maximum principle (see [17, Theorem 1 p. 310]).
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Fig. 18. Relation between the control u and the control w. For the plot of the control u, arrows stand for Dirac impulses.

5.2.2. Consequences of the Pontryagin maximum principle
Applying the Pontryagin maximum principle to (5.5), we obtain the following result.

Proposition 5.2.1. Let y0 and y1 be two points of IRn such that TM(y0, y1) < +∞, i.e., y1 is accessible from y0

with a nonnegative Radon measure control, and assume in addition that there exists a control u ∈M+(TM(y0, y1))

steering y0 to y1 at the minimal time TM(y0, y1). Then for any pair (S, w) minimizing the optimal control problem 
(5.5), we have

w(s) =
{

1 if s /∈⋃N
i=1 Ik,

0 if s ∈⋃N
i=1 Ik

(s ∈ [0, S] a.e.),

where N ∈ IN and I1, . . . , IN are two-by-two disjoint intervals of [0, S].
Furthermore,

• if TM(y0, y1) = 0, w ≡ 0;
• if TM(y0, y1) > 0, there exists a nontrivial solution q of q̇ = −wA
q such that B
q has a constant sign, and ⋃N

i=1 Ik = {s ∈ [0, S] | B
q(s) = 0
}
.

Corollary 5.2.2. Let y0 and y1 be two points of IRn such that TM(y0, y1) < +∞, i.e., y1 is accessible from y0 with a 
nonnegative Radon measure control and assume in addition that there exists a control u ∈M+(TM(y0, y1)) steering 
y0 to y1 at the minimal time TM(y0, y1).

Then any control in M+(TM(y0, y1)) steering the solution of (1.1) from y0 to y1 at the minimal time TM(y0, y1)

is a linear combination with nonnegative coefficients of a finite number of Dirac impulses. That is to say that there 
exist N ∈ IN∗, τ1, . . . , τN ∈ [0, TM(y0, y1)] and m1, . . . , mN > 0 such that u =∑N

i=1 miδτi
.

In addition, then there exists a nontrivial solution p of ṗ = −A
p such that B
p has a constant sign, and 
{τ1, . . . , τN } = {t ∈ [0,TM(y0, y1)] | B
p(t) = 0

}
.

In order to use Corollary 5.2.2, one needs to prove that a minimal time control exists. This is ensured by As-
sumption (H.1) (or by the stronger assumption (H.2)), see Proposition 5.1.7). This leads to the following corollary. 
Note that without the assumption (H.1), it may happen that no control exists at the minimal time (see the example of 
Remark 5.1.8).
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Corollary 5.2.3. Let y0 ∈ IRn and y1 ∈ IRn be such that TM(y0, y1) < +∞. Under Assumption (H.1), there exists 
a minimal time nonnegative control in the space of Radon measures steering y0 to y1 in time TM(y0, y1) and this 
control is a linear combination with nonnegative coefficients of a finite number of Dirac impulses. Furthermore, as 
in Corollary 5.2.2, the time localization of these Dirac masses is given by the zero set of B
p with p a nontrivial 
solution of the adjoint system such that B
p has a constant sign.

Proof of Proposition 5.2.1. Let us first notice that if there exists a nonnegative Radon measure control steering y0 to 
y1 in zero time, then this control is impulsive (see Remark 5.1.15), meaning that w ≡ 0.

Assume now that TM(y0, y1) > 0. To prove the result, we are going to apply the Pontryagin maximum principle. 
The Hamiltonian associated with the optimal control problem (5.5) is

H(z,w,p0, q) = −p0w + 〈q,wAz + (1 − w)B〉 (z ∈ IRn, w ∈ [0,1], p0 ∈ IR+, q ∈ IRn).

Optimality conditions gives q̇ = −∂H/∂z, i.e., q̇ = −wA
q . Let us also define ϕ(s) = −p0 + 〈q(s), Az(s) − B〉, 
then due to the maximization condition, the optimal control w satisfies

w(s) =
{

0 if ϕ(s) < 0,

1 if ϕ(s) > 0.

At this step, w(s) is undetermined when ϕ(s) = 0. In addition, since the final time is free and since the system is 
autonomous, for any optimal solution, we have H(z(s), w(s), p0, q(s)) = 0 for s ∈ [0, S]. In particular, we have 
ϕ(s) � 0 if and only if B
q(s) = 0, and ϕ(s) > 0 if and only if B
q(s) < 0. This in particular ensures that B
q has 
a constant sign, the set E0 = {s ∈ [0, S] | w(s) = 0} is contained in the set 

{
s ∈ [0, S] | B
q(s) = 0

}
, and the set 

E1 = {s ∈ [0, S] | w(s) = 1} contains the set 
{
s ∈ [0, S] | B
q(s) �= 0

}
.

Let us also notice that q(s) = exp
(∫ S

s
w(σ )dσ A


)
q(S) consequently, if q(s) = 0 for some s ∈ [0, S], then q ≡ 0.

Assume that q ≡ 0, we thus have −p0w ≡ H(z, w, p0, 0) = 0, and hence, since (p0, q) is not trivial, we necessarily 
have w ≡ 0. This ensures that E0 = [0, S] and E1 = ∅ (when q ≡ 0). This in particular implies that TM(y0, y1) = 0
and this particular case has already been treated.
Let us now assume that q �≡ 0, i.e., for every s ∈ [0, S], q(s) �= 0. Defining τ(s) = ∫ s

0 w(σ) dσ , we have q(s) =
p(τ(s)), with p(t) = exp((τ (S) − t)A
)q(S) for every t ∈ [0, τ(S)]. Since B
p is analytic and not identically 
equal to 0, there exists a finite number of times t1, . . . , tN , such that this function reaches 0. Consequently, 
E0 ⊂ τ−1({t1, . . . , tN }). Using the fact that τ is continuous and nondecreasing, we have that E0 is included in a 
finite union of closed intervals.

We now aim to show that E0 contains the interior of this finite union. To this end, we define the set E =
{s ∈ [0, S] | w(s) > 0} ∩ {s ∈ [0, S] | B
q(s) = 0

}
and we assume by contradiction that |E| > 0. Let us also de-

fine Ed , the set of density points of E. Since |E| > 0, almost every point of E is a density point of E, i.e., |Ed | = |E|.
For every s0 ∈ Ed , there exists a sequence (sn)n∈IN∗ ∈ (Ed)IN∗

such that limn→+∞ sn = s0 and |Ed ∩ [s0, sn]| > 0
for every n ∈ IN∗. Since B
q ∈ W 1,∞(0, S) and since B
q(s0) = B
q(sn) = 0, we have

0 =
sn∫

s0

B
q̇(σ )dσ = −
sn∫

s0

w(s)B
A
q(σ )dσ.

But w � 0 and w > 0 on a set of positive measure of [s0, sn], hence B
A
q(s) is either constant and equal to zero 
or has a sign change in [s0, sn]. In any case, by continuity of s �→ B
A
q(s) and by the intermediate value Theorem, 
there exists σn ∈ (s0, sn) such that B
A
q(σn) = 0. Taking the limit n → +∞, we have σn → s0 and by continuity 
of B
A
q , B
A
q(s0) = 0. In other words, for every s ∈ Ed , we have B
q(s) = B
A
q(s) = 0. By repeating the 
procedure, we obtain B
(A
)kq(s) = 0 for s ∈ Ed , k ∈ {0, . . . , n − 1}, i.e., using the Kalman condition, q(s) = 0 for 
every s ∈ Ed . This leads to a contradiction with q �≡ 0.

All in all, we have shown that w(s) = 0 (resp., w(s) = 1) for almost every s ∈ [0, S] such that B
q(s) = 0 (resp., 
B
q(s) �= 0) and the set {s ∈ [0, S] | B
q(s) = 0} is a finite union of intervals. This ends the proof. �
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Remark 5.2.4. From [22, Theorem 3.1], if we aim to show that TM(y0, y1) = TU (y0, y1), then one needs to show 
that the minimizer of (5.5) is a normal extremal, i.e., we need to show in the above proof that p0 �= 0. This question is 
open and is addressed in Open problem 2. �

In Corollary 5.2.2, we have shown that any minimal time control with nonnegative Radon measure controls is 
a finite sum of Dirac impulses, i.e., it takes the form u =∑N

i=1 miδτi
, for some mi � 0, τi ∈ [0, TM(y0, y1)] and 

N ∈ IN. Furthermore, these parameters (N , T = TM(y0, y1), τ1, . . . , τN and m1, . . . , mN ) satisfy the constrained 
minimization problem

min T

0 � τ1 � · · ·� τN � T ,

0 �mi (i ∈ {1, . . . ,N}),
y1 − eT Ay0 =

N∑
i=1

e(T −τi )ABmi.

(5.6)

Due to the results of Corollary 5.2.2, if Assumption (H.1) is satisfied then this minimization problem has a solution 
for some large enough N .

5.2.3. Uniqueness of the minimal time control

Proposition 5.2.5. Let y0 and y1 be two points of IRn such that TM(y0, y1) < +∞, i.e., y1 is accessible from y0. 
Under Assumption (H.2), the minimal time control (given by Proposition 5.1.7) is unique and is a linear combination 
with nonnegative coefficients of at most �(n + 1)/2� Dirac impulses. Furthermore, as in Corollary 5.2.2, the time 
localization of these Dirac masses is given by the zero set of B
p with p a nontrivial solution of the adjoint system 
such that B
p has a constant sign.

Remark 5.2.6. Without the Assumption (H.2), we are not able to prove the uniqueness of the time optimal control. 
This is due to the fact that we do not have a sharp upper bound on the number of Dirac masses involved in the
time optimal control. Proving the uniqueness of the time optimal control in general situation is the goal of Open 
problem 5. �

The proof of the uniqueness of the minimal time control relies on the following lemma.

Lemma 5.2.7. Let k � n. Under Assumption (H.2), for every 0 � τ1 < τ2 < · · · < τk , the family {eτ1AB, . . . , eτkAB}
is free in IRn.

Proof. It suffices to prove this result for k = n, i.e., to prove that for every 0 � τ1 < τ2 < · · · < τn, the family 
{eτ1AB, . . . , eτnAB} is a basis of IRn. Equivalently, we have to show that rankM = n with M = (eτ1AB, . . . , eτnAB

) ∈
Mn(IR); equivalently, KerM
 = {0}. Let p ∈ KerM
, i.e., B
eτkA



p = 0 for every k ∈ {1, . . . , n}, i.e., the function 

t �→ B
etA

p vanishes n times. But since all eigenvalues of A are real, according to [17, Theorem 20 p. 143], either 

the function t �→ B
etA

p is identically 0 or vanishes at most n − 1 times. This ensures that p = 0. �

Proof of Proposition 5.2.5. From Corollary 5.2.3, we already know that any minimal time control is a sum of at most 
N nonnegative Dirac impulses, for some large enough N ∈ IN. That is to say that any optimal control takes the form ∑N

i=1 miδτi
, with m1, . . . , mN > 0 and 0 � τ1 < · · · < τN � TM(y0, y1). Furthermore, Corollary 5.2.3 also ensures 

that there exists a nontrivial solution p of ṗ = −A
p such that B
p has a constant sign and {τ1, . . . , τN } = {t ∈
[0, TM(y0, y1)] | B
p(t) = 0}.
Using the C1-regularity of B
p, we deduce that,

1. if τ1 > 0 and τN < TM(y0, y1), then B
p admits at least 2N zeros, counted with their multiplicity;
2. if τ1 = 0 and τN < TM(y0, y1), or if τ1 > 0 and τN = TM(y0, y1), then B
p admits at least 2N − 1 zeros, 

counted with their multiplicity;
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3. if τ1 = 0 and τN = TM(y0, y1), then B
p admits at least 2N − 2 zeros, counted with their multiplicity.

Under Assumption (H.2), we have from [17, Exercise 13 p. 154] that if p �≡ 0, then s �→ B
p(s) admits at most 
n − 1 zeros (counted with their multiplicity). Consequently, in order to have a non-degenerate solution, we shall have 
2N − 2 � n − 1, i.e., N � �(n + 1)/2�.

Let us now consider two controls (consisting of a finite sum of nonnegative Dirac impulses) u1 and u2 steering the 
system from y0 to y1 in minimal time. The controls u1 and u2 are in one of the cases described by 1-3. By examining 
the various possible situations, we conclude that u1 − u2 consists of at most n Dirac impulses (note that when n is 
even, this fact is direct, and when n is odd, we have to consider the possible presence of Dirac masses at time 0 and 
time TM(y0, y1)). Finally, using Lemma 5.2.7, we conclude that u1 = u2. �
5.3. Approximation of the minimal controllability time TU with bang-bang controls

The aim of this section is to give the structure of optimal controls in time TU (y0, y1). Recall that we have 
TM(y0, y1) � TU (y0, y1) and it is not proved that TM(y0, y1) = TU (y0, y1), except when the conditions of Proposi-
tion 5.1.12 are fulfilled. To obtain this structure, we are going to approach the nonnegative control in time TU(y0, y1)

with nonnegative minimal time controls bounded in L∞-norm by some constant M which will then be taken larger 
and larger. For every M > 0, we define

T M
U (y0, y1) = inf

{
T > 0 | y1 − eT Ay0 ∈ AccM+ (T )

}
with

AccM+ (T ) =
{
�T u , u ∈ UM+ (T )

}
where UM+ (T ) = {u ∈ U+(T ) | u(·) � M}. Here, T M

U (y0, y1) = +∞ if y1 is not reachable from y0 with controls u
such that 0 � u(·) � M . It can be easily checked that T M

U (y0, y1) � TU (y0, y1) � TM(y0, y1) and

lim
M→+∞T M

U (y0, y1) = TU (y0, y1).

In this section, we are going to extract as M → +∞ a limit control which consists of a finite sum of Dirac impulses. 
More precisely, we obtain the following result.

Proposition 5.3.1. Assume that A satisfies Assumption (H.1). Let y0 and y1 be points of IRn such that TU (y0, y1) <
+∞.

At time TU (y0, y1), there exists a control u ∈ M+(TU (y0, y1)) which is a linear combination with nonnegative 
coefficients of a finite number N of Dirac impulses. If A satisfies Assumption (H.2) then N � �(n + 1)/2�.

Furthermore, by defining uM ∈ UM+ (T M
U (y0, y1)) for every M > 0 large enough, there exists an increasing se-

quence (Mn) ∈ (IR∗+)IN such that (uMn)n∈IN converges vaguely to u.

Remark 5.3.2. Since A satisfies the assumption (H.1), from Proposition 5.1.7, there exists a control u ∈ M+
(
TM(y0 ,

y1)
)

steering y0 to y1 in time TM(y0, y1). Furthermore, due to Corollary 5.2.2, we also know that this control is a 
linear combination with nonnegative coefficients of a finite number of Dirac impulses. This result shows that this is 
also the case in time TU (y0, y1). Recall that, TM(y0, y1) = TU (y0, y1) is not true in general. �

Before proving Proposition 5.3.1, let us first establish an auxiliary lemma ensuring that the number of zeros of 
t ∈ [0, T ] �→ B
e(T −t)A


p1 is uniformly bounded by some constant independent of p1 ∈ IRn \ {0}.

Lemma 5.3.3. For T > 0 and p1 ∈ IRn \ {0}, we define Z(p1) =
{
t ∈ [0, T ] | B
e(T −t)A


p1 = 0
}

. Then there exists 

a constant N(T ) independent of p1 such that #Z(p1) � N(T ) and T �→ N(T ) is non-decreasing. In addition, under 
Assumption (H.2), we have N(T ) � n − 1 for every T > 0.
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Proof. When A satisfies the assumption (H.2) this result can be directly obtained from [17, Exercise 13 p. 154]. Let 
us then prove this result without this assumption.

Assume by contradiction that supp1∈IRn\{0} #Z(p1) = +∞, then there exists a sequence (p1
k)k∈IN ∈ (IRn \ {0})IN

such that #Z(p1
k) → +∞ as k → +∞. By linearity, and since p1

k �= 0, we have Z(p1
k) = Z(p1

k/|p1
k |) for every k ∈ IN

and hence, we can assume that p1
k ∈ Sn−1 for every k ∈ IN. Consequently, up to a subsequence, p1

k converges to some 

p1∞ ∈ Sn−1 and by continuity of p1 �→
(
t �→ B
e(T −t)A


p1
)

∈ C0([0, T ], IRn), we obtain that #Z(p1∞) = +∞. But 

this is impossible since t �→ B
e(T −t)A

p1∞ is analytic, p1∞ �= 0 and the pair (A, B) satisfies the Kalman condition. 

Finally, it is obvious that T �→ N(T ) is non-decreasing. �
Proof of Proposition 5.3.1. Let us write TU (resp. T M

U ) instead of TU (y0, y1) (resp. T M
U (y0, y1)). Let us also define 

M0 > 0 large enough such that T M0
U < +∞.

For every M � M0, there exists a minimal time control uM ∈ UM+ (T M
U ) steering y0 to y1 in time T M

U . According to 
[17, Corollary 2 p. 135] uM is unique, takes its values in {0, M} and has a finite number of switches. More precisely, 
there exists pM ∈ IRn \ {0} such that

uM(t) = M

2

(
1 + sign

(
B
etA


pM
))

(t ∈ [0,T M
U ] a.e.). (5.7)

According to Lemma 5.3.3 and since M �→ T M
U is non-increasing, this control has at most N0 = N(T M0

U ) switches, 
where N(T ) is defined by Lemma 5.3.3.

We define �M = {t ∈ [0,T M
U ] | uM(t) = M

}
. Since uM has at most N0 switches, we have �M =⋃KM

k=1(t
M
k −

εM
k , tMk + εM

k ) with

2KM � N0 + 2, 0 < tM1 < · · · < tMk < tMk+1 < · · · < tM
KM < T M

U , εM
k > 0,

0 � tM1 − εM
1 , tM

KM + εM
KM � T M

U , tMk + εM
k < tMk+1 − εM

k+1.

Let us first check that |�M | = O 
( 1

M

)
as M → +∞. Since uM satisfies the control requirement, we have

y1 − eT
M
U Ay0 =

T M
U∫

0

e(T M
U −t)ABuM(t)dt = M

∫
�M

e(T M
U −t)AB dt.

Let ϕ ∈ IRn be a real eigenvector of A
 and λ ∈ IR its associated eigenvalue (this real eigenvalue exists due to assump-
tion (H.1)). Multiplying by ϕ the above equality, we obtain

〈y1 − eT
M
U λy0, ϕ〉 = M〈ϕ,B〉

∫
�M

e(T M
U −t)λ dt

and hence, since 〈ϕ, B〉 �= 0 (the pair (A, B) satisfies the Kalman rank condition), and since 
∫
�M e(T M

U −t)λ dt �
e−|λ|T M

U |�M |, we have

M|�M |� e|λ|T M
U 〈e(TU−T M

U )λy1 − eTUλy0, ϕ〉
〈ϕ,B〉 .

This fact, together with T M
U → TU as M → +∞, ensures that |�M | = OM→+∞(1/M).

We are now in a position to prove that, exactly in time TU , there exists a control realizing the controllability 
problem, which is composed of a sum of nonnegative Dirac impulses. Since KM ∈ IN and 2KM � N0 + 2, we have 
K = lim inf

M→+∞KM ∈ IN and 2K � N0 + 2, and there exists an increasing sequence (Mn)n∈IN such that Mn → +∞ and 

K = KMn for every n ∈ IN. Since uMn satisfies the control requirement, we have for every n ∈ IN,
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y1 − eT
Mn
U Ay0 =

K∑
k=1

Mn

t
Mn
k +ε

Mn
k∫

t
Mn
k −ε

Mn
k

e(T M
U −t)AB dt

or equivalently,

e(TU−T Mn
U )A

(
y1 − eT

Mn
U Ay0

)
=

K∑
k=1

Mn

t
Mn
k +ε

Mn
k∫

t
Mn
k −ε

Mn
k

e(TU−t)AB dt. (5.8)

Now, by taking sub-sequences if necessary, for every k ∈ {1, . . . , K}, tMn

k converges as n → +∞ to some tk ∈
[0, TU ]. Since |�M | = O 

( 1
M

)
as M → +∞, we also have εMn

k = O 
(

1
Mn

)
as n → +∞. We then define, for every 

k ∈ {1, . . . , K}, mk = limn→+∞ 2Mnε
Mn

k ∈ IR+. By continuity of t �→ e(TU−t)A, we have

mke
(TU−tk)AB = lim

n→+∞Mn

t
Mn
k +ε

Mn
k∫

t
Mn
k −ε

Mn
k

e(TU−t)AB dt

and, taking the limit n → +∞ in (5.8), we obtain

y1 − eTUAy0 =
K∑

k=1

mke
(TU−tk)AB.

This means that the nonnegative control u =∑K
k=1 mkδtk steers y0 to y1 in time TU . In addition, this control consists 

of at most �N0/2� + 1 Dirac impulses, and it is easy to see that uMn converges vaguely to u as n → ∞.
Finally, when A satisfies the assumption (H.2), we have N0 � n − 1, and we obtain that the limit control is com-

posed of at most �(n + 1)/2� Dirac impulses. �
Remark 5.3.4. As in Remark 5.1.8, if Assumption (H.1) is not satisfied then the result of Proposition 5.3.1 may fail. In 
fact, in the above proof, it is not clear that |�M | = OM→+∞(1/M). Considering the example given in Remark 5.1.8, 

with A =
(

0 −1
1 0

)
, B =

(
1
0

)
, y0 = 0 and y1 =

(
1
0

)
, we see that the sequence of minimal time controls uM (with 

0 � uM(t) � M) does not converge to a Radon measure as M goes to +∞. Note that this fact was expected due to 
the discussion made in Remark 5.1.8. The computation details of this example are given in Appendix C.2. �

Remark 5.3.5. When Assumption (H.2) is satisfied, we have seen in Proposition 5.2.5 and in Proposition 5.3.1 that 
there exists a minimal time control at time TM(y0, y1) and a minimal time control in time TU (y0, y1). These two 
controls are nonnegative Radon measures and sums of at most �(n + 1)/2� Dirac impulses. This seems to indicate 
that these two controls are equal and the two minimal times are equal. However, this fact remains open in general.

Consequently, when y1 /∈ S∗+ or when the assumptions of Proposition 5.1.12 (see also Remark 5.1.13), the min-
imization problem (5.6) cannot be used to determine TU (y0, y1). Hence, a numerical strategy to approximate the 
minimal time TU (y0, y1) and corresponding minimal time is based on Proposition 5.3.1 (i.e., compute T M

U (y0, y1)

and let M → +∞, see Numerical method 5).
Note that another numerical strategy to numerically find TU is proposed in Section 3. This is the Numerical method 6, 
which is based on the time rescaling presented in § 5.2.1. �
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Appendix A. Proof of Propositions 3 and 7

Preliminaries Let us first observe that A satisfies the Assumption (H.2). Let us denote TU = TU (y0, y1) (the 
fact that TU < ∞ is ensured by Proposition 5.1.1 or Proposition 5.1.2) and u the associated nonnegative minimal 
time control (the existence and uniqueness of u ∈ M+(TU ) is ensured by Theorem 1). We have y1 − eTUAy0 =∫ TU

0 e(TU−t)AB du(t), i.e., since A is diagonalizable,

〈ϕk, y
1〉 − eλkTU 〈ϕk, y

0〉 = 〈ϕk,B〉
TU∫
0

eλk(TU−t) du(t) (k ∈ {1, . . . , n}),

with λk and ϕk given by (2.1). Since the pair (A, B) satisfies the Kalman rank condition, we have 〈ϕk, B〉 �= 0 for 
every k ∈ {1, . . . , n}. Hence, we have

〈ϕk, y
1〉 − eλkTU 〈ϕk, y

0〉
〈ϕk,B〉 =

TU∫
0

eλk(TU−t) du(t) (k ∈ {1, . . . , n}). (A.1)

This estimate is quite general. Taking in account the fact that y1 = ū1(1, . . . , 1)
 and the explicit values of B and ϕk

(see (2.1c)). We obtain

〈ϕk,B〉 = (−1)k+1(n + 1)2 sin((k − 1/2)π/n)

and, after some computations,

〈ϕk, y
1〉 = ū1

⎛
⎝n−1∑

j=0

cos(j (k − 1/2)π/n) − 1/2

⎞
⎠= ū1

2

(−1)k+1 sin((k − 1/2)π/n)

1 − cos((k − 1/2)π/n)
,

and finally, we have

〈ϕk, y
1〉

〈ϕk,B〉 = ū1

2n2

1

1 − cos((k − 1/2)π/n)
= −ū1

λk

. (A.2)

Proof of Proposition 3 Since y1 ∈ S∗+, we have, using Proposition 5.1.11, that TU = TM(y0, y1). In addition, since 
all the eigenvalues of A have a negative real part, Proposition 5.1.2 ensures that TU (y0, y1) < ∞. Noticing that A
satisfies the Assumption (H.2), we have, using Proposition 5.2.5, that the time optimal control u ∈M+(TU ) is unique 

and is the sum of at most N = �(n + 1)/2� Dirac masses, that is to say that u =
N∑

i=1

miδti for some m1, . . . , mN ∈ IR+

and some t1, . . . , tN ∈ [0, TU ]. Proposition 5.2.5 also ensures the existence of a nontrivial solution p of the adjoint 
problem such that B
p � 0 and {t1, . . . , tN } = {t ∈ [0, TU ] | B
p(t) = 0}.
Using the expression of the optimal control as a sum of Dirac masses in (A.1), we obtain
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〈ϕk, y
1〉 − eλkTU 〈ϕk, y

0〉
〈ϕk,B〉 =

N∑
i=1

mie
λk(TU−t) (k ∈ {1, . . . , n}).

Taking into account the explicit expression given by (A.2) and the fact that TU shall be minimal, we obtain the result 
of Proposition 3 and the claim of Remark 4.

Proof of Proposition 7 In order to prove a priori estimates on the minimal time we follow the sketch of the proof of 
Proposition 5.1.7.
Since λk � 0 and u� 0, for every k ∈ {1, . . . , n}, we have

eλkTU
TU∫
0

du(t) �
TU∫
0

eλk(TU−t) du(t) �
TU∫
0

du(t)

and hence, using (A.1), we deduce,

〈ϕk, y
1〉 − eλkTU 〈ϕk, y

0〉
〈ϕk,B〉 �

TU∫
0

du(t) � e−λkTU 〈ϕk, y
1〉 − 〈ϕk, y

0〉
〈ϕk,B〉 .

Consequently, TU satisfies

sup
k∈{1,...,n}

〈ϕk, y
1〉 − eλkTU 〈ϕk, y

0〉
〈ϕk,B〉 � inf

k∈{1,...,n}
e−λkTU 〈ϕk, y

1〉 − 〈ϕk, y
0〉

〈ϕk,B〉 .

The above inequality, together with the explicit expression (A.2), ensure that the minimal time TU shall satisfy (2.4), 
and (2.5), when y0 is a steady state.

Appendix B. L1-norm optimal controls

Since according to Proposition 5.1.7, we expect to obtain a Radon measure control at the minimal time, given some 
time T > TM(y0, y1), we consider the norm optimal control problem

inf ‖u‖M(0,T )

u ∈M+(T ),

y1 − eT Ay0 = �T u

(B.1)

and we expect that the infimum of times for which the above optimization problem admits a solution will be 
TM(y0, y1). Based on Proposition 5.1.11, if we assume in addition that y1 ∈ S∗+, then we obtain that the min-
imization problem (B.1) admits a solution u ∈ M+(T ) for every T > TM(y0, y1), and, in addition, we have 
TM(y0, y1) = TU (y0, y1). If, in addition, the matrix A satisfies the assumption (H.1), then the minimization problem 
(B.1) admits a solution for every T � TU (y0, y1) = TM(y0, y1). In particular, we have the following result.

Proposition B.1. Assume that y1 ∈ S∗+ and let y0 ∈ IRn, then TU (y0, y1) = TM(y0, y1) is the infimum of times T > 0
such that the minimization problem (B.1) admits a solution.
Furthermore, if the matrix A satisfies Assumption (H.1) then this minimal time is achieved, i.e., the minimization 
problem (B.1) admits a solution.

Consequently, in this paragraph, we are going to assume that y1 ∈ S∗+ (and TU (y0, y1) < +∞).
Since we are looking for nonnegative controls, the optimal control problem (B.1) can also be expressed as

inf
∫

[0,T ]
du(t)

u ∈M+(T ),

y1 − eT Ay0 = � u
T
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or, equivalently, as

inf
u∈M(0,T )

fT (u) + gT (�T u), (B.2)

with,

gT (Y ) =
{

0 if Y = y1 − eT Ay0,

∞ otherwise
(Y ∈ IRn),

fT (u) =
∫

[0,T ]
du(t) + I

⎛
⎜⎝ ∫

[0,T ]
du−(t)

⎞
⎟⎠ (u ∈M(0, T )),

where u− is the negative part of u, and where I(U) =
{

0 if U = 0,

∞ otherwise
, for every U ∈ IR.

Our aim is now to use Fenchel-Rockafellar duality. To this end, we first compute the adjoint of �T and the convex 
conjugates of gT and fT . We obtain, for every p1 ∈ IRn,

�∗
T p1 =

(
t �→ B
e(T −t)A


p1
)

and g∗
T (p1) = sup

Y∈IRn

(
〈p1, Y 〉 − g(Y )

)
= 〈y1 − eT Ay0,p1〉.

Let us now compute the convex conjugate of fT . We have, for every v ∈ C([0, T ]),

f ∗
T (v) = sup

u∈M(0,T )

⎛
⎜⎝ ∫

[0,T ]
vdu −

∫
[0,T ]

du − I

⎛
⎜⎝ ∫

[0,T ]
du−

⎞
⎟⎠
⎞
⎟⎠

= sup
u∈M(0,T )

u(·)�0

∫
[0,T ]

(v(t) − 1)du+(t) =
{

0 if ∀t ∈ [0, T ], v(t)� 1,

+∞ otherwise.

Then the dual problem of (B.2) is

inf
p1∈IRn

f ∗
T (�∗

T p1) + g∗
T (−p1).

Let us notice that for p1 = 0, we have f ∗
T (�∗

T p1) + g∗
T (−p1) = 0, consequently, we have infp1∈IRn f ∗

T (�∗
T p1) +

g∗
T (−p1) � 0 and hence, this optimization problem can be expressed as

inf 〈eT Ay0 − y1,p1〉
p1 ∈ IRn,

B
e(T −t)A

p1 � 1 (t ∈ [0, T ]) .

(B.3)

By weak duality (see [4, Theorem 4.4.2 p. 135] or [12]), we always have

inf
u∈M(0,T )

fT (u) + gT (�T u) � − inf
p1∈IRn

f ∗
T (�∗

T p1) + g∗
T (−p1) (B.4)

In addition, using the strong duality result of [4, Theorem 4.4.3 p. 136], we obtain the equality in (B.4), for T >

TU (y0, y1).

Lemma B.2. Let y0 ∈ IRn and y1 ∈ S∗+ be such that TU (y0, y1) < +∞. For every T > TU (y0, y1), we have

inf
u∈M(0,T )

fT (u) + gT (�T u) = − inf
p1∈IRn

f ∗
T (�∗

T p1) + g∗
T (−p1) = −f ∗

T (�∗
T p1

T ) − g∗
T (−p1

T )

for some p1 ∈ IRn.
T
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Proof. Let us first set TU = TU (y0, y1). It is easy to show that fT and gT are lower semi-continuous functions. In or-
der to prove the strong duality result, we apply [4, Theorem 4.4.3 p. 136]. To this end, we show that if T > TU (y0, y1)

then 0 ∈ core (domgT − �T domfT ) where coreA is the algebraic interior of A and domh is the set of points for 
which h takes finite values. Since domgT = {y1 − eT Ay0}, we have to show that y1 − eT Ay0 ∈ core (�T domfT ). 
Firstly, since y1 ∈ S∗+, for every τ > 0, there exists a control u ∈M+(TU + τ) such that y1 − e(TU+τ)Ay0 = �TU+τ u

(see Lemma 5.1.4). Let us pick τ = (T −TU )/2 (so that T = TU +2τ ). Secondly, y1 ∈ S∗+, we use the small time local 
controllability, to show that there exists ε0 > 0 (depending on τ and y1) such that B(y1, ε0) ⊂ {�τv | v ∈ M+(τ )}. 
Consequently, for every ỹ ∈ IRn and every 0 � ε < ε0, there exists a control uε ∈ M+(T ) such that y1 +εỹ −eT Ay0 =
�T uε . This ends the proof. �
Remark B.3. When T = TU , this result is not clear. In fact, to mimic the above proof, we have to show that for every 
ỹ small enough, there exists a perturbation ũ of the minimal time control u ∈ M+(T ) such that u + ũ steers y0 to 
y1 + ỹ in time T and u + ũ ∈ M+(T ). �

Lemma B.4. Let y0 and y1 be two points of IRn and let T � 0. If T � 0 is such that the minimization problem (B.3)
admits a minimizer, then there exists a control u ∈M+(T ) steering y0 to y1 in time T , which is a linear combination 
with nonnegative coefficients of a finite number of Dirac impulses.

Proof. Assume there exists a minimizer p1 ∈ IRn of (B.3). Let us write the optimality condition of this problem. Its 
Lagrangian is

L(p1, u) = 〈eT Ay0 − y1,p1〉 +
∫

[0,T ]

(
B
e(T −t)A


p1 − 1
)

du(t)

for p1 ∈ IRn and u ∈ M([0, T ]). The first-order optimality conditions give u ∈ M+(T ) and suppu ⊂ {t ∈ [0, T ] |
B
e(T −t)A


p1 = 1
}

and 0 = ∂L
∂p1 (p1, u) = eT Ay0 − y1 + ∫[0,T ] e

(T −t)AB du(t). This means that there exists a non-

negative Radon measure control u steering y0 to y1 in time T . In addition, since the pair (A, B) satisfies the Kalman 
rank condition, the set {t ∈ [0, T ] | B
e(T −t)A


p1 = 1} is a finite union of singletons and hence the corresponding 
control is a finite sum of Dirac impulses. �
Remark B.5. Note that the existence of a minimum to the adjoint problem (here (B.3)) is usually related to an ob-
servability inequality. Here, even if the existence of a minimum to (B.3) leads to a control for the direct problem, we 
have not found any observability inequality. �

Remark B.6. Proposition B.1 and Lemmas B.2 and B.4 allows us to build the Algorithm 1 which aim is to find an 
approximation of the minimal time TU (y0, y1). �

Let us also provide a �-convergence result.

Lemma B.7. Let y0 ∈ IRn and y1 ∈ S∗+ be such that TU (y0, y1) < +∞ and set TU = TU (y0, y1). Let us define 
(Tn)n∈IN ∈ IRIN a sequence converging to TU such that Tn > TU for every n ∈ IN, and let us also define

Jn(p
1) = f ∗

Tn
(�∗

Tn
p1) + g∗

Tn
(−p1) (p1 ∈ IRn, n ∈ IN)

and J (p1) = f ∗
TU (�∗

TU p1) + g∗
TU (−p1) (p1 ∈ IRn).

Then the sequence (Jn)n∈IN �-converges to J .

Proof. The proof of this result follows from the two following facts:
1. For every sequence (pn)n ∈ (IRn)IN converging to p ∈ IRn, we have J (p) � lim infn→+∞ Jn(pn).

If lim infn→+∞ Jn(pn) = +∞, this fact is obvious. Let us then assume that Jn(pn) < +∞ for every n ∈ IN. By 
continuity of (T , p) �→ 〈eT Ay0 −y1, p〉, we have limn→+∞ g∗ (−pn) = g∗ (p). It is also obvious that f ∗ (�∗ p) �
Tn TU TU TU
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f ∗
Tn

(�∗
Tn

p). Consequently, for every n ∈ IN, we have f ∗
TU (�∗

TU pn) � f ∗
Tn

(�∗
Tn

pn). Finally, by continuity of p �→
B
e(TU−t)A


p, we obtain limn→+∞ f ∗
TU (�∗

TU pn) = f ∗
TU (�∗

TU p).

2. For every p ∈ IRn, there exists a sequence (pn)n∈IN ∈ (IRn)IN such that limn→+∞ pn = p and J (p) �
lim supn→+∞ Jn(pn).
If J (p) = +∞, we also have Jn(p) = +∞ and hence, we simply take pn ≡ p. If J (p) < +∞, then f ∗

TU (�∗
TU p) = 0

and there exists λn with λn → 1 as n → +∞ such that f ∗
Tn

(λn�
∗
Tn

p) = 0. It is also clear that limn→+∞ g∗
Tn

(−λnp) =
g∗
TU (−p). This ensures that limn→+∞ Jn(λnp) = J (p). �

Remark B.8. Let us first note that with the assumptions of Lemma B.7, there exists p1
n ∈ IRn a minimizer of Jn for 

every n ∈ IN. As a consequence of the �-convergence result, if the sequence (p1
n)n admits a cluster point, then this 

cluster point is a minimizer of J and hence, from Lemma B.4, this would ensure the existence of a Radon measure 
control at the minimal time TU . The difficulty is then to show that the sequence (p1

n)n admits a cluster point. In fact, 
the constraints in the minimization problem (B.3) are not enough to ensure some compactness. �

Appendix C. Technical details of some examples

C.1. Technical details related to Remarks 5.1.9 and 5.1.10

C.1.1. Technical details of the 1st item of Remark 5.1.9

In this example, we have considered the system (1.1), with matrices A and B given by A =
(

0 1
1 0

)
and B =

(
0
1

)
, 

with the initial condition y0 =
(

0
1

)
and target y1 =

(
0

1 + ε

)
(for some ε > 0). Since y1 ∈ {y0} + IR+B , it is clear 

that TM(y0, y1) = 0. Let us show that TU (y0, y1) = +∞, i.e., y1 is not accessible from y0 with nonnegative L∞
controls.

In fact, it is easy to see that etA =
(

cosh t sinh t

sinh t cosh t

)
, and hence, the solution y of (1.1) with initial state y0 and 

control u is given by

y(t) =
(

sinh t

cosh t

)
+

t∫
0

(
sinh(t − τ)

cosh(t − τ)

)
u(τ)dτ (t ∈ (0, T )).

In particular, at time t = T , the first component of y is given by

y1(T ) = sinhT +
T∫

0

sinh(T − t)u(t)dt.

Note that whatever the time T > 0 and the control u � 0 is, we have y1(T ) > 0. This ensures that the target y1 can be 
reached only at time t = 0. But y0 �= y1 and hence, there does not exist a time T � 0 and a control u ∈ L∞(0, T ) such 
that y(T ) = y1, i.e., TU (y0, y1) = +∞.

C.1.2. Technical details of the 2nd item of Remark 5.1.9

In this example, we have considered the system (1.1), with matrices A and B given by A =
(

0 1
−1 0

)
and B =(

0
1

)
, with the initial condition y0 =

(
0
1

)
and target y1 =

(
0

1 + ε

)
(for some ε > 0). Since y1 ∈ {y0} + IR+B , it 

is clear that TM(y0, y1) = 0. Let us show that TU (y0, y1) = π , ensuring that y1 is accessible from y0, but not in 
arbitrarily small time.

In fact, it is easy to see that etA =
(

cos t − sin t

sin t cos t

)
, and hence, the solution y of (1.1) with initial state y0 and 

control u is given by
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Fig. 19. State trajectory for the example given in the 2nd item of Remark 5.1.9, with the control given by (C.1), with M = 3/2 and ε = 1/2.

y(t) =
(− sin t

cos t

)
+

t∫
0

(− sin(t − τ)

cos(t − τ)

)
u(τ)dτ (t ∈ (0, T )).

In particular, at time t = T , the first component of y is given by

y1(T ) = − sinT −
T∫

0

sin(T − t)u(t)dt.

As for the 1st item of Remark 5.1.9, by considering the sign of y1(T ), we easily obtain that π � TU (y0, y1). Let us 
now show that TU (y0, y1) = π . To this end, we consider the control u given by

u(t) =
{

0 if t ∈ (0,π + τ0),

M if t ∈ (π + τ0,π + τ0 + τ1)
(t ∈ (0,π + τ)), (C.1)

where τ0, τ1 > 0 and M > 0 will be adjusted later so that u steers the system from y0 to y1 = y0 + εB in time 
T = π + τ0 + τ1. With this control, the state follows a circle centered on 0 during the time interval [0, π + τ0], and 
then follows a circle centered on (−M, 0)
 during the time interval [π + τ0, π + τ0 + τ1] (see Fig. 19 for a graphical 
example of this trajectory). Using these geometrical considerations, we deduce that the control u given by (C.1) steers 
y0 to y1 for M > ε(2 + ε)/2, and we have

τ0 = arcsin
ε(2 + ε)

2M
and τ1 = arcsin

M cos τ0 + (1 + ε)(M + sin τ0)

M2 + (1 + ε)2 .

One can check that τ0 and τ1 go to 0 as M → ∞, ensuring that TU (y0, y1) = π (for every ε > 0).

C.1.3. Technical details of the 3rd item of Remark 5.1.9
In this example, we have considered the system (1.1), with matrices A and B given by

A =
⎛
⎝0 −1 0

1 0 1
0 0 0

⎞
⎠ and B =

⎛
⎝0

0
1

⎞
⎠ .

For this system, we consider the initial condition y0 = (0, 1, −1)
 and the target y1 = (−1, 0, 0)
.
It is easy to see that the pair (A, B) satisfies the Kalman rank condition and that the matrix A satisfies the assump-

tion (H.1).
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Proof of TM(y0, y1) = π/2 It is easy to see that the impulse control u = δ0 steers the solution of (1.1) from y0 to y1

in time π/2 (see Fig. 17 for an illustration of this control and the associated state trajectory), consequently, we have 
TM(y0, y1) � π/2.
As shown (see Corollary 5.2.3), the measure control in time TM(y0, y1) is a linear combination Dirac masses which 
are located on the set of time t such that B
p(t) = 0, where p is a non-trivial solution of the adjoint system and is 
such that B
p(t) � 0 for every t ∈ [0, TM(y0, y1)]. Consequently, we are going to study the sign of B
p.
First of all, given p0 = (p0

1, p
0
2, p

0
3)


 ∈ IR3 \ {0}, we have,

B
p(t) = p0
1 cos t − p0

2 sin t + p0
3 − p0

1,

where p is the solution of ṗ = −A
p, with initial condition p(0) = p0.
Let us first show that p0

1 and p0
2 cannot be simultaneously equal to 0. To this end, we assume by contradiction that 

p0
1 = p0

2 = 0, then from the non-triviality condition, we have p0
3 �= 0, and hence B
p(t) = p0

3 is a non-zero constant. 
Since B
p has to be non-negative (and p0

3 �= 0), we necessarily have B
p(t) > 0 for every t � 0. This means that 
the control in time TM(y0, y1) would be constant equal to 0. But, it can be easily checked that with such a control the 
target is never reached, and this leads to a contradiction.
Consequently, we have (p0

1, p
0
2) �= 0, and since the controls are defined up to a multiplicative constant, we can assume 

that p0
1 = cos θ and p0

2 = sin θ for some θ ∈ IR. Let us also denote by α the value of p0
3 − p0

1. Thus, we have to study, 
for θ, α ∈ IR, the sign of

ϕθ,α(t) = cos(t + θ) + α.

In other words, at the minimal time TM(y0, y1), there exist θ ∈ IR and α ∈ IR such that ϕθ,α(t) � 0 for every t ∈
[0, TM(y0, y1)], and a control in time TM(y0, y1) is of the form u =∑N

i=1 miδti , for some N ∈ IN, some mi > 0 and 
some ti ∈ {t ∈ [0,TM(y0, y1)] | ϕθ,α(t) = 0

}
.

We also know that TM(y0, y1) � π/2. It is easy to see that for every T � π/2, the condition ϕθ,α(t) � 0 for every 
t ∈ [0, T ] implies that the set 

{
t ∈ [0, T ] | ϕθ,α(t) = 0

}
is the empty set, a singleton, or the set {0, T }. Let us consider 

the three possibilities.

1.
{
t ∈ [0,TM(y0, y1)] | ϕθ,α(t) = 0

}= ∅:
In this case, the optimal control is the null control, and as already explained, this control does not steer the initial 
state to the target state.

2.
{
t ∈ [0,TM(y0, y1)] | ϕθ,α(t) = 0

}= {τ }:
In this case, any optimal control is of the form u = mδτ for some τ ∈ [0, TM(y0, y1)] and some m � 0.
Since the target condition has to be fulfilled, we necessarily have m = 1 (in order to have y3(T ) = 0). Assume by 
contradiction that TM(y0, y1) < π/2. Then we have,
• if τ > 0, since τ � TM(y0, y1) < π/2, we have y1(t)

2 + y2(t)
2 = y1(τ )2 + y2(τ )2 < 1 for every t � τ . Con-

sequently, the target cannot be reached;
• if τ = 0, then we have y2(t) = cos(t), and hence, for every t ∈ [0, π/2) we have y2(TM(y0, y1) > 0. Conse-

quently, the target cannot be reached in a time lower than π/2.
3.
{
t ∈ [0,TM(y0, y1)] | ϕθ,α(t) = 0

} = {0, TM(y0, y1)}: In this case, any optimal control is of the form u =
m0δ0 + m1δTM(y0,y1), with m0, m1 ∈ IR+.
Since the target condition has to be fulfilled, we necessarily have m0 +m1 = 1 (in order to have y3(T ) = 0). Note 
that the case m0 = 0 and the case m0 = 1 are already covered by the previous item. Consequently, we assume that 
m0 ∈ (0, 1). Then for every t ∈ [0, TM(y0, y1)], we have,

(y1(t) + m0 − 1)2 + y2(t)
2 = (m0 − 1)2 + 1.

In particular, at time TM(y0, y1), the target shall be reached. Thus, m0 shall satisfy (m0 − 2)2 = (m0 − 1)2 − 1, 
i.e., m0 = 2, this leads to a contradiction with the fact that m0 ∈ (0, 1).

In conclusion, we have shown that TM(y0, y1) = π/2 and that an optimal control in this time is u = δ0.
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Proof of TU (y0, y1) < ∞ To this end, given some μ > 0, we consider the control u given by:

u(t) =

⎧⎪⎨
⎪⎩

0 if t ∈ [0, τ ),

1/μ if t ∈ (τ, τ + μ),

0 if t ∈ (τ + μ,T ],
where τ � 0 and T � τ +μ has to be chosen so that y0 is steered to y1 in time T (see Fig. 17 for an illustration of this 
type of control and its associated state trajectory). Let us denote by y the solution of (1.1) with this control u. First of 
all, we have,

y3(t) =

⎧⎪⎨
⎪⎩

−1 if t ∈ [0, τ ),

−1 + (t − τ)/μ if t ∈ (τ, τ + μ),

0 if t ∈ (τ + μ,T ].
From this expression, we deduce after some computation that,

y1(T ) = − cosT − sinT + cos(T − τ)
sinμ

μ
− sin(T − τ)

cosμ − 1

μ
,

y2(T ) = cosT − sinT + sin(T − τ)
sinμ

μ
+ cos(T − τ)

cosμ − 1

μ
.

We now aim to find T and τ such that the terminal conditions y1(T ) = −1 and y2(T ) = 0 are satisfied. This leads to 
the equations F(μ, T , τ) = 0, where we have set:

F(μ,T , τ ) =
(

1 − cosT − sinT + cos(T − τ) sin(μ)/μ − sin(T − τ)(cosμ − 1)/μ

cosT − sinT + sin(T − τ) sin(μ)μ + cos(T − τ)(cosμ − 1)/μ

)
.

Note that F is C∞ smooth on IR3 and for μ = 0, we have,

F(0, T , τ ) =
(

1 − cosT − sinT + cos(T − τ)

cosT − sinT + sin(T − τ)

)
.

It is clear that (T , τ) = (π/2, 0) is solution of F(0, T , τ) = 0. But, in order to prove the existence of a gap, we look 
for another solution, and we observe that F(0, 2π, π/2) = 0. In order to prove that for every small enough μ > 0, 
there exist T (μ) and τ(μ) such that F(μ, T (μ), τ(μ)) = 0, we are going to use the implicit function theorem. To this 
end, we only need to check that det (∂T F (0,2π,π/2), ∂τF (0,2π,π/2)) �= 0. In fact, we have,

(∂T F (0, T , τ ), ∂τF (0, T , τ )) =
(

sinT − cosT − sin(T − τ) sin(T − τ)

− sinT − cosT + cos(T − τ) − cos(T − τ)

)
,

and hence,

det (∂T F (0,2π,π/2), ∂τF (0,2π,π/2)) =
(

0 −1
−1 0

)
= −1 �= 0.

This ensures, using the implicit function Theorem, that for small enough μ > 0, there exist T (μ) and τ(μ) such 
that F(μ, T (μ), τ(μ)) = 0, and (T (μ), τ(μ)) converges to (2π, π/2) as μ goes to 0. Hence, we conclude that 
TU (y0, y1) � 2π < ∞.

Proof of TU (y0, y1) > π/2 We already know that 2π � TU (y0, y1) � TM(y0, y1) = π/2. Let us assume by con-
tradiction that TU (y0, y1) = TM(y0, y1) = π/2. This would ensure the existence of a time T ∈ [π/2, π) and of a 
nonnegative control u in L∞(0, T ) which steers y0 to y1 in time T . We define y the solution of (1.1) with this control. 
Note first that y3 is continuous, nondecreasing, y3(0) = −1 and y3(T ) = 0. Note also that we have

y1(T ) = − sin(T ) −
T∫

sin(T − s)y3(s)ds.
0
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Taking into account that we shall have y1(T ) = −1, the above equation is

1 − sin(T ) =
T∫

0

sin(T − s)y3(s)ds.

Since y3 is continuous, non-positive and non-constant to zero, and since s ∈ [0, T ] �→ sin(T − s) is non-negative 
(recall that π/2 � T � π ), we have 

∫ T

0 sin(T − s)y3(s) ds < 0. This obviously leads to a contradiction with T < π

(since 1 − sin(T ) � 0). In fact, we just proved that TU (y0, y1) � π .

Conclusion In this example, we provided a situation where 0 < TM(y0, y1) < TU (y0, y1) < ∞. On Fig. 17, we 
have plotted the corresponding trajectories and controls. In this figure, one of the plots corresponds to the minimal 
time control with measures (red) and the other one is obtained through a numerical simulation and gives the minimal 
time control satisfying the additional constraint 0 � u(t) � M , with M = 5 (blue).

C.1.4. Technical details related to Remark 5.1.10
Recall that we consider here the initial condition y0 and the matrices A and B defined in the 3rd item of Re-

mark 5.1.9 (see also Appendix C.1.3). We also consider the trajectory ȳ, solution of (1.1) with initial condition 
ȳ0 = (0, 1, 0)
 and null control. We thus have

ȳ(t) =
⎛
⎝− sin t

cos t

0

⎞
⎠ (t � 0).

Since ȳ0 ∈ {y0} + IR+B , it is obvious that T →ȳ

M (y0) = 0 (recall that T →ȳ

M (y0) and T →ȳ

U (y0) are defined in Re-
mark 5.1.10).

In order to prove that T →ȳ

U (y0) � π/4 we are going to proceed as in Appendix C.1.3. Recall that for every T > 0
such that there exists a control u ∈ U+(T ) steering y0 to ȳ(T ) in time T , the third component of y is continuous and 
nondecreasing from −1 to 0. Note also that we have

(
y1(t)

y2(t)

)
=
(− sin t

cos t

)
+

t∫
0

(− sin τ

cos τ

)
y3(t − τ)dτ

and

1

2

d

dt

(
y1(t)

2 + y2(t)
2
)

= y2(t)y3(t).

From the above equality and sign consideration, we have,

y2(t) � cos t − sin t (t ∈ [0,π/2]).
In particular, we deduce that d

dt

(
y1(t)

2 + y2(t)
2
)
< 0 for every t ∈ (0, π/4). But, since (y0

1)2 + (y0
2)2 = ȳ1(T )2 +

ȳ2(T )2 = 1, we easily deduce that ȳ(T ) cannot be reached in a time T lower than π/4.

C.2. Technical details on the example of Remark 5.3.4

As in Remark 5.1.8, if Assumption (H.1) is not satisfied then the result of Proposition 5.3.1 may fail. In fact, 
in the proof of Proposition 5.3.1, it is not clear that |�M | = OM→+∞(1/M). Considering the example given in 

Remark 5.1.8, with A =
(

0 −1
1 0

)
, B =

(
1
0

)
, y0 = 0 and y1 =

(
1
0

)
, we see that the sequence of minimal time 

controls uM (with 0 � uM(t) � M) does not converge to a Radon measure as M goes to +∞. More precisely:
• From the discussion made in Remark 5.1.8, we have TM(y0, y1) = π . Using the family of controls introduced 

in Remark 5.1.8, we can see that the assumptions of Proposition 5.1.12 are fulfilled (see in particular Fig. 16 and 
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note that the set of positive steady state is S∗+ = {0} × IR∗−). This ensures that TU (y0, y1) = π and hence, for M large 
enough, we can assume that T M

U (y0, y1) � 3π/2.
• Using the bang-bang principle, we know that for every M > 0, uM(t) ∈ {0, M} for almost every t ∈ [0, T M ]. 

Consequently, the state trajectory lies on circles centered on 0 (when the control is null) and on circles centered on 
(−M, 0)
 (when the control is equal to M).

• By application of the Pontryagin maximum principle, we know that for every M > 0 there exists pM ∈ IR2 such 
that

uM(t) =
{

M if B
etA

pM > 0,

0 if B
etA

pM < 0.

Setting pM = αM
(
cos θM, sin θM

)

, for some αM ∈ IR and θM ∈ IR, the above relation leads to

uM(t) =
{

M if αM sin(θM − t) > 0,

0 if αM sin(θM − t) < 0.

This together with the fact that T M(y0, y1) � 3π/2 for large enough values of M , ensures that the minimal time 
control uM admits at most two jumps. It is also clear that there does not exist ε > 0 such that uM(t) = 0 for every 
t ∈ [0, ε]. Consequently, we conclude that we have, for M > 0 large enough,

uM(t) =

⎧⎪⎨
⎪⎩

M if t ∈ (0, τ0),

0 if t ∈ (τ0, τ0 + τ1),

M if t ∈ (τ0 + τ1, τ0 + τ1 + τ2),

(C.2)

with τ0 = τ0(M) > 0, τ1 = τ1(M) > 0 and τ2 = τ2(M) � 0, and the minimal time is T M
U (y0, y1) = τ0 + τ1 + τ2.

• We now compute the minimal time control uM for large values of M , i.e., we give the explicit expression of the 
parameters τ0, τ1 and τ2 in the expression (C.2). First of all, let us define

R(t) = etA =
(

cos t − sin t

sin t cos t

)
(t ∈ IR).

From the expression of uM , it follows that the state trajectory follows a circle centered on (−M, 0)
, then a circle 
centered on 0 and finally a circle centered on (−M, 0)
. Since the final condition shall be satisfied, we have the 
relation between τ0, τ1, τ2 and M :

y1 = R(τ2)

(
R(τ1)

(
R(τ0)

(
y0 + M

(
1
0

))
− M

(
1
0

))
+ M

(
1
0

))
− M

(
1
0

)
,

i.e., taking in account that y0 = 0 and y1 = (1, 0)
,

1

M

(
1
0

)
= (R(τ2) (R(τ1) (R(τ0) − I2) + I2) − I2)

(
1
0

)

= (R(τ0 + τ1 + τ2) − R(τ1 + τ2) + R(τ2) − I2)

(
1
0

)
,

that is to say,

1/M = cos(τ0 + τ1 + τ2) − cos(τ1 + τ2) + cos(τ2) − 1, (C.3a)

0 = sin(τ0 + τ1 + τ2) − sin(τ1 + τ2) + sin(τ2). (C.3b)

• Let us now find the minimum of τ0 + τ1 + τ2 (for τ0, τ1, τ2 ∈ IR∗+) under the constraint (C.3). The Lagrangian 
L : IR5 → IR of this minimization problem is given by

L(τ0, τ1, τ2, λc, λs) = τ0 + τ1 + τ2

+ λc (cos(τ0 + τ1 + τ2) − cos(τ1 + τ2) + cos(τ2) − 1 − 1/M)

+ λs (sin(τ0 + τ1 + τ2) − sin(τ1 + τ2) + sin(τ2)) .
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Fig. 20. Associated state trajectory for the minimal time control uM computed in Remark 5.3.4. We chose M = 3 and obtain T M(y0, y1) �
4.2362699.

The first order optimality conditions lead to

0 = ∂τ0L = 1 − λc sin(τ0 + τ1 + τ2) + λs cos(τ0 + τ1 + τ2), (C.4a)

0 = ∂τ1L = 1 − λc (sin(τ0 + τ1 + τ2) − sin(τ1 + τ2))

+ λs (cos(τ0 + τ1 + τ2) − cos(τ1 + τ2)) , (C.4b)

0 = ∂τ2L = 1 − λc (sin(τ0 + τ1 + τ2) − sin(τ1 + τ2) + sin(τ2))

+ λs (cos(τ0 + τ1 + τ2) − cos(τ1 + τ2) + cos(τ2)) . (C.4c)

From (C.4c) and (C.3), we easily obtain λs = −M/(M + 1).
By subtracting (C.4a) to (C.4b) and (C.4b) to (C.4c), we obtain that λs and λc satisfy(

sin(τ1 + τ2) − cos(τ1 + τ2)

− sin(τ2) cos(τ2)

)(
λc

λs

)
= 0.

Since λs = −M/(M +1) �= 0, the determinant of the above squared matrix shall be null, that is to say sinτ1 = 0. Since 
we necessarily have τ1 > 0 and since the minimal time shall not exceed 3π/2 (for M large enough), we necessarily 
have τ1 = π (for M large enough). Consequently, the constraints given by (C.3) are

1/M = − cos(τ0 + τ2) + 2 cos(τ2) − 1, (C.5a)

0 = − sin(τ0 + τ2) + 2 sin(τ2). (C.5b)

Since we just see that τ1 = π , and since T M
U (y0, y1) � 3π/2 (for M large enough), we have τ0 + τ2 � π/2

(for M large enough). This ensures that cos(τ0 + τ2) =
√

1 − sin2(τ0 + τ2), and from (C.5b) we obtain cos(τ0 +
τ2) =

√
1 − 4 sin2 τ2 =

√
4 cos2 τ2 − 3. This implies that τ2 ∈ (0, π/6]. From (C.5a), we obtain 2 cos τ2 − M+1

M
=√

4 cos2 τ2 − 3. This implies that cos τ2 = M+1
4M

+ 3M
4(M+1)

. Finally, we deduce that

τ0 = arccos

(
3M

2(M + 1)
− M + 1

2M

)
− arccos

(
M + 1

4M
+ 3M

4(M + 1)

)
, (C.6a)

τ1 = π, (C.6b)

τ2 = arccos

(
M + 1

4M
+ 3M

4(M + 1)

)
, (C.6c)
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Note that τ2 → 0 and τ0 → 0 as M → ∞, and we recover the fact that T M
U (y0, y1) = τ0 + τ1 + τ2 → π as M → ∞. 

For M = 3, we plot on Fig. 20 the state trajectory associated to the minimal time control, uM , given by (C.2), with 
parameters τ0, τ1 and τ2 given by (C.6).

Conclusion In order to prove the claim of this remark (i.e., the optimal control uM does not converge to a Radon 
measure), let us show that Mτ2 goes to +∞ when M goes to +∞. In fact, we have

τ2 = arccos

(
M + 1

4M
+ 3M

4(M + 1)

)
= arccos

(
1 − 2M − 1

4M(M + 1)

)
,

from which we conclude that τ2 ∼
√

1
2M

, and hence lim
M→+∞Mτ2 = ∞.
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