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MULTIPLICITY OF SOLUTIONS FOR FRACTIONAL

q(.)-LAPLACIAN EQUATIONS

ABITA RAHMOUNE † AND UMBERTO BICCARI ∗

Abstract. In this paper, we deal with the following elliptic type problem






(−∆)
s(.)
q(.)

u+ λV u = α |u|p(.)−2 u+ β |u|k(.)−2 u in Ω,

u = 0 in R
n\Ω,

where q(.) : Ω×Ω → R is a measurable function and s(.) : Rn ×Rn → (0, 1) is

a continuous function, n > q(x, y)s(x, y) for all (x, y) ∈ Ω×Ω, (−∆)
s(.)
q(.)

is the

variable-order fractional Laplace operator, and V is a positive continuous po-
tential. Using the mountain pass category theorem and Ekeland’s variational
principle, we obtain the existence of a least two different solutions for all λ > 0.
Besides, we prove that these solutions converge to two of the infinitely many
solutions of a limit problem as λ → +∞.

1. Introduction

In recent years, many authors have paid attention to the study of nonlocal frac-
tional operators and related fractional differential equations. This is partially due
to the large employment of these operators to model several phenomena such as
ultra-relativistic limits of quantum mechanics, phase transition, population dynam-
ics, minimal surfaces and game theory.

In this paper, we deal with the following elliptic equation for the fractional
Laplace operator with variable order derivative involving variable exponent nonlin-
earities:





(−∆)

s(.)
q(.)u+ λV u = α |u|

p(.)−2
u+ β |u|

k(.)−2
u in Ω,

u = 0 in R
n\Ω.

(1.1)

In (1.1), for all q(.) : Ω× Ω → (1,+∞) measurable and s(.) : Rn × R
n → (0, 1)

continuous, with n > q (x, y) s(x, y) for all (x, y) ∈ Ω×Ω, we denote by (−∆)
s(.)
q(.) the

variable-order fractional q−Laplace operator which is defined for any ϕ ∈ C∞
0 (Ω)
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as

(−∆)
s(.)
q(.)ϕ(x) = 2 lim

ε→0+

∫

Rn\Bε(x)

|ϕ(x) − ϕ(y)|
q(x,y)−2

(ϕ(x) − ϕ(y))

|x− y|
n+q(x,y)s(x,y)

dy, (1.2)

for all x ∈ R
n, (1.3)

where Bε (x) indicates the ball of radius ε > 0 centered at x ∈ R
n. Moreover,

V : Ω → [0,+∞) is a continuous function and α, β, λ > 0 are positive parame-
ters. Finally, the variable exponents k(.) and p(.) of the nonlinear terms are given
measurable functions on Ω.

The terminology variable-order fractional Laplace operator indicates that s(.)
and q(.) are functions and not real numbers. This operator is then a generalization
of the fractional Laplacian (−∆)s, which corresponds to q(.) ≡ 2 and s(.) ≡ s ∈
(0, 1) constant, and of the q-Laplacian −∆q, which corresponds to q(.) ≡ q ∈
(1,+∞) constant and s(.) ≡ 1.

System (1.1) can be cast as an extension to the fractional variable-order case of
the second-order elliptic equation with variable growth conditions

{
−∆u+ λV u = α |u|p(.)−2 u+ β |u|k(.)−2 u in Ω,

u = 0 on ∂Ω,
(1.4)

which is obtained when considering s(.) ≡ 1 and q(.) ≡ 2. Equation (1.4) is a well-
known model for electrorheological fluids [38], whose properties have been studied
for instance in [2, 29, 30].

The research on fractional Laplace operators and their applications is very at-
tractive and extended. In the last decade, many authors from different fields of the
pure and applied mathematics have considered PDE models involving the fractional
Laplacian and addressed many relevant questions such as existence, uniqueness and
regularity of solutions [5, 10, 13, 14, 15, 17, 31, 32, 34, 39, 40, 41, 47, 48, 49, 50],
spectral properties [22, 23, 28], or even more applied issues, for example control
problems [8, 9, 11, 12, 42, 43, 44, 45] or the description of several phenomena
arising in finance and quantum mechanics [4, 14, 27].

On the other hand, results for the variable-order fractional Laplacian are limited
and rare, and the literature on this operator is much less extended. We refer for
instance to [6, 7, 25, 33] for some relevant bibliography. In particular, in [33], the
authors considered equation (1.1) with q(.) ≡ 2 in a bounded domain of Rn and,
under some suitable assumptions, they showed that the problem admits at least two
different solutions for all λ > 0. Moreover, they proved that these two solutions
converge to two solutions of a limit model as λ→ +∞, for which they also obtained
the existence of infinitely many solutions.

The purpose of this paper is to extend the results of [33] to the operator (1.2).
In particular, we will show also in this case the existence of two distinct solutions
for all λ > 0, and that these two solutions converge to two of the infinitely many
solutions of a limit model as λ→ +∞.

Our results will be obtained by similar techniques as [33], based on Ekeland’s
variational principle and a mountain pass theorem, which we suitably adapted to
cover the case of a variable q(.). Let us stress that some of these techniques had
already been employed in our previous contributions [35, 36, 37], in the context of
wave-type equations with variable-exponent nonlinearities.
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This paper is composed by three sections in addition to the introduction. In
Section 2, we recall the definitions of the variable-exponent Lebesgue and Sobolev
spaces, and present some of their relevant properties. We also state there our main
results. In Section 3, we prove our first result showing the existence of a least
two distinct nontrivial weak solutions for (1.1). In Section 4, we focus on the case
λ→ +∞ and prove the existence of infinitely many solutions for this limit problem.
Finally, Section 5 is devoted to some conclusions and open problems.

2. Functional setting and main results

In this section, we describe the functional setting in which we shall work and
state our main results.

Let us start by introducing the Lebesgue and Sobolev spaces with variable expo-
nent. Here we refer mainly to [19, 21, 24, 26].

Throughout the rest of the paper we assume that Ω is a bounded open domain
of Rn, n ≥ 1, with smooth boundary Γ. Moreover, in what follows, if not stated
differently, we will always assume that p : Ω → (1,+∞) is a measurable function
and we will denote

p− := ess inf
x∈Ω

[ p (x)] and p+ := ess sup
x∈Ω

[ p (x)]

Let

̺p(.),Ω(v) :=

∫

Ω

|v(x)|
p(x)

dx.

We then define the variable-exponent space Lp(.)(Ω) as

Lp(.)(Ω) =
{
v : Ω → R measurable

∣∣∣ ̺p(.),Ω(v) < +∞
}
,

which is a Banach space equipped with the Luxemburg norm

‖u‖Lp(.)(Ω) := inf

{
λ > 0

∣∣∣
∫

Ω

∣∣∣∣
u(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Variable-exponent Lebesgue spaces are similar to classical Lebesgue spaces in
many aspects (see for instance [26]). In particular, it follows directly from the
definition of the norm that

min
(
‖u‖

p−

Lp(.)(Ω)
, ‖u‖

p+

Lp(.)(Ω)

)
≤ ̺p(.),Ω(u) ≤ max

(
‖u‖

p−

Lp(.)(Ω)
, ‖u‖

p+

Lp(.)(Ω)

)
.

(2.1)
Moreover, we have the following generalized Hölder’s inequalities.

Theorem 2.1 ([26, Theorem 2.1]). Let p : Ω → (1,+∞) measurable and define
the conjugate exponent

p′(x) =
p(x)

p(x)− 1
, (p′)− =

p−

p− − 1

so that we have
1

p(x)
+

1

p′(x)
= 1.

Then, for all functions u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω), we have
∫

Ω

|u(x)v(x)| dx ≤

(
1

p−
+

1

(p′)−

)
‖u‖Lp(.)(Ω) ‖v‖Lp′(.)(Ω) .
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Theorem 2.2 ([18, Lemma 3.2.20]). Let p, q, r : Ω → (1,+∞) be measurable
functions such that

1

p(.)
=

1

r(.)
+

1

q(.)
.

Then, for all functions u ∈ Lr(.)(Ω) and v ∈ Lq(.)(Ω), we have uv ∈ Lp(.)(Ω) with

‖uv‖Lp(.)(Ω) ≤ C ‖u‖Lr(.)(Ω) ‖v‖Lq(.)(Ω) .

Let us now introduce the variable order fractional Sobolev spaces. To this end,
we shall make the following assumptions:

Hypothesis P: p : Ω → (1,+∞) is a measurable function satisfying:

2 < p− ≤ p(x) ≤ p+ < +∞ (P1)

|p(x) − p(y)| ≤
M

|log |x− y||
for all x, y in Ω with |x− y| <

1

2
, M > 0 (P2)

Hypothesis Q: q : Ω× Ω → R is a measurable function satisfying:

q is symmetric, i.e., q(x, y) = q(y, x) for all (x, y) ∈ Ω× Ω (Q1)

1 < q− := min
Ω×Ω

q(x, y) ≤ q(x, y) ≤ max
Ω×Ω

q(x, y) =: q+ < p− < +∞ (Q2)

q
(
(x, y)− (z, z)

)
= q(x, y), for all (x, y), (z, z) ∈ Ω× Ω (Q3)

Hypothesis S: s : Rn × R
n → (0, 1) is a measurable function satisfying:

s is symmetric, i.e., s(x, y) = s(y, x) for all (x, y) ∈ R
n × R

n (S1)

0 < s− := min
R2n

s(x, y) ≤ s(x, y) ≤ max
R2n

s(x, y) =: s+ < 1 (S2)

We then define the generalized fractional Sobolev space with variable exponents
via the Gagliardo approach as follows

Hs(.)(Ω) = Hp(.),q(.),s(.)(Ω) =
{
u ∈ Lp(.)(Ω)

∣∣∣ [u]q(.),s(.),Ω < +∞
}
,

where

[u]q(.),s(.),Ω = inf

{
λ > 0

∣∣∣∣
∫

Ω

∫

Ω

∣∣∣∣
u(x)− u(y)

λ

∣∣∣∣
q(x,y)

dxdy

|x− y|n+q(x,y)s(x,y)
< 1

}

is the corresponding variable exponent Gagliardo seminorm. Then, Hs(.)(Ω) equipped
with the norm

‖u‖Hs(.)(Ω) = ‖u‖Lp(.)(Ω) + [u]q(.),s(.),Ω

is a Banach space.

Define now H
s(.)
0 (Ω) = H

p(.),q(.),s(.)
0 (Ω) as the linear space of Lebesgue measur-

able functions u : Rn → R such that u ∈ Hp(.),q(.),s(.)(Ω) with u = 0 in R
n\Ω.

Then, H
s(.)
0 (Ω) is a Banach space with the norm endowed by Hs(.)(Ω). Moreover,

we have the following result.
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Proposition 2.3. Let p(x), q(x, y) and s(x, y) be continuous variable exponents
and define

s− := min
Ω×Ω

s(x, y).

Assume that

n > s−q(x, y) for all (x, y) ∈ Ω× Ω (2.5a)

p(x) > q(x, x) for all x ∈ Ω (2.5b)

Let (P1), (P2), (Q1), (Q2) and (Q3) be satisfied. Assume that r : Ω → (1,+∞)
is a continuous function such that

q∗(x) :=
nq(x, x)

n− s−q(x, x)
> r(x), for all x ∈ Ω. (2.6)

Then

1. There exists a constant C = C(n, p, q, r, s,Ω) such that for every v ∈ H
s(.)
0 (Ω)

we have

‖v‖Lr(.)(Ω) ≤ C ‖v‖
H

s(.)
0 (Ω)

,

i.e. H
s(.)
0 (Ω) can be continuously embedded into Lr(.)(Ω) for any r ∈ (1, q∗).

2. The embedding H
s(.)
0 (Ω) →֒ Lr(.)(Ω) is compact.

3. When one considers functions u ∈ H
s(.)
0 (Ω) that are compactly supported

inside Ω, the embeddings Hs+

0 (Ω) →֒ H
s(.)
0 (Ω) →֒ Hs−

0 (Ω) are continuous.

Proof. The proof will be organized in three steps, one for each different result we

stated. In particular, in Step 1, we will show that H
s(.)
0 (Ω) can be continuously

embedded into Lr(.)(Ω) for any r ∈ (1, q∗). In Step 2, we will show that this
embedding is compact. Finally, in Step 3, we will show that when one considers

functions u ∈ H
s(.)
0 (Ω) that are compactly supported inside Ω, the embeddings

Hs+

0 (Ω) →֒ H
s(.)
0 (Ω) →֒ Hs−

0 (Ω) are continuous.
Step 1. First of all, by definition of s− and using (2.5a) and (2.6) we have that

there exists a constant k1 > 0 such that

nq(x, x)

n− s(.)q(x, x)
− r(x) ≥ k1 > 0 for all x ∈ Ω.

Moreover, by (2.5b) we have the existence of a second positive constant k2 such
that

p(x)− q(x, x) ≥ k2 > 0.

Thus, there exists a constant ε > 0 and K numbers of disjoint hypercubes Bi

such that Ω = ∪K
i=1Bi and diam(Bi) < ε, that verify

nq(z, y)

n− s(z, y)q(z, y)
− r(x) ≥

k1
2
,

p(x) ≥ q(z, y) +
k2
2
,

(2.7)

for every x ∈ Bi and (z, y) ∈ Bi ×Bi. Let

si = inf
Bi×Bi

s(z, y), qi = inf
Bi×Bi

(q(z, y)− δ) and q∗i =
nqi

n− siqi
.
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From (2.7) and the continuity of the associated exponents, we can pick δ = δ(k1),
with q− − 1 > δ > 0, such that

nqi
n− siqi

≥ r(x) +
k1
2

for all x ∈ Bi and n > siqi,

p(x) ≥ qi +
k2
2

for all x ∈ Bi.

Therefore we can employ the Sobolev embedding theorem for constant exponents
(see [1, Theorem 5.4]) to get the existence of a suitable constant C = C(n, qi, si, ε, Bi)
such that

‖u‖
L

q∗
i (Bi)

≤ C
(
‖u‖Lqi (Bi)

+ [u]qi,si,Bi

)
. (2.8)

Let us now suppose that there exist three positive constants c1, c2 and c3 such
that

n∑

i=0

‖u‖
L

q∗
i (Bi)

≥ c1 ‖u‖Lr(.)(Ω) (2.9a)

‖u‖Lp(.)(Ω) ≥ c2

n∑

i=0

‖u‖Lqi (Bi)
(2.9b)

[u]q(.),s(.),Ω ≥ c3

n∑

i=0

[u]qi,si,Bi
(2.9c)

Then, from (2.8) and (2.9a)-(2.9c) we can conclude that

‖u‖Lr(.)(Ω) ≤ c1

n∑

i=0

‖u‖
L

q∗
i (Bi)

≤ C

n∑

i=0

(
‖u‖Lqi (Bi)

+ [u]qi,si,Bi

)

≤ C
(
‖u‖Lp(.)(Ω) + [u]q(.),s(.),Ω

)
= C ‖u‖

H
s(.)
0 (Ω)

,

as we wanted to show.
Hence, we only have to prove that (2.9a)-(2.9c) hold. Let us start with (2.9a).

We have

|u(x)| =

n∑

i=0

|u(x)|χBi
,

which clearly implies that

‖u‖Lr(.)(Ω) ≤

n∑

i=0

‖u‖Lr(.)(Bi)
(2.10)

Moreover, notice that for each i, q∗i > r(x) if x ∈ Bi. Then we can choose ai(x)
such that

1

r(x)
=

1

q∗i
+

1

ai(x)
,

and by Theorem 2.2 we have

‖u‖Lr(.)(Bi)
≤ C ‖1‖Lai(.)(Bi)

‖u‖
L

q∗
i (Bi)

= C ‖u‖
L

q∗
i (Bi)

.

Thus, (2.9a) immediately follows from (2.10). Moreover, in a similar way and
using that p(x) > qi for x ∈ Bi, we easily obtain also (2.9b). Finally, to prove
(2.9c) let us fix

U(x, y) =
|u(x)− u(y)|

|x− y|
si ,
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and remark that

[u]qi,si,Bi
=

∫∫

Bi×Bi

|u(x)− u(y)|
qi

|x− y|
n+qisi

dxdy =

∫∫

Bi×Bi

(
|u(x)− u(y)|

|x− y|
si

)qi dxdy

|x− y|
n

= ‖U‖
qi
Lqi (µ,Bi×Bi)

≤ C ‖1‖
qi
Lbi(.,.)(µ,Bi×Bi)

‖U‖
qi
Lq(.,.)(µ,Bi×Bi)

= C ‖U‖
qi
Lq(.,.)(µ,Bi×Bi)

, (2.11)

where Theorem 2.2 is used with bi(x, y) such that

1 =
qi

q(x, y)
+

qi
bi(x, y)

,

but considering the measure in Bi ×Bi given by

dµ(x, y) =
dxdy

|x− y|
n
qi

.

Now we aim to show that

‖U‖Lq(.,.)(µ,Bi×Bi)
≤ C[u]q(.),s(.),Bi

, (2.12)

for every i. If this is valid, then we directly obtain (2.9c) from (2.11). Let λ > 0
be such that

∫∫

Bi×Bi

∣∣∣∣
u(x)− u(y)

λ

∣∣∣∣
q(x,y)

dxdy

|x− y|
n+q(x,y)s(x,y)

< 1.

Then

∫∫

Bi×Bi

(
|u(x)− u(y)|

λ |x− y|s(x,y)

)q(x,y)
dxdy

|x− y|
n

=

∫∫

Bi×Bi

∣∣∣∣
u(x)− u(y)

λ

∣∣∣∣
q(x,y)

dxdy

|x− y|
n+q(x,y)s(x,y)

< 1.

Therefore

‖U‖Lq(.,.)(µ,Bi×Bi)
≤ λ,

and we finally obtain the inequality (2.12).

Step 2. Let us consider a sequence {uj}j ⊂ H
s(.)
0 (Ω) such that uj → u in

H
s(.)
0 (Ω) as j → +∞, and denote vj := uj − u. Hence vj → 0 in H

s(.)
0 (Ω), which

implies that [vj ]q(.),s(.),Ω is uniformly bounded.
Extend the functions vj by zero outside of Ω and, with some abuse of notation,

denote this extension vj . We have to show that vj → 0 in Lr(.)(Ω). To this end,
let ψε be a standard mollifier for all ε > 0. We then have

vj = (vj − ψε ∗ vj) + ψε ∗ vj

and from (2.13) we get

‖vj‖Lr(.)(Ω) ≤ ‖vj − vj ∗ ψε‖Lr(.)(Ω) + ‖vj ∗ ψε‖Lr(.)(Ω) (2.13)

≤ cε[vj ]q(.),s(.),Ω + ‖vj ∗ ψε‖Lr(.)(Ω) .

Since vj → 0 and ε > 0 is fixed, we obtain that as j → +∞

vj ∗ ψε(x) =

∫

Rn

ψε(x− y)vj(y)dy → 0
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Let Ωε := {x ∈ R
n | dist(x,Ω) ≤ ε}. Thus vj ∗ ψε(x) = 0 for all x ∈ R

n\Ωε. By
the Hölder’s inequality given in Theorem 2.1, we then get that for all x ∈ Ωε

|vj ∗ ψε(x)| =

∣∣∣∣
∫

Rn

ψε(x − y)vj(y)dy

∣∣∣∣ ≤ c ‖vj‖Lr(.)(Ω) ‖ψε(x− .)‖Lr′(.)(Ω) .

As ψ ∈ C∞
0 (Rn), we have |ψ| ≤ c and thus |ψε| ≤ cε−n. This gives

‖ψε(x − .)‖Lr′(.)(Ω) ≤ cε−n ‖χΩε
‖Lr′(.)(Ω) ≤ c(ε, r),

independently of the choice of x ∈ R
n and j. Using the uniform boundedness of vj

in Lr(.), we then have

|vj ∗ ψε(x)| ≤ c(ε, r)χΩε
(x) for all x ∈ R

n.

Since χΩε
∈ Lr(.)(Rn) and vj ∗ ψε(x) → 0 a. e., we obtain by the dominated

convergence theorem that vj ∗ψε → 0 in Lr(.)(Rn) as j → +∞. Hence, from (2.13)
it follows that

lim sup
j→+∞

‖vj‖Lr(.)(Ω) ≤ cε lim sup
j→+∞

[vj ]q(.),s(.),Ω.

Since ε > 0 is arbitrary and [vj ]q(.),s(.),Ω is uniformly bounded, this implies that

vj → 0 in Lr(.)(Rn) and thus uj → u in Lr(.)(Ω), which yields the compactness of
the embedding.

Step 3. When we consider functions that are compactly supported inside Ω, we
can get rid of the term ‖u‖Lp(.)(Ω) and it holds that

‖u‖Lp(.)(Ω) ≤ C[u]q(.),s(.),Ω.

Let u ∈ H
s(.)
0 (Ω). From (2.9c), and because s− ≤ si in Bi for all i, since in the

case of constant exponent si the Sobolev embedding for subcritical exponents is
continuous, we have

n∑

i=0

[u]qi,s−,Bi
≤ c

n∑

i=0

[u]qi,si,Bi
≤ c[u]q(.),s(.),Ω < +∞.

Using this for every i, it holds that [u]q(.),s−,Ω ≤ c[u]q(.),s(.),Ω, which gives u ∈

Hs−

0 (Ω), and then H
s(.)
0 (Ω) →֒ Hs−

0 (Ω).

It only remains to show that Hs+

0 (Ω) →֒ H
s(.)
0 (Ω). To this end, let u ∈ Hs+

0 (Ω),
and let λ > 0 be such that

∫∫

Bi×Bi

∣∣∣∣
u(x)− u(y)

λ

∣∣∣∣
q(x,y)

dxdy

|x− y|
n+q(x,y)s+

< 1.

Then, using that diam(Bi) < ε < 1, we get |x− y| < 1 for every (x, y) ∈ Bi×Bi

and hence
∫∫

Bi×Bi

∣∣∣∣
u(x)− u(y)

λ

∣∣∣∣
q(x,y)

dxdy

|x− y|
n+q(x,y)s(x,y)

=

∫∫

Bi×Bi

∣∣∣∣
u(x)− u(y)

λ

∣∣∣∣
q(x,y)

|x− y|
n+q(x,y)s+

|x− y|n+q(x,y)s(x,y)

dxdy

|x− y|
n+q(x,y)s+

≤

∫∫

Bi×Bi

∣∣∣∣
u(x)− u(y)

λ

∣∣∣∣
q(x,y)

dxdy

|x− y|n+q(x,y)s+
< 1

Therefore u ∈ H
s(.)
0 (Ω), that is, Hs+

0 (Ω) →֒ H
s(.)
0 (Ω). �
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Remark 2.4. Our result is sharp in the following sense: if

q∗(x0) =
nq(x0, x0)

n− s(x0, x0)q(x0, x0)
< r(x0)

for some x0 ∈ Ω, then the embedding of H
s(.)
0 (Ω) in Lr(.)(Ω) cannot hold for every

p(.). As a matter of fact, from the continuity conditions we imposed on q, r and s,
there exists a small ball Bδ(x0) such that

max
Bδ(x0)×Bδ(x0)

nq(x, y)

n− s(x, y)q(x, y)
< min

Bδ(x0)
r(x).

Now, fix p(x) < minBδ(x0)
r(x) and notice that, for p(x) ≥ r(x), we have that

H
s(.)
0 (Ω) is embedded in Lr(.)(Ω). Hence, with the same arguments that hold for the

constant exponent case, one can create a sequence {uj}j supported inside Bδ(x0)
such that ‖uj‖Hs(.)

0 (Ω)
≤ C and ‖uj‖Lr(.)(Bδ(x0))

→ +∞. In fact, it is enough to

consider a smooth, compactly supported function g, and pick uj = jbg(jx) with b

satisfying bq(x, y)− n+ s(x, y)q(x, y) ≤ 0 and br(x) − n > 0 for x, y ∈ Bδ(x0).

In what follows, we will always denote by Cr the constant of the Sobolev em-

bedding H
s(.)
0 (Ω) →֒ Lr(.)(Ω). Then, by applying (2.1) and Proposition 2.3, for

all

p(x) ∈

(
1,

nq(x, x)

n− s(x, x)q(x, x)

)

we obtain ∫

Ω

|u(x)|
p(x)

dx ≤ max
(
‖u‖

p−

Lp(.)(Ω)
, ‖u‖

p+

Lp(.)(Ω)

)
(2.14)

≤ max
(
Cp−

p [u]p
−

q(.),s(.),Ω, C
p+

p [u]p
+

q(.),s(.),Ω

)
.

We are now ready to provide our notion of solution to (1.1). To this end, let us
introduce the Banach space

Eλ =

{
u ∈ Lp(x)(Ω)

∣∣∣ [u]q(.),s(.),Ω + λ

∫

Ω

V (x) |u(x)|
2
dx < +∞

}

equipped with the norm [u]q(.),s(.),Ω+‖u‖p(.). Let Eλ,0 denote the closure of C∞
0 (Ω)

in Eλ. Then Eλ,0 is a Banach space with the norm

‖u‖λ := [u]q(.),s(.),Ω.

This space Eλ,0 is the appropriate functional setting in which we can define our
notion of solution to (1.1). In particular, we have

Definition 2.5. A function u ∈ Eλ,0 is called a (weak) solution of problem (1.1)
if
∫∫

R2n

|u(x)− u(y)|q(x,y)−2 (u(x) − u(y))(v(x) − v(y))

|x− y|
n+q(x,y)s(x,y)

dxdy

+ λ

∫

Ω

V (x)u(x)v(x) dx =

∫

Ω

(
α |u|

p(x)−2
uv(x) + β |u|

k(x)−2
u(x)v(x)

)
dx,

for any v ∈ Eλ,0.
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Notice that, given the variational nature of Definition 2.5, the solution of (1.1)
can be characterized in terms of the critical points of a suitable functional. In
particular, let us define

Iλ(u) :=

∫∫

R2n

1

q(x, y)

|u(x)− u(y)|q(x,y)

|x− y|
n+q(x,y)s(x,y)

dxdy +
λ

2

∫

Ω

V (x) |u(x)|
2
dx

−

∫

Ω

(
α

p(x)
|u|

p(x)
+

β

k(x)
|u|

k(x)

)
dx, for all u ∈ Eλ,0

and L1 : Eλ,0 → E∗
λ,0 such that

〈L1(u), v〉λ =

∫∫

R2n

|u(x)− u(y)|
q(x,y)−2

(u(x)− u(y))(v(x) − v(y))

|x− y|
n+q(x,y)s(x,y)

dxdy

+ λ

∫

Ω

V (x)u(x)v(x) dx, for all u, v ∈ Eλ,0,

where we denoted with 〈·, ·〉λ the duality pair between Eλ,0 and E∗
λ,0. Then, one

can verify that Iλ is well-defined, of class C1 in Eλ,0 and, for all u, v ∈ Eλ,0, we
have

〈I ′λ(u), v〉λ = 〈L1(u), v〉λ −

∫

Ω

(
α |u|p(x)−2 u+ β |u|k(x)−2 u

)
v dx,

Hence if u ∈ Eλ,0 is such that 〈I ′λ(u), v〉λ = 0 for all v ∈ Eλ,0, then u is a solution
of (1.1).

We can now introduce the main results of this paper. To this end, we shall first
make the following assumptions on the potential V and the function k.
Hypothesis V: V : Ω → [0,+∞) is a continuous function satisfying:

J = int(V −1(0)) ⊂ Ω is a nonempty bounded domain and J̃ = V −1(0) (V1)

there exists a nonempty open domain Ω0 ⊂ J (V2)

such that V (x) ≡ 0 for all x ∈ Ω0

Hypothesis K: k : Ω → R is a continuous function satisfying:

1 < k− ≤ k(x) ≤ k+ < 2 for all x ∈ Ω (K1)

Moreover, we shall consider the following variant of (P1)

2 < p− ≤ p(x) ≤ p+ <
nq(x, x)

n− s(x, x)q(x, x)
for all x ∈ Ω (P1a)

Finally, we assume that the parameters α and β verify

α ≤
D(2− k+)

A(p+ − k+)
, β ≤

D(p+ − 2)

B(p+ − k+)
(2.17)

with

A =
max

(
Cp−

p , Cp+

p

)

p−
, B =

max
(
Ck−

k , Ck+

k

)

k−
, D = min

(
1

q+
,
1

2

)
(2.18)

where, we recall, Cp and Ck are the constants of the Sobolev embeddings

H
s(.)
0 (Ω) →֒ Lp(.)(Ω) and H

s(.)
0 (Ω) →֒ Lk(.)(Ω),

respectively.
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The first main contribution of the present paper is the non-unicity of solutions
for (1.1). In particular, we have:

Theorem 2.6. Assume that (P1a), (P2), (S1), (S2), (V1), (V2), (K1) and
(2.17) hold. Let n > q+s+. Then (1.1) admits at least two distinct solutions for all
λ > 0.

Furthermore, in the following results, we investigate the concentration of solu-
tions obtained by Theorem 2.6.

Theorem 2.7. Let u1λ and u2λ be two solutions obtained in Theorem 2.6 and Ω0

as in (V2). Then u1λ → u1 and u2λ → u2 in H
s(.)
0 (Ω) as λ → +∞, where u1 6= u2

are two nontrivial solutions of the following problem



(−∆)

s(.)
q(.)u = α |u|

p(.)−1
u+ β |u|

k(.)−1
u in Ω0,

u = 0 in R
n\Ω0.

(2.19)

Theorem 2.8. Assume that (P1a), (S1), (S2), (K1) and (2.17) hold. Let n >
2s+. Then problem (2.19) has infinitely many solutions.

3. Proof of Theorem 2.6

We give here the proof of our first main result Theorem 2.6. To this end, we
first need some preparation.

Let us start by introducing the notion of (PS)c sequence and stating the so-called
(PS)c condition.

Definition 3.1. For any c ∈ R, a sequence {uj}j ⊂ Eλ is called a (PS)c sequence
if Iλ(uj) → c and I ′λ(uj) → 0 as j → +∞.

Definition 3.2. We say that Iλ provides the (PS)c condition in Eλ at the level
c ∈ R if each (PS)c sequence {uj}j ⊂ Eλ possess a strongly convergent subsequence
in Eλ.

Moreover, in the sequel, we shall make use of the following standard mountain
pass theorem (see for example [3]).

Theorem 3.3. Let E be a real Banach space and J ∈ C1(E,R) with J(0) = 0.
Suppose that

(i) There exist ρ, δ > 0 such that J(u) ≥ δ for all u ∈ E with ‖u‖E = ρ.
(ii) There exists e ∈ E satisfying ‖e‖E > ρ such that J(e) < 0.

Define Γ = {γ ∈ C1([0, 1];E) | γ(0) = 1 and γ(1) = e}. Then

c = inf
γ∈Γ

max
0≤σ≤1

J(γ(σ)) ≥ δ

and there exists a (PS)c sequence {uj}j ⊂ E.

Theorem 3.3 applied to the functional Iλ will be the starting point to prove our
main result. To this end, we first need to check that Iλ possesses the mountain
pass geometry (i) and (ii). This is ensured by the following lemma.

Lemma 3.4. Assume that the assumptions (P1a), (S2), (V1)-(V2), (K1) and
(2.17) are satisfied. Then
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1. For all λ > 0, there exist ρ > 0 and δ > 0 such that

Iλ(u) > δ for all u ∈ Eλ with ‖u‖λ = ρ. (3.1)

2. There exists e ∈ Eλ with ‖e‖λ > ρ, where ρ > 0 is fixed in (3.1), such that
Iλ(e) < 0 for all λ > 0.

Proof. We divide the proof into two steps, one for each different result we are
claiming.

Step 1. Let us start by proving the first mountain pass property. Using the
fractional Sobolev inequality and (2.14), for all u ∈ Eλ, we have

∫

Ω

(
α

p(x)
|u|

p(x)
+

β

k(x)
|u|

k(x)

)
dx (3.2)

≤
α

p−

∫

Ω

|u|
p(x)

dx+
β

k−

∫

Ω

|u|
k(x)

dx

≤
α

p−
max

(
Cp−

p ‖u‖p
−

λ , Cp+

p ‖u‖p
+

λ

)
+

β

k−
max

(
Ck−

k ‖u‖k
−

λ , Ck+

k ‖u‖k
+

λ

)
.

We then get from (3.2) that

Iλ ≥ min

(
1

q+
,
1

2

)
‖u‖

2
λ −

α

p−
max

(
Cp−

p , Cp+

p

)
‖u‖

p+

λ −
β

k−
max

(
Ck−

k , Ck+

k

)
‖u‖

k+

λ

for all u ∈ Eλ with ‖u‖λ ≥ 1.
Set the constants A, B and C as in (2.18) and let φ : [0,+∞) → R be an auxiliary

function such that

φ(σ) = ψ(σ)σk+

for all σ ≥ 0,

where

ψ(σ) = Dσ2−k+

−Aασp+−k+

−Bβ.

Let

σ∗ :=

[
D(2− k+)

Aα(p+ − k+)

] 1

p+−2

.

We then have

ψ(σ∗) = max
σ≥0

ψ(σ) > 0,

provided that

Bβ <

[
D(2− k+)

Aα(p+ − k+)

] 2−k+

p+−2 D(p+ − 2)

(p+ − k+)
,

that is,

α2−k+

βp+−2 ≤

[
D(2− k+)

A(p+ − k+)

]2−k+ (
D(p+ − 2)

B(p+ − k+)

)p+−2

.

Moreover, since we are assuming

α ≤
D(2− k+)

A(p+ − k+)
,

we can readily check that σ∗ ≥ 1. Then, the first mountain pass property holds
with ρ = σ∗ > 0 and δ = φ(σ∗) > 0.
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Step 2. Let us now prove the second mountain pass property. In order to do that,
let us select v0 ∈ Eλ such that

‖v0‖λ = 1 and

∫

Ω

|v0(x)|
p(x)

dx > 0.

Then for all σ ≥ 1, we get

Iλ(σv0) ≤ max

(
1

q−
,
1

2

)
σ2 ‖v0‖

2
λ −

∫

Ω

(
α

p(x)
|σv0(x)|

p(x)
+

β

k(x)
|σv0(x)|

k(x)

)
dx

≤ max

(
1

q−
,
1

2

)
σ2 ‖v0‖

2
λ −

ασp−

p+

∫

Ω

|v0(x)|
p(x)

dx.

Since p− > 2, we can chose σ ≥ 1 large enough such that ‖σv0‖λ > ρ and
Iλ(σv0) < 0. Then, the second mountain pass property is satisfied by letting
e = σv0. �

Let us now show that the functional Iλ provides the (PS)c condition in Eλ. To
this end, in the same spirit of Theorem 3.3, let us define

cλ = inf
γ∈Γ

max
0≤σ≤1

Iλ(γ(σ)),

and
c(Ω0) = inf

γ∈Γ̃
max
0≤σ≤1

Iλ |
H

s(.)
0 (Ω0)

(γ(σ)),

where:

• the set Ω0 is the one provided by assumption (V2);

• Iλ |
H

s(.)
0 (Ω0)

is a restriction of Iλ on H
s(.)
0 (Ω0);

• Γ = {γ ∈ C1([0, 1];Eλ) | γ(0) = 1 and γ(1) = e};

• Γ̃ = {γ ∈ C1([0, 1];H
s(.)
0 (Ω0)) | γ(0) = 1 and γ(1) = e}.

Clearly, c(Ω0) is independent of λ. Moreover, note that, for all u ∈ H
s(.)
0 (Ω0),

we have

Iλ |
H

s(.)
0 (Ω0)

(u) =

∫

Ω0

∫

Ω0

1

q(x, y)

|u(x)− u(y)|
q(x,y)

|x− y|
n+q(x,y)s(x,y)

dxdy +
λ

2

∫

Ω0

V (x) |u(x)|
2
dx

−

∫

Ω0

(
α

p(x)
|u|p(x) +

β

k(x)
|u|k(x)

)
dx,

By the proof of Lemma 3.4, we can infer that Iλ |
H

s(.)
0 (Ω0)

satisfies the mountain

pass proprieties of Theorem 3.3. Since H
s(.)
0 (Ω0) ⊂ Eλ for all λ > 0, one has

0 < α ≤ cλ ≤ c(Ω0) for all λ > 0. Clearly, for all σ ∈ [0, 1], σe ∈ Γ̃. Thus, there
exists C0 > 0 such that

c(Ω0) ≤ max
0≤σ≤1

Iλ(σe) ≤ C0 < +∞, (3.3)

since p− > 2. Then,
0 < δ ≤ cλ ≤ c(Ω0) < C0

for all λ > 0. By Lemma 3.4 and Theorem 2.6, we get that for all λ > 0, there
exists {uj}j ⊂ Eλ such that

Iλ(uj) → cλ > 0 and I ′λ(uj) → 0, as j → +∞. (3.4)

Hence, {uj}j is a (PS)cλ sequence.
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Lemma 3.5. Under the assumptions (P1a), (S2), (V1), (V2), (K1) and (2.17),
the sequence {uj}j given by (3.4) is bounded in Eλ for all λ > 0.

Proof. Using the Hölder inequality, by (2.17), we obtain

cλ+ o(1) ≥ Iλ(uj)−
1

p−
〈I ′λ(uj), uj〉

=

∫∫

R2n

1

q(x, y)

|uj(x) − uj(y)|
q(x,y)

|x− y|
n+q(x,y)s(x,y)

dxdy +
λ

2

∫

Ω

V (x) |uj(x)|
2
dx−

1

p−
‖uj‖

2
λ

−

∫

Ω

(
α

(
1

p(x)
−

1

p−

)
|uj(x)|

p(x)
+ β

(
1

k(x)
−

1

p−

)
|uj(x)|

k(x)

)
dx

≥

(
min

(
1

2
,
1

q+

)
−

1

p−

)
‖uj‖

2
λ

− β

(
1

k−
−

1

p−

)
max

(
Ck−

k ‖uj‖
k−

λ
, Ck+

k ‖uj‖
k+

λ

)
. (3.5)

Arguing by contradiction, we assume that {uj}j is not bounded in H
s(.)
0 (Ω).

Then there exists a subsequence, still denoted by {uj}j, such that ‖uj‖λ → +∞ as
j → +∞. Hence, by (3.5), we have

cλ + o(1)

‖uj‖
2
λ

≥

(
D −

1

p−

)
− β

(
1

k−
−

1

p−

)
max

(
Ck−

k ‖uj‖
k−−2
λ

, Ck+

k ‖uj‖
k+−2
λ

)

which yields 2 ≥ p− or q+ ≥ p−. This is a contradiction, thus {uj}j is bounded in
Eλ for all λ > 0. �

Lemma 3.6. Assume that (P1a), (S2), (V1)-(V2), (K1) and (2.17) hold. Then
Iλ satisfies the (PS)c condition in Eλ for all c ∈ R and λ > 0.

Proof. Let {uj}j be a (PS)c sequence with c < C0, where C0 is te constant intro-
duced in (3.3). By Lemma 3.5, {uj}j is bounded in Eλ and there exists C > 0 such
that ‖uj‖λ ≤ C. Thus, there exist a subsequence of {uj}j, still denoted by {uj}j ,
and u0 in Eλ such that as j → +∞

uj ⇀ u0 weakly in Eλ,

uj ⇀ u0 a.e. in R,

|uj |
p(.)−2

uj ⇀ |u0|
p(.)−2

u0 weakly in L
p(.)

p(.)−1 (Ω)

Our aim now is to prove that uj → u0 strongly in Eλ. By Proposition 2.3, we

obtain uj → u0 in Lp(.)(Ω) and Lk(.)(Ω), respectively. Thus

lim
j→+∞

∫

Ω

|uj(x) − u0|
p(x)

dx = 0

and

lim
j→+∞

∫

Ω

|uj(x) − u0|
k(x)

dx = 0.
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It follows from (3.4) that

o(1) = 〈I ′λ(uj)− I ′λ(u0), uj − u0〉

= (uj − u0, uj − u0)λ − α

∫

Ω

(
|uj|

p(x)−2
uj − |u0|

p(x)−2
u0

)
(uj − u0) dx

− β

∫

Ω

(
|uj |

k(x)−2
uj − |u0|

k(x)−2
u0

)
(uj − u0) dx,

which means that

lim
j→+∞

‖uj − u0‖λ = 0.

This completes the proof. �

Proof of Theorem 2.6. First of all, from Lemmas 3.4-3.5 and Theorem 3.3, we de-
duce that for all λ > 0 there exists a (PS)αλ sequence {uj}j for Iλ on Eλ.

Now, by Lemma 3.5 and the fact that 0 < cλ < c(Ω0) < C0 for all λ > 0, where
C0 is the constant introduced in (3.3), we obtain that there exists a subsequence of

{uj}j, still denoted by {uj}j , and u
(1)
λ ∈ Eλ such that uj → u

(1)
λ strongly in Eλ.

Moreover, Iλ(uj) = cλ ≥ δ and u
(1)
λ is a solution of (1.1).

Next, we show that system (1.1) has another solution. For this purpose, let us
define

c̃λ := inf
{
Iλ(u) | u ∈ Bρ

}
,

where Bρ = {u ∈ Eλ | ‖u‖λ < ρ} and ρ > 0 is given by Lemma 3.4. Moreover, let

w0 ∈ H
s(.)
0 (Ω) ⊂ Eλ be such that

∫

Ω

|w0|
k(x)

dx > 0.

We can readily check that

Iλ(τw0) ≤ τ2 max

(
1

q−
,
1

2

)
‖w0‖

2
λ −

βτk
+

k+

∫

Ω

|w0|
k(x)

dx.

Hence, since by (K1) we have k+ < 2, for all τ < τ0 with

τ0 :=

[
β

k+ ‖w0‖
2
λ

(∫

Ω

|w0|
k(x)

dx

)(
max

(
1

q−
,
1

2

))−1
] 1

2−k+

we immediately have Iλ(τw0) < 0 for all λ > 0.

On the other hand, by taking τ ≤ ρ ‖w0‖
−1
λ , we also have that τw0 ∈ Bρ. Hence,

if τ ≤ min(τ0, ρ ‖w0‖
−1
λ ), there exists z0 = τw0 ∈ Bρ such that Iλ(z0) < 0 for all

λ > 0. This clearly implies that c̃λ < 0 for all λ > 0.
It then follows from Lemma 3.4 and the Ekeland variational principle (see [20])

applied in Bρ, that there exists a sequence {uj}j such that

c̃λ ≤ Iλ(uj) ≤ c̃λ +
1

j
, (3.6)

and

Iλ(v) ≥ Iλ(uj)−
1

j
‖uj − v‖

λ
(3.7)

for all v ∈ Bρ.
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Now we show that ‖uj‖λ < ρ for n sufficiently large. Arguing by contradiction,
we assume that ‖uj‖λ = ρ for infinitely many j. Without loss of generality, we
may assume that ‖uj‖λ = ρ for any j ∈ N. From Lemma 3.4, we deduce that

Iλ(uj) ≥ δ > 0.

This, combined with (3.6), implies that c̃λ ≥ δ > 0, which contradicts c̃λ < 0.
Next we show that I ′λ(uj) → 0 in E∗

λ. Set

wj = uj + τv, for all v ∈ B1 := {v ∈ Eλ | ‖v‖λ = 1},

where τ > 0 small enough is such that 2τρ+τ2 ≤ ρ2−‖uj‖
2
λ
for fixed j large. Then

‖wj‖
2
λ
= ‖uj‖

2
λ
+ 2τρ〈uj , v〉λ + τ2 ≤ ‖uj‖

2
λ
+ 2τρ+ τ2 ≤ ρ2,

which implies that wj ∈ Bρ. Thus, from (3.7), we obtain

Iλ(wj) ≥ Iλ(uj)−
1

j
‖uj − wj‖λ ,

that is
Iλ(uj + τv) − Iλ(uj)

τ
≥ −

1

j
.

Letting τ → 0+, we get 〈I ′λ(uj), v〉 ≥ −1/j for any fixed j large. Similarly,
choosing τ < 0 and |τ | small enough and repeating the procedure above, one can
obtain that 〈I ′λ(uj), v〉 ≤ 1/j for any fixed j large. Thus,

lim
j→+∞

sup
v∈B1

|〈I ′λ(uj), v〉| = 0,

which yields that Iλ(uj) → 0 in E∗
λ as j → +∞. Therefore, {uj}j is a (PS)c̃λ

sequence for the functional Iλ. Using a similar discussion as in Lemma 3.6, there

exists u
(2)
λ ∈ Eλ such that uj → u

(2)
λ in Eλ. Thus, we get a nontrivial solution u(2)

of (1.1) satisfying

Iλ(u
(2)
λ ) ≤ ζ < 0 and

∥∥∥u(2)λ

∥∥∥
λ
< ρ.

We therefore deduce that

Iλ(u
(2)
λ ) = c̃λ ≤ ζ < 0 < δ < cλ = Iλ(u

(1)
λ ) for all λ > 0,

which ends the proof. �

4. Proof of Theorems 2.7 and 2.8

We give in this section the proof of the others two main results of this paper,
namely Theorems 2.7 and 2.8.

Proof of Theorem 2.7. For any sequence {λj}j such that 1 ≤ λj → +∞ as j →

+∞, let u
(i)
j be the critical points of Iλ obtained in Theorem 2.6 for i = 1, 2. Thus,

we have

Iλ(u
(2)
λ ) ≤ ζ < 0 and

∥∥∥u(2)λ

∥∥∥
λ
< ρ.

Hence, we deduce that

Iλj
(u

(2)
j ) ≤ ζ < 0 < δ < cλj

= Iλj
(u

(1)
j ) < C0, (4.1)

I ′λj
(u

(2)
j ) = I ′λj

(u
(1)
j ),
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where C0 is the constant introduced in (3.3), and

Iλj

(
u
(i)
j

)
≥ min

(
1

2
,
1

q+

)∥∥∥u(i)j

∥∥∥
2

λj

−

∫

Ω

(
α

p(x)

∣∣∣u(i)j

∣∣∣
p(x)

+
β

k(x)

∣∣∣u(i)j

∣∣∣
k(x)
)
dx

≥

(
min

(
1

2
,
1

q+

)
−

1

p−

)∥∥∥u(i)j

∥∥∥
2

λj

− β

(
1

k−
−

1

p−

)
max

(
Ck−

k

∥∥∥u(i)j

∥∥∥
k−

λj

, Ck+

k

∥∥∥u(i)j

∥∥∥
k+

λj

)
. (4.2)

We then get from (4.1) and (4.2) that
∥∥∥u(i)j

∥∥∥
λj

≤ C,

where C > 0 is independent of λj . Hence, we can suppose that u
(i)
j ⇀ u(i) weakly in

H
s(.)
0 (Ω) and u

(i)
j → u(i) strongly in Lp(.)(Ω) and Lk(.)(Ω), respectively. By Fatous’

lemma, we obtain

∫

Ω

V (x)
∣∣∣u(i)(x)

∣∣∣
2

dx ≤ lim inf
j→+∞

∫

Ω

V (x)
∣∣∣u(i)j (x)

∣∣∣
2

dx ≤ lim inf
j→+∞

∥∥∥u(i)j

∥∥∥
2

λj

λj
= 0.

Thus, u(i) = 0 a.e. in R
n\V −1(0) and u(i) ∈ H

s(.)
0 (Ω0) by (K1).

Similarly to the proof of Theorem 2.6, we can now prove that u(1) and u(2) are
two solutions of problem (2.19). Indeed, it follows from (4.1), u(i) = 0 a.e. in
R

n\V −1(0) and the constants ζ, δ are independent of λ that

max

(
1

q−
,
1

2

)∥∥∥u(1)
∥∥∥
2

λ
−

∫

Ω0

α

p(x)

∣∣∣u(1)
∣∣∣
p(x)

dx−

∫

Ω0

β

k(x)

∣∣∣u(1)
∣∣∣
k(x)

dx ≥ δ > 0

and

min

(
1

q+
,
1

2

)∥∥∥u(2)
∥∥∥
2

λ
−

∫

Ω0

α

p(x)

∣∣∣u(2)
∣∣∣
p(x)

dx−

∫

Ω0

β

k(x)

∣∣∣u(2)
∣∣∣
k(x)

dx ≤ ζ < 0

which means that ui 6= 0 and u1 6= u2. The proof is thus complete. �

We conclude this paper with the proof of Theorem 2.8, providing the existence
of infinitely many solutions of problem (2.19). To this end, we will employ the
following symmetric mountain pass theorem (see [16, Theorem 2.2]).

Theorem 4.1. Let X be a real infinite dimensional Banach space and J ∈ C1(X)
a functional satisfying the (PS)c condition as well as the following three properties:

1. J(0) = 0 and there exist two constants ρ, δ > 0 such that J(u) ≥ δ for all
u ∈ X with ‖u‖ = ρ.

2. J is even.
3. For all finite dimensional subspaces Y ⊂ X there exists R = R(Y ) > 0 such

that J(u) ≤ 0 for all u ∈ X\BR(Y ), where BR(Y ) = {u ∈ Y | ‖u‖ ≤ R}.

Then J possesses an unbounded sequence of critical values characterized by a mini-
max argument.

Proof of Theorem 2.8. Obviously, Lemma 3.4 still holds when considering func-

tions u ∈ H
s(.)
0 (Ω0). Let us now define the functional I : H

s(.)
0 (Ω0) → R as

I(u) ≤ max

(
1

q−
,
1

2

)
‖u‖

2
λ −

∫

Ω0

α

p(x)
|u|

p(x)
dx−

∫

Ω0

β

k(x)
|u|

k(x)
dx.
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Clearly, I ∈ C1(H
s(.)
0 (Ω0)) and the critical points of I are the weak solutions of

problem (2.19).

Now we first due that for any finite dimensional subspace W of H
s(.)
0 (Ω0), there

exists R0 = R0(W) such that I(u) < 0 for all u ∈ H
s(.)
0 (Ω0)\BR0(W), where

BR0(W) = {u ∈ H
s(.)
0 (Ω0) | ‖u‖λ < R0}.

Next, let W be a fixed finite dimensional subspace of H
s(.)
0 (Ω0), for any u ∈ W

such that ‖u‖
2
λ = 1. Thus, we get that for all σ ≥ 1,

I(σu) ≤ max

(
1

q−
,
1

2

)
σ2 ‖u‖

2
λ −

∫

Ω0

α

p(x)
|σu|

p(x)
dx−

∫

Ω0

β

k(x)
|σu|

k(x)
dx

≤ max

(
1

q−
,
1

2

)
σ2 ‖u‖

2
λ −

ασp−

p+
min

(
‖u‖

p−

Lp(.)(Ω0)
, ‖u‖

p+

Lp(.)(Ω0)

)
.

Note that there exists CW > 0 such that ‖u‖Lp(.)(Ω0)
≥ CW ‖u‖λ, because all

norms are equivalent on the finite dimensional Banach space W . Hence, since
p− > 2, we get

I(σu) ≤ max

(
1

q−
,
1

2

)
σ2 ‖u‖

2
λ −

ασp−

p+
min

(
Cp−

W , Cp+

W

)
→ −∞ as σ → +∞.

Thus, as R → +∞,

sup
u∈H

s(.)
0 (Ω0)

‖u‖λ=R

I(u) = sup
u∈H

s(.)
0 (Ω0)

‖u‖λ=1

I(Ru) → −∞.

Therefore, there exists R0 > 0 large enough such that I(u) < 0 for all u ∈

H
s(.)
0 (Ω0), with ‖u‖λ = R and R ≥ R0. Thus the claim holds true.
Similarly to the proof of Lemma 3.5, one can show that I satisfies the (PS)c

condition for any c ∈ R. Obviously, I(0) = 0 and I is an even functional. In
conclusion, by Theorem 4.1, there exists an unbounded sequence of solutions of
problem (2.19). �

5. Conclusions and open problems

In this paper, we have considered the following second-order non-local elliptic
equation with variable growth conditions driven by the variable-order fractional
Laplace operator:




(−∆)

s(.)
q(.)u+ λV u = α |u|p(.)−2 u+ β |u|k(.)−2 u in Ω

u = 0 in R
n\Ω

Under suitable assumptions for the functions q(.), s(.), V (.), p(.) and k(.), and
on the parameters α and β, we employed the mountain pass category theorem
and Ekeland’s variational principle to obtain the existence of a least two different
solutions for all λ > 0. Moreover, we proved that these solutions converge to two
solutions of a limit problem as λ→ +∞, and we obtained the existence of infinitely
many solutions for this limit problem. Our results generalize the ones previously
obtained in [33] in the case q(.) ≡ q constant.

We now conclude this paper by presenting a small collection of open problems
related to our work which may be of interest for future research.
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1. A crucial assumptions for our results was that

q∗(x) :=
nq(x, y)

n− s(x, y)q(x, y)
> r(x)

for all x ∈ Ω and some continuous function r such that r(x) > 1. It would
be interesting to analyze what results we can get in the case in which
q∗(x0) = r(x0) for some x0 ∈ Ω.

2. It would be worth to investigate what happens if in (1.1) we replace the
Dirichlet homogeneous exterior condition u = 0 in R

n\Ω with the non-
homogeneous one u = g in R

n\Ω, where g satisfies some regularity property
to be defined. Notice that this would correspond to a non-homogeneous
boundary condition on ∂Ω in the local case of the Laplace operator.

3. A final interesting open problem would be to study the existence and mul-
tiplicity of solutions for Schrödinger-Kirchhoff type models involving the

operator (−∆)
s(.)
q(.) with variable exponent nonlinearities, i.e.




M(−∆)

s(.)
q(.)u+ λV u = α |u|

p(.)−2
u+ β |u|

k(.)−2
u in Ω,

u = 0 in R
n\Ω.

with M = M([u]q(.),s(.),Ω). Such kind of problems have been recently ana-
lyzed in [46] for the constant-exponent fractional q-Laplacian. Nevertheless,
to the best of our knowledge, the case of the variable-exponent operator
remains open.
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[34] Molica Bisci, G., Rădulescu, V. and Servadei, R., Variational methods for nonlocal fractional

problems, Encyclopedia of Mathematics and its Applications, 162, Cambridge University
Press, Cambridge, 2016.

[35] Rahmoune, A., On the existence, uniqueness and stability of solutions for semi-linear gen-

eralized elasticity equation with general damping term, Acta Math. Sin. Engl. Ser., 33.11

(2017), 1549-1564.
[36] Rahmoune, A., Semilinear hyperbolic boundary value problem associated to the nonlinear

generalized viscoelastic equations, Acta Math. Vietnam., 43.2 (2018), 219-238.
[37] Rahmoune, A., Existence and asymptotic stability for the semilinear wave equation with

variable-exponent nonlinearities, J. Math. Phys., 60.12 (2019), 122701.
[38] Ruzicka, M., Electrorheological fluids: modeling and mathematical theory, Springer-Verlag,

Berlin, 2002.
[39] Servadei, R. and Valdinoci, E., Mountain pass solutions for non-local elliptic operators, J.

Math. Anal. Appl., 389.2 (2012), 887-898.



MULTIPLICITY OF SOLUTIONS 21

[40] Servadei, R. and Valdinoci, E., Variational methods for non-local operators of elliptic type,
Discrete Contin. Dyn. Syst., 33.5 (2013), 2105-2137.

[41] Warma, M., The fractional relative capacity and the fractional Laplacian with Neumann

and Robin boundary conditions on open sets, Potential Anal., 42.2 (2015), 499-547.
[42] Warma, M., On the approximate controllability from the boundary for fractional wave equa-

tions, Appl. Anal., 96.13 (2017), 2291-2315.
[43] Warma, M., Approximate controllability from the exterior of space-time fractional diffusive

equations, SIAM J. Control Optim., 57.2 (2019), 2037-2063.
[44] Warma, M. and Zamorano, S., Null controllability from the exterior of a one-dimensional

nonlocal heat equation, Control Cybern., 48.3 (2019), 417-436.
[45] Warma, M. and Zamorano, S., Analysis of the controllability from the exterior of strong

damping nonlocal wave equations, ESAIM Control Optim. Calc. Var., 26.42 (2020).
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