MULTIPLICITY OF SOLUTIONS FOR FRACTIONAL $q($.$) -LAPLACIAN EQUATIONS$

ABITA RAHMOUNE ${ }^{\dagger}$ AND UMBERTO BICCARI*

Abstract. In this paper, we deal with the following elliptic type problem

$$
\begin{cases}(-\Delta)_{q(.)}^{s(.)} u+\lambda V u=\alpha|u|^{p(.)-2} u+\beta|u|^{k(.)-2} u & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

where $q():. \bar{\Omega} \times \bar{\Omega} \rightarrow \mathbb{R}$ is a measurable function and $s():. \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow(0,1)$ is a continuous function, $n>q(x, y) s(x, y)$ for all $(x, y) \in \Omega \times \Omega,(-\Delta)_{q(.)}^{s(.)}$ is the variable-order fractional Laplace operator, and V is a positive continuous potential. Using the mountain pass category theorem and Ekeland's variational principle, we obtain the existence of a least two different solutions for all $\lambda>0$. Besides, we prove that these solutions converge to two of the infinitely many solutions of a limit problem as $\lambda \rightarrow+\infty$.

1. Introduction

In recent years, many authors have paid attention to the study of nonlocal fractional operators and related fractional differential equations. This is partially due to the large employment of these operators to model several phenomena such as ultra-relativistic limits of quantum mechanics, phase transition, population dynamics, minimal surfaces and game theory.

In this paper, we deal with the following elliptic equation for the fractional Laplace operator with variable order derivative involving variable exponent nonlinearities:

$$
\begin{cases}(-\Delta)_{q(.)}^{s(.)} u+\lambda V u=\alpha|u|^{p(.)-2} u+\beta|u|^{k(.)-2} u & \text { in } \Omega \tag{1.1}\\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega .\end{cases}
$$

In (1.1), for all $q():. \bar{\Omega} \times \bar{\Omega} \rightarrow(1,+\infty)$ measurable and $s():. \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow(0,1)$ continuous, with $n>q(x, y) s(x, y)$ for all $(x, y) \in \Omega \times \Omega$, we denote by $(-\Delta)_{q(.)}^{s(.)}$ the variable-order fractional q-Laplace operator which is defined for any $\varphi \in C_{0}^{\infty}(\Omega)$

[^0]as
\[

$$
\begin{align*}
& (-\Delta)_{q(.)}^{s(.)} \varphi(x)=2 \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n} \backslash B_{\varepsilon}(x)} \frac{|\varphi(x)-\varphi(y)|^{q(x, y)-2}(\varphi(x)-\varphi(y))}{|x-y|^{n+q(x, y) s(x, y)}} \mathrm{d} y \tag{1.2}\\
& \text { for all } x \in \mathbb{R}^{n}, \tag{1.3}
\end{align*}
$$
\]

where $B_{\varepsilon}(x)$ indicates the ball of radius $\varepsilon>0$ centered at $x \in \mathbb{R}^{n}$. Moreover, $V: \Omega \rightarrow[0,+\infty)$ is a continuous function and $\alpha, \beta, \lambda>0$ are positive parameters. Finally, the variable exponents $k($.$) and p($.$) of the nonlinear terms are given$ measurable functions on Ω.

The terminology variable-order fractional Laplace operator indicates that $s($. and $q($.$) are functions and not real numbers. This operator is then a generalization$ of the fractional Laplacian $(-\Delta)^{s}$, which corresponds to $q(.) \equiv 2$ and $s(.) \equiv s \in$ $(0,1)$ constant, and of the q-Laplacian $-\Delta_{q}$, which corresponds to $q(.) \equiv q \in$ $(1,+\infty)$ constant and $s(.) \equiv 1$.

System (1.1) can be cast as an extension to the fractional variable-order case of the second-order elliptic equation with variable growth conditions

$$
\begin{cases}-\Delta u+\lambda V u=\alpha|u|^{p(.)-2} u+\beta|u|^{k(.)-2} u & \text { in } \Omega \tag{1.4}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

which is obtained when considering $s(.) \equiv 1$ and $q(.) \equiv 2$. Equation (1.4) is a wellknown model for electrorheological fluids [38, whose properties have been studied for instance in [2, 29, 30].

The research on fractional Laplace operators and their applications is very attractive and extended. In the last decade, many authors from different fields of the pure and applied mathematics have considered PDE models involving the fractional Laplacian and addressed many relevant questions such as existence, uniqueness and regularity of solutions [5, [10, [13, 14, 15, ,17, 31, 32, 33, 39, 40, 41, 47, 48, 49, 50, spectral properties [22, 23, 28, or even more applied issues, for example control problems [8, 9, 11, 12, 42, 43, 44, 45] or the description of several phenomena arising in finance and quantum mechanics [4, 14, 27].

On the other hand, results for the variable-order fractional Laplacian are limited and rare, and the literature on this operator is much less extended. We refer for instance to [6, 7, 25, 33] for some relevant bibliography. In particular, in [33], the authors considered equation (1.1) with $q(.) \equiv 2$ in a bounded domain of \mathbb{R}^{n} and, under some suitable assumptions, they showed that the problem admits at least two different solutions for all $\lambda>0$. Moreover, they proved that these two solutions converge to two solutions of a limit model as $\lambda \rightarrow+\infty$, for which they also obtained the existence of infinitely many solutions.

The purpose of this paper is to extend the results of [33) to the operator (1.2). In particular, we will show also in this case the existence of two distinct solutions for all $\lambda>0$, and that these two solutions converge to two of the infinitely many solutions of a limit model as $\lambda \rightarrow+\infty$.

Our results will be obtained by similar techniques as [33], based on Ekeland's variational principle and a mountain pass theorem, which we suitably adapted to cover the case of a variable $q($.$) . Let us stress that some of these techniques had$ already been employed in our previous contributions [35, 36, 37, in the context of wave-type equations with variable-exponent nonlinearities.

This paper is composed by three sections in addition to the introduction. In Section 2 we recall the definitions of the variable-exponent Lebesgue and Sobolev spaces, and present some of their relevant properties. We also state there our main results. In Section 3, we prove our first result showing the existence of a least two distinct nontrivial weak solutions for (1.1). In Section 4, we focus on the case $\lambda \rightarrow+\infty$ and prove the existence of infinitely many solutions for this limit problem. Finally, Section 5 is devoted to some conclusions and open problems.

2. Functional setting and main Results

In this section, we describe the functional setting in which we shall work and state our main results.

Let us start by introducing the Lebesgue and Sobolev spaces with variable exponent. Here we refer mainly to [19, 21, 24, 26.

Throughout the rest of the paper we assume that Ω is a bounded open domain of $\mathbb{R}^{n}, n \geq 1$, with smooth boundary Γ. Moreover, in what follows, if not stated differently, we will always assume that $p: \bar{\Omega} \rightarrow(1,+\infty)$ is a measurable function and we will denote

$$
p^{-}:=\underset{x \in \Omega}{\operatorname{essinf}}[p(x)] \quad \text { and } \quad p^{+}:=\underset{x \in \Omega}{\operatorname{ess} \sup }[p(x)]
$$

Let

$$
\varrho_{p(.), \Omega}(v):=\int_{\Omega}|v(x)|^{p(x)} \mathrm{d} x
$$

We then define the variable-exponent space $L^{p(.)}(\Omega)$ as

$$
L^{p(.)}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { measurable } \mid \varrho_{p(.), \Omega}(v)<+\infty\right\}
$$

which is a Banach space equipped with the Luxemburg norm

$$
\|u\|_{L^{p(.)}(\Omega)}:=\inf \left\{\lambda>\left.0\left|\int_{\Omega}\right| \frac{u(x)}{\lambda}\right|^{p(x)} \mathrm{d} x \leq 1\right\}
$$

Variable-exponent Lebesgue spaces are similar to classical Lebesgue spaces in many aspects (see for instance [26]). In particular, it follows directly from the definition of the norm that

$$
\begin{equation*}
\min \left(\|u\|_{L^{p(.)}(\Omega)}^{p^{-}},\|u\|_{L^{p(.)}(\Omega)}^{p^{+}}\right) \leq \varrho_{p(.), \Omega}(u) \leq \max \left(\|u\|_{L^{p(.)}(\Omega)}^{p^{-}},\|u\|_{L^{p(.)}(\Omega)}^{p^{+}}\right) \tag{2.1}
\end{equation*}
$$

Moreover, we have the following generalized Hölder's inequalities.
Theorem 2.1 ([26, Theorem 2.1]). Let $p: \bar{\Omega} \rightarrow(1,+\infty)$ measurable and define the conjugate exponent

$$
p^{\prime}(x)=\frac{p(x)}{p(x)-1}, \quad\left(p^{\prime}\right)^{-}=\frac{p^{-}}{p^{-}-1}
$$

so that we have

$$
\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1
$$

Then, for all functions $u \in L^{p(.)}(\Omega)$ and $v \in L^{p^{\prime}(.)}(\Omega)$, we have

$$
\int_{\Omega}|u(x) v(x)| \mathrm{d} x \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)\|u\|_{L^{p(.)}(\Omega)}\|v\|_{L^{p^{\prime}(.)}(\Omega)}
$$

Theorem 2.2 ([18, Lemma 3.2.20]). Let $p, q, r: \bar{\Omega} \rightarrow(1,+\infty)$ be measurable functions such that

$$
\frac{1}{p(.)}=\frac{1}{r(.)}+\frac{1}{q(.)}
$$

Then, for all functions $u \in L^{r(.)}(\Omega)$ and $v \in L^{q(.)}(\Omega)$, we have $u v \in L^{p(.)}(\Omega)$ with

$$
\|u v\|_{L^{p(.)}(\Omega)} \leq \mathcal{C}\|u\|_{L^{r(.)}(\Omega)}\|v\|_{L^{q(.)}(\Omega)}
$$

Let us now introduce the variable order fractional Sobolev spaces. To this end, we shall make the following assumptions:
Hypothesis $\mathbf{P}: p: \bar{\Omega} \rightarrow(1,+\infty)$ is a measurable function satisfying:

$$
\begin{align*}
& 2<p^{-} \leq p(x) \leq p^{+}<+\infty \tag{P1}\\
& |p(x)-p(y)| \leq \frac{M}{|\log | x-y| |} \quad \text { for all } x, y \text { in } \Omega \text { with }|x-y|<\frac{1}{2}, M>0 \tag{P2}
\end{align*}
$$

Hypothesis Q: $q: \bar{\Omega} \times \bar{\Omega} \rightarrow \mathbb{R}$ is a measurable function satisfying:

$$
\begin{equation*}
q \text { is symmetric, i.e., } q(x, y)=q(y, x) \text { for all }(x, y) \in \bar{\Omega} \times \bar{\Omega} \tag{Q1}
\end{equation*}
$$

$$
\begin{align*}
& 1<q^{-}:=\min _{\bar{\Omega} \times \bar{\Omega}} q(x, y) \leq q(x, y) \leq \max _{\bar{\Omega} \times \bar{\Omega}} q(x, y)=: q^{+}<p^{-}<+\infty \tag{Q2}\\
& q((x, y)-(z, z))=q(x, y), \text { for all }(x, y),(z, z) \in \Omega \times \Omega \tag{Q3}
\end{align*}
$$

Hypothesis $\mathbf{S}: s: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow(0,1)$ is a measurable function satisfying:

$$
\begin{align*}
& s \text { is symmetric, i.e., } s(x, y)=s(y, x) \text { for all }(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \tag{S1}\\
& 0<s^{-}:=\min _{\mathbb{R}^{2 n}} s(x, y) \leq s(x, y) \leq \max _{\mathbb{R}^{2 n}} s(x, y)=: s^{+}<1 \tag{S2}
\end{align*}
$$

We then define the generalized fractional Sobolev space with variable exponents via the Gagliardo approach as follows

$$
\mathcal{H}^{s(.)}(\Omega)=H^{p(.), q(.), s(.)}(\Omega)=\left\{u \in L^{p(.)}(\Omega) \mid[u]_{q(.), s(.), \Omega}<+\infty\right\}
$$

where

$$
[u]_{q(.), s(.), \Omega}=\inf \left\{\lambda>\left.0\left|\int_{\Omega} \int_{\Omega}\right| \frac{u(x)-u(y)}{\lambda}\right|^{q(x, y)} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n+q(x, y) s(x, y)}}<1\right\}
$$

is the corresponding variable exponent Gagliardo seminorm. Then, $\mathcal{H}^{s(.)}(\Omega)$ equipped with the norm

$$
\|u\|_{\mathcal{H}^{s(.)}(\Omega)}=\|u\|_{L^{p(.)}(\Omega)}+[u]_{q(.), s(.), \Omega}
$$

is a Banach space.
Define now $\mathcal{H}_{0}^{s(.)}(\Omega)=H_{0}^{p(.), q(.), s(.)}(\Omega)$ as the linear space of Lebesgue measurable functions $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $u \in H^{p(.), q(.), s(.)}(\Omega)$ with $u=0$ in $\mathbb{R}^{n} \backslash \Omega$. Then, $\mathcal{H}_{0}^{s(.)}(\Omega)$ is a Banach space with the norm endowed by $\mathcal{H}^{s(.)}(\Omega)$. Moreover, we have the following result.

Proposition 2.3. Let $p(x), q(x, y)$ and $s(x, y)$ be continuous variable exponents and define

$$
s^{-}:=\min _{\bar{\Omega} \times \bar{\Omega}} s(x, y)
$$

Assume that

$$
\begin{array}{ll}
n>s^{-} q(x, y) & \text { for all }(x, y) \in \bar{\Omega} \times \bar{\Omega} \\
p(x)>q(x, x) & \text { for all } x \in \bar{\Omega} \tag{2.5b}
\end{array}
$$

Let ((P1), (P2), (Q1), (Q2) and (Q3) be satisfied. Assume that $r: \bar{\Omega} \rightarrow(1,+\infty)$ is a continuous function such that

$$
\begin{equation*}
q^{*}(x):=\frac{n q(x, x)}{n-s^{-} q(x, x)}>r(x), \quad \text { for all } x \in \bar{\Omega} \tag{2.6}
\end{equation*}
$$

Then

1. There exists a constant $\mathcal{C}=\mathcal{C}(n, p, q, r, s, \Omega)$ such that for every $v \in \mathcal{H}_{0}^{s(.)}(\Omega)$ we have

$$
\|v\|_{L^{r(.)}(\Omega)} \leq \mathcal{C}\|v\|_{\mathcal{H}_{0}^{s(.)}(\Omega)}
$$

i.e. $\mathcal{H}_{0}^{s(.)}(\Omega)$ can be continuously embedded into $L^{r(.)}(\Omega)$ for any $r \in\left(1, q^{*}\right)$.
2. The embedding $\mathcal{H}_{0}^{s(.)}(\Omega) \hookrightarrow L^{r(.)}(\Omega)$ is compact.
3. When one considers functions $u \in \mathcal{H}_{0}^{s(.)}(\Omega)$ that are compactly supported inside Ω, the embeddings $\mathcal{H}_{0}^{s^{+}}(\Omega) \hookrightarrow \mathcal{H}_{0}^{s(.)}(\Omega) \hookrightarrow \mathcal{H}_{0}^{s^{-}}(\Omega)$ are continuous.

Proof. The proof will be organized in three steps, one for each different result we stated. In particular, in Step 1, we will show that $\mathcal{H}_{0}^{s(.)}(\Omega)$ can be continuously embedded into $L^{r(.)}(\Omega)$ for any $r \in\left(1, q^{*}\right)$. In Step 2 , we will show that this embedding is compact. Finally, in Step 3 , we will show that when one considers functions $u \in \mathcal{H}_{0}^{s(.)}(\Omega)$ that are compactly supported inside Ω, the embeddings $\mathcal{H}_{0}^{s^{+}}(\Omega) \hookrightarrow \mathcal{H}_{0}^{s(.)}(\Omega) \hookrightarrow \mathcal{H}_{0}^{s^{-}}(\Omega)$ are continuous.

Step 1. First of all, by definition of s^{-}and using (2.5a) and (2.6) we have that there exists a constant $k_{1}>0$ such that

$$
\frac{n q(x, x)}{n-s(.) q(x, x)}-r(x) \geq k_{1}>0 \quad \text { for all } x \in \bar{\Omega}
$$

Moreover, by (2.5b) we have the existence of a second positive constant k_{2} such that

$$
p(x)-q(x, x) \geq k_{2}>0
$$

Thus, there exists a constant $\varepsilon>0$ and K numbers of disjoint hypercubes B_{i} such that $\Omega=\cup_{i=1}^{K} B_{i}$ and $\operatorname{diam}\left(B_{i}\right)<\varepsilon$, that verify

$$
\begin{align*}
& \frac{n q(z, y)}{n-s(z, y) q(z, y)}-r(x) \geq \frac{k_{1}}{2} \tag{2.7}\\
& p(x) \geq q(z, y)+\frac{k_{2}}{2}
\end{align*}
$$

for every $x \in B_{i}$ and $(z, y) \in B_{i} \times B_{i}$. Let

$$
s_{i}=\inf _{B_{i} \times B_{i}} s(z, y), \quad q_{i}=\inf _{B_{i} \times B_{i}}(q(z, y)-\delta) \quad \text { and } \quad q_{i}^{*}=\frac{n q_{i}}{n-s_{i} q_{i}}
$$

From (2.7) and the continuity of the associated exponents, we can pick $\delta=\delta\left(k_{1}\right)$, with $q^{-}-1>\delta>0$, such that

$$
\begin{array}{ll}
\frac{n q_{i}}{n-s_{i} q_{i}} \geq r(x)+\frac{k_{1}}{2} & \text { for all } x \in B_{i} \text { and } n>s_{i} q_{i} \\
p(x) \geq q_{i}+\frac{k_{2}}{2} & \text { for all } x \in B_{i} .
\end{array}
$$

Therefore we can employ the Sobolev embedding theorem for constant exponents (see [1, Theorem 5.4]) to get the existence of a suitable constant $\mathcal{C}=\mathcal{C}\left(n, q_{i}, s_{i}, \varepsilon, B_{i}\right)$ such that

$$
\begin{equation*}
\|u\|_{L^{q_{i}^{*}}\left(B_{i}\right)} \leq \mathcal{C}\left(\|u\|_{L^{q_{i}}\left(B_{i}\right)}+[u]_{q_{i}, s_{i}, B_{i}}\right) . \tag{2.8}
\end{equation*}
$$

Let us now suppose that there exist three positive constants c_{1}, c_{2} and c_{3} such that

$$
\begin{align*}
& \sum_{i=0}^{n}\|u\|_{L^{q_{i}^{*}}\left(B_{i}\right)} \geq c_{1}\|u\|_{L^{r(.)}(\Omega)} \tag{2.9a}\\
& \|u\|_{L^{p(.)}(\Omega)} \geq c_{2} \sum_{i=0}^{n}\|u\|_{L^{q_{i}}\left(B_{i}\right)} \tag{2.9b}\\
& {[u]_{q(.), s(.), \Omega} \geq c_{3} \sum_{i=0}^{n}[u]_{q_{i}, s_{i}, B_{i}}} \tag{2.9c}
\end{align*}
$$

Then, from (2.8) and (2.9a)-(2.9c) we can conclude that

$$
\begin{aligned}
\|u\|_{L^{r(.)}(\Omega)} & \leq c_{1} \sum_{i=0}^{n}\|u\|_{L^{q_{i}^{*}}\left(B_{i}\right)} \leq \mathcal{C} \sum_{i=0}^{n}\left(\|u\|_{L^{q_{i}}\left(B_{i}\right)}+[u]_{q_{i}, s_{i}, B_{i}}\right) \\
& \leq \mathcal{C}\left(\|u\|_{L^{p(.)}(\Omega)}+[u]_{q(.), s(.), \Omega}\right)=\mathcal{C}\|u\|_{\mathcal{H}_{0}^{s(.)}(\Omega)},
\end{aligned}
$$

as we wanted to show.
Hence, we only have to prove that (2.9a)-(2.9c) hold. Let us start with (2.9a). We have

$$
|u(x)|=\sum_{i=0}^{n}|u(x)| \chi_{B_{i}}
$$

which clearly implies that

$$
\begin{equation*}
\|u\|_{L^{r(\cdot)}(\Omega)} \leq \sum_{i=0}^{n}\|u\|_{L^{r(\cdot)}\left(B_{i}\right)} \tag{2.10}
\end{equation*}
$$

Moreover, notice that for each $i, q_{i}^{*}>r(x)$ if $x \in B_{i}$. Then we can choose $a_{i}(x)$ such that

$$
\frac{1}{r(x)}=\frac{1}{q_{i}^{*}}+\frac{1}{a_{i}(x)},
$$

and by Theorem 2.2 we have

$$
\|u\|_{L^{r(.)}\left(B_{i}\right)} \leq \mathcal{C}\|1\|_{L^{a_{i}(\cdot)}\left(B_{i}\right)}\|u\|_{L^{q_{i}^{*}}\left(B_{i}\right)}=\mathcal{C}\|u\|_{L^{q_{i}^{*}}\left(B_{i}\right)} .
$$

Thus, (2.9a) immediately follows from (2.10). Moreover, in a similar way and using that $p(x)>q_{i}$ for $x \in B_{i}$, we easily obtain also (2.9b). Finally, to prove (2.9c) let us fix

$$
U(x, y)=\frac{|u(x)-u(y)|}{|x-y|^{s_{i}}}
$$

and remark that

$$
\begin{align*}
{[u]_{q_{i}, s_{i}, B_{i}} } & =\iint_{B_{i} \times B_{i}} \frac{|u(x)-u(y)|^{q_{i}}}{|x-y|^{n+q_{i} s_{i}}} \mathrm{~d} x \mathrm{~d} y=\iint_{B_{i} \times B_{i}}\left(\frac{|u(x)-u(y)|}{|x-y|^{s_{i}}}\right)^{q_{i}} \frac{\mathrm{~d} x \mathrm{~d} y}{|x-y|^{n}} \\
& =\|U\|_{L^{q_{i}}\left(\mu, B_{i} \times B_{i}\right)}^{q_{i}} \leq \mathcal{C}\|1\|_{L^{b_{i}(\ldots,)}\left(\mu, B_{i} \times B_{i}\right)}^{q_{i}}\|U\|_{L^{q(.,)}\left(\mu, B_{i} \times B_{i}\right)}^{q_{i}} \\
& =\mathcal{C}\|U\|_{L^{q(, .,)}\left(\mu, B_{i} \times B_{i}\right)}^{q_{i}}, \tag{2.11}
\end{align*}
$$

where Theorem 2.2 is used with $b_{i}(x, y)$ such that

$$
1=\frac{q_{i}}{q(x, y)}+\frac{q_{i}}{b_{i}(x, y)}
$$

but considering the measure in $B_{i} \times B_{i}$ given by

$$
\mathrm{d} \mu(x, y)=\frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{\frac{n}{q_{i}}}}
$$

Now we aim to show that

$$
\begin{equation*}
\|U\|_{L^{q(., .)}\left(\mu, B_{i} \times B_{i}\right)} \leq \mathcal{C}[u]_{q(.), s(.), B_{i}} \tag{2.12}
\end{equation*}
$$

for every i. If this is valid, then we directly obtain (2.9c) from (2.11). Let $\lambda>0$ be such that

$$
\iint_{B_{i} \times B_{i}}\left|\frac{u(x)-u(y)}{\lambda}\right|^{q(x, y)} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n+q(x, y) s(x, y)}}<1 .
$$

Then

$$
\begin{aligned}
\iint_{B_{i} \times B_{i}} & \left(\frac{|u(x)-u(y)|}{\lambda|x-y|^{s(x, y)}}\right)^{q(x, y)} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n}} \\
& =\iint_{B_{i} \times B_{i}}\left|\frac{u(x)-u(y)}{\lambda}\right|^{q(x, y)} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n+q(x, y) s(x, y)}}<1
\end{aligned}
$$

Therefore

$$
\|U\|_{L^{q(, .,)}\left(\mu, B_{i} \times B_{i}\right)} \leq \lambda,
$$

and we finally obtain the inequality (2.12).
Step 2. Let us consider a sequence $\left\{u_{j}\right\}_{j} \subset \mathcal{H}_{0}^{s(.)}(\Omega)$ such that $u_{j} \rightarrow u$ in $\mathcal{H}_{0}^{s(.)}(\Omega)$ as $j \rightarrow+\infty$, and denote $v_{j}:=u_{j}-u$. Hence $v_{j} \rightarrow 0$ in $\mathcal{H}_{0}^{s(.)}(\Omega)$, which implies that $\left[v_{j}\right]_{q(.), s(.), \Omega}$ is uniformly bounded.

Extend the functions v_{j} by zero outside of Ω and, with some abuse of notation, denote this extension v_{j}. We have to show that $v_{j} \rightarrow 0$ in $L^{r(.)}(\Omega)$. To this end, let ψ_{ε} be a standard mollifier for all $\varepsilon>0$. We then have

$$
v_{j}=\left(v_{j}-\psi_{\varepsilon} * v_{j}\right)+\psi_{\varepsilon} * v_{j}
$$

and from (2.13) we get

$$
\begin{align*}
\left\|v_{j}\right\|_{L^{r(\cdot)}(\Omega)} & \leq\left\|v_{j}-v_{j} * \psi_{\varepsilon}\right\|_{L^{r(\cdot)}(\Omega)}+\left\|v_{j} * \psi_{\varepsilon}\right\|_{L^{r(\cdot)}(\Omega)} \tag{2.13}\\
& \leq c \varepsilon\left[v_{j}\right]_{q(.), s(\cdot), \Omega}+\left\|v_{j} * \psi_{\varepsilon}\right\|_{L^{r(\cdot)}(\Omega)}
\end{align*}
$$

Since $v_{j} \rightarrow 0$ and $\varepsilon>0$ is fixed, we obtain that as $j \rightarrow+\infty$

$$
v_{j} * \psi_{\varepsilon}(x)=\int_{\mathbb{R}^{n}} \psi_{\varepsilon}(x-y) v_{j}(y) d y \rightarrow 0
$$

Let $\Omega_{\varepsilon}:=\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, \Omega) \leq \varepsilon\right\}$. Thus $v_{j} * \psi_{\varepsilon}(x)=0$ for all $x \in \mathbb{R}^{n} \backslash \Omega_{\varepsilon}$. By the Hölder's inequality given in Theorem [2.1] we then get that for all $x \in \Omega_{\varepsilon}$

$$
\left|v_{j} * \psi_{\varepsilon}(x)\right|=\left|\int_{\mathbb{R}^{n}} \psi_{\varepsilon}(x-y) v_{j}(y) d y\right| \leq c\left\|v_{j}\right\|_{L^{r(.)}(\Omega)}\left\|\psi_{\varepsilon}(x-.)\right\|_{L^{r^{\prime}(.)}(\Omega)}
$$

As $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we have $|\psi| \leq c$ and thus $\left|\psi_{\varepsilon}\right| \leq c \varepsilon^{-n}$. This gives

$$
\left\|\psi_{\varepsilon}(x-.)\right\|_{L^{r^{\prime}(.)}(\Omega)} \leq c \varepsilon^{-n}\left\|\chi_{\Omega_{\varepsilon}}\right\|_{L^{r^{\prime}(.)}(\Omega)} \leq c(\varepsilon, r)
$$

independently of the choice of $x \in \mathbb{R}^{n}$ and j. Using the uniform boundedness of v_{j} in $L^{r(.)}$, we then have

$$
\left|v_{j} * \psi_{\varepsilon}(x)\right| \leq c(\varepsilon, r) \chi_{\Omega_{\varepsilon}}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Since $\chi_{\Omega_{\varepsilon}} \in L^{r(.)}\left(\mathbb{R}^{n}\right)$ and $v_{j} * \psi_{\varepsilon}(x) \rightarrow 0$ a. e., we obtain by the dominated convergence theorem that $v_{j} * \psi_{\varepsilon} \rightarrow 0$ in $L^{r(.)}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow+\infty$. Hence, from (2.13) it follows that

$$
\limsup _{j \rightarrow+\infty}\left\|v_{j}\right\|_{L^{r(.)}(\Omega)} \leq c \varepsilon \limsup _{j \rightarrow+\infty}\left[v_{j}\right]_{q(.), s(.), \Omega}
$$

Since $\varepsilon>0$ is arbitrary and $\left[v_{j}\right]_{q(.), s(.), \Omega}$ is uniformly bounded, this implies that $v_{j} \rightarrow 0$ in $L^{r(.)}\left(\mathbb{R}^{n}\right)$ and thus $u_{j} \rightarrow u$ in $L^{r(.)}(\Omega)$, which yields the compactness of the embedding.

Step 3. When we consider functions that are compactly supported inside Ω, we can get rid of the term $\|u\|_{L^{p(.)}(\Omega)}$ and it holds that

$$
\|u\|_{L^{p(.)}(\Omega)} \leq \mathcal{C}[u]_{q(.), s(.), \Omega}
$$

Let $u \in \mathcal{H}_{0}^{s(.)}(\Omega)$. From (2.9C), and because $s^{-} \leq s_{i}$ in B_{i} for all i, since in the case of constant exponent s_{i} the Sobolev embedding for subcritical exponents is continuous, we have

$$
\sum_{i=0}^{n}[u]_{q_{i}, s^{-}, B_{i}} \leq c \sum_{i=0}^{n}[u]_{q_{i}, s_{i}, B_{i}} \leq c[u]_{q(.), s(.), \Omega}<+\infty
$$

Using this for every i, it holds that $[u]_{q(.), s^{-}, \Omega} \leq c[u]_{q(.), s(.), \Omega}$, which gives $u \in$ $\mathcal{H}_{0}^{s^{-}}(\Omega)$, and then $\mathcal{H}_{0}^{s(.)}(\Omega) \hookrightarrow \mathcal{H}_{0}^{s^{-}}(\Omega)$.

It only remains to show that $\mathcal{H}_{0}^{s^{+}}(\Omega) \hookrightarrow \mathcal{H}_{0}^{s(.)}(\Omega)$. To this end, let $u \in \mathcal{H}_{0}^{s^{+}}(\Omega)$, and let $\lambda>0$ be such that

$$
\iint_{B_{i} \times B_{i}}\left|\frac{u(x)-u(y)}{\lambda}\right|^{q(x, y)} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n+q(x, y) s^{+}}}<1
$$

Then, using that $\operatorname{diam}\left(B_{i}\right)<\varepsilon<1$, we get $|x-y|<1$ for every $(x, y) \in B_{i} \times B_{i}$ and hence

$$
\begin{aligned}
\iint_{B_{i} \times B_{i}} & \left|\frac{u(x)-u(y)}{\lambda}\right|^{q(x, y)} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n+q(x, y) s(x, y)}} \\
& =\iint_{B_{i} \times B_{i}}\left|\frac{u(x)-u(y)}{\lambda}\right|^{q(x, y)} \frac{|x-y|^{n+q(x, y) s^{+}}}{|x-y|^{n+q(x, y) s(x, y)}} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n+q(x, y) s^{+}}} \\
& \leq \iint_{B_{i} \times B_{i}}\left|\frac{u(x)-u(y)}{\lambda}\right|^{q(x, y)} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{n+q(x, y) s^{+}}}<1
\end{aligned}
$$

Therefore $u \in \mathcal{H}_{0}^{s(.)}(\Omega)$, that is, $\mathcal{H}_{0}^{s^{+}}(\Omega) \hookrightarrow \mathcal{H}_{0}^{s(.)}(\Omega)$.

Remark 2.4. Our result is sharp in the following sense: if

$$
q^{*}\left(x_{0}\right)=\frac{n q\left(x_{0}, x_{0}\right)}{n-s\left(x_{0}, x_{0}\right) q\left(x_{0}, x_{0}\right)}<r\left(x_{0}\right)
$$

for some $x_{0} \in \Omega$, then the embedding of $\mathcal{H}_{0}^{s(.)}(\Omega)$ in $L^{r(.)}(\Omega)$ cannot hold for every $p($.$) . As a matter of fact, from the continuity conditions we imposed on q, r$ and s, there exists a small ball $B_{\delta}\left(x_{0}\right)$ such that

$$
\max _{\bar{B}_{\delta}\left(x_{0}\right) \times \bar{B}_{\delta\left(x_{0}\right)}} \frac{n q(x, y)}{n-s(x, y) q(x, y)}<\min _{\bar{B}_{\delta}\left(x_{0}\right)} r(x)
$$

Now, fix $p(x)<\min _{\bar{B}_{\delta}\left(x_{0}\right)} r(x)$ and notice that, for $p(x) \geq r(x)$, we have that $\mathcal{H}_{0}^{s(.)}(\Omega)$ is embedded in $L^{r(.)}(\Omega)$. Hence, with the same arguments that hold for the constant exponent case, one can create a sequence $\left\{u_{j}\right\}_{j}$ supported inside $B_{\delta}\left(x_{0}\right)$ such that $\left\|u_{j}\right\|_{\mathcal{H}_{0}^{s(.)}(\Omega)} \leq \mathcal{C}$ and $\left\|u_{j}\right\|_{L^{r(.)}\left(B_{\delta}\left(x_{0}\right)\right)} \rightarrow+\infty$. In fact, it is enough to consider a smooth, compactly supported function g, and pick $u_{j}=j^{b} g(j x)$ with b satisfying $b q(x, y)-n+s(x, y) q(x, y) \leq 0$ and $b r(x)-n>0$ for $x, y \in \bar{B}_{\delta}\left(x_{0}\right)$.

In what follows, we will always denote by \mathcal{C}_{r} the constant of the Sobolev embedding $\mathcal{H}_{0}^{s(.)}(\Omega) \hookrightarrow L^{r(.)}(\Omega)$. Then, by applying (2.1) and Proposition 2.3, for all

$$
p(x) \in\left(1, \frac{n q(x, x)}{n-s(x, x) q(x, x)}\right)
$$

we obtain

$$
\begin{align*}
\int_{\Omega}|u(x)|^{p(x)} \mathrm{d} x & \leq \max \left(\|u\|_{L^{p(.)}(\Omega)}^{p^{-}},\|u\|_{L^{p(.)}(\Omega)}^{p^{+}}\right) \tag{2.14}\\
& \leq \max \left(\mathcal{C}_{p}^{p^{-}}[u]_{q(.), s(.), \Omega}^{p^{-}}, \mathcal{C}_{p}^{p^{+}}[u]_{q(.), s(.), \Omega}^{p^{+}}\right)
\end{align*}
$$

We are now ready to provide our notion of solution to (1.1). To this end, let us introduce the Banach space

$$
E_{\lambda}=\left\{\left.u \in L^{p(x)}(\Omega)\left|[u]_{q(.), s(.), \Omega}+\lambda \int_{\Omega} V(x)\right| u(x)\right|^{2} \mathrm{~d} x<+\infty\right\}
$$

equipped with the norm $[u]_{q(.), s(.), \Omega}+\|u\|_{p(.)}$. Let $E_{\lambda, 0}$ denote the closure of $C_{0}^{\infty}(\Omega)$ in E_{λ}. Then $E_{\lambda, 0}$ is a Banach space with the norm

$$
\|u\|_{\lambda}:=[u]_{q(.), s(.), \Omega}
$$

This space $E_{\lambda, 0}$ is the appropriate functional setting in which we can define our notion of solution to (1.1). In particular, we have

Definition 2.5. A function $u \in E_{\lambda, 0}$ is called a (weak) solution of problem (1.1) if

$$
\begin{aligned}
& \iint_{\mathbb{R}^{2 n}} \frac{|u(x)-u(y)|^{q(x, y)-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+q(x, y) s(x, y)}} \mathrm{d} x \mathrm{~d} y \\
& \quad+\lambda \int_{\Omega} V(x) u(x) v(x) \mathrm{d} x=\int_{\Omega}\left(\alpha|u|^{p(x)-2} u v(x)+\beta|u|^{k(x)-2} u(x) v(x)\right) \mathrm{d} x
\end{aligned}
$$

for any $v \in E_{\lambda, 0}$.

Notice that, given the variational nature of Definition 2.5, the solution of (1.1) can be characterized in terms of the critical points of a suitable functional. In particular, let us define

$$
\begin{aligned}
I_{\lambda}(u):= & \iint_{\mathbb{R}^{2 n}} \frac{1}{q(x, y)} \frac{|u(x)-u(y)|^{q(x, y)}}{|x-y|^{n+q(x, y) s(x, y)}} \mathrm{d} x \mathrm{~d} y+\frac{\lambda}{2} \int_{\Omega} V(x)|u(x)|^{2} \mathrm{~d} x \\
& -\int_{\Omega}\left(\frac{\alpha}{p(x)}|u|^{p(x)}+\frac{\beta}{k(x)}|u|^{k(x)}\right) \mathrm{d} x, \quad \text { for all } u \in E_{\lambda, 0}
\end{aligned}
$$

and $L_{1}: E_{\lambda, 0} \rightarrow E_{\lambda, 0}^{*}$ such that

$$
\begin{aligned}
\left\langle L_{1}(u), v\right\rangle_{\lambda}= & \iint_{\mathbb{R}^{2 n}} \frac{|u(x)-u(y)|^{q(x, y)-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+q(x, y) s(x, y)}} \mathrm{d} x \mathrm{~d} y \\
& +\lambda \int_{\Omega} V(x) u(x) v(x) \mathrm{d} x, \quad \text { for all } u, v \in E_{\lambda, 0}
\end{aligned}
$$

where we denoted with $\langle\cdot, \cdot\rangle_{\lambda}$ the duality pair between $E_{\lambda, 0}$ and $E_{\lambda, 0}^{*}$. Then, one can verify that I_{λ} is well-defined, of class C^{1} in $E_{\lambda, 0}$ and, for all $u, v \in E_{\lambda, 0}$, we have

$$
\left\langle I_{\lambda}^{\prime}(u), v\right\rangle_{\lambda}=\left\langle L_{1}(u), v\right\rangle_{\lambda}-\int_{\Omega}\left(\alpha|u|^{p(x)-2} u+\beta|u|^{k(x)-2} u\right) v \mathrm{~d} x
$$

Hence if $u \in E_{\lambda, 0}$ is such that $\left\langle I_{\lambda}^{\prime}(u), v\right\rangle_{\lambda}=0$ for all $v \in E_{\lambda, 0}$, then u is a solution of (1.1).

We can now introduce the main results of this paper. To this end, we shall first make the following assumptions on the potential V and the function k.
Hypothesis V:V: $\Omega \rightarrow[0,+\infty)$ is a continuous function satisfying:
$J=\operatorname{int}\left(V^{-1}(0)\right) \subset \Omega$ is a nonempty bounded domain and $\widetilde{J}=V^{-1}(0)$
there exists a nonempty open domain $\Omega_{0} \subset J$
such that $V(x) \equiv 0$ for all $x \in \bar{\Omega}_{0}$
Hypothesis $K: k: \Omega \rightarrow \mathbb{R}$ is a continuous function satisfying:

$$
\begin{equation*}
1<k^{-} \leq k(x) \leq k^{+}<2 \quad \text { for all } x \in \bar{\Omega} \tag{K1}
\end{equation*}
$$

Moreover, we shall consider the following variant of (P1)

$$
\begin{equation*}
2<p^{-} \leq p(x) \leq p^{+}<\frac{n q(x, x)}{n-s(x, x) q(x, x)} \quad \text { for all } x \in \bar{\Omega} \tag{P1a}
\end{equation*}
$$

Finally, we assume that the parameters α and β verify

$$
\begin{equation*}
\alpha \leq \frac{D\left(2-k^{+}\right)}{A\left(p^{+}-k^{+}\right)}, \quad \beta \leq \frac{D\left(p^{+}-2\right)}{B\left(p^{+}-k^{+}\right)} \tag{2.17}
\end{equation*}
$$

with

$$
\begin{equation*}
A=\frac{\max \left(\mathcal{C}_{p}^{p^{-}}, \mathcal{C}_{p}^{p^{+}}\right)}{p^{-}}, \quad B=\frac{\max \left(\mathcal{C}_{k}^{k^{-}}, \mathcal{C}_{k}^{k^{+}}\right)}{k^{-}}, \quad D=\min \left(\frac{1}{q^{+}}, \frac{1}{2}\right) \tag{2.18}
\end{equation*}
$$

where, we recall, \mathcal{C}_{p} and \mathcal{C}_{k} are the constants of the Sobolev embeddings

$$
\mathcal{H}_{0}^{s(.)}(\Omega) \hookrightarrow L^{p(.)}(\Omega) \quad \text { and } \quad \mathcal{H}_{0}^{s(.)}(\Omega) \hookrightarrow L^{k(.)}(\Omega)
$$

respectively.

The first main contribution of the present paper is the non-unicity of solutions for (1.1). In particular, we have:

Theorem 2.6. Assume that (P1a), (X2), (S1), (S2), (V1), (V2), (K1) and (2.17) hold. Let $n>q^{+} s^{+}$. Then (1.1) admits at least two distinct solutions for all $\lambda>0$.

Furthermore, in the following results, we investigate the concentration of solutions obtained by Theorem 2.6,

Theorem 2.7. Let u_{λ}^{1} and u_{λ}^{2} be two solutions obtained in Theorem 2.6 and Ω_{0} as in (V2). Then $u_{\lambda}^{1} \rightarrow u^{1}$ and $u_{\lambda}^{2} \rightarrow u^{2}$ in $\mathcal{H}_{0}^{s(.)}(\Omega)$ as $\lambda \rightarrow+\infty$, where $u^{1} \neq u^{2}$ are two nontrivial solutions of the following problem

$$
\begin{cases}(-\Delta)_{q(.)}^{s(.)} u=\alpha|u|^{p(.)-1} u+\beta|u|^{k(.)-1} u & \text { in } \Omega_{0} \tag{2.19}\\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega_{0}\end{cases}
$$

Theorem 2.8. Assume that (P1a), (S1), (S2), (K1) and (2.17) hold. Let $n>$ $2 s^{+}$. Then problem (2.19) has infinitely many solutions.

3. Proof of Theorem 2.6

We give here the proof of our first main result Theorem 2.6. To this end, we first need some preparation.

Let us start by introducing the notion of $(P S)_{c}$ sequence and stating the so-called $(P S)_{c}$ condition.

Definition 3.1. For any $c \in \mathbb{R}$, a sequence $\left\{u_{j}\right\}_{j} \subset E_{\lambda}$ is called a $(P S)_{c}$ sequence if $I_{\lambda}\left(u_{j}\right) \rightarrow c$ and $I_{\lambda}^{\prime}\left(u_{j}\right) \rightarrow 0$ as $j \rightarrow+\infty$.

Definition 3.2. We say that I_{λ} provides the $(P S)_{c}$ condition in E_{λ} at the level $c \in \mathbb{R}$ if each $(P S)_{c}$ sequence $\left\{u_{j}\right\}_{j} \subset E_{\lambda}$ possess a strongly convergent subsequence in E_{λ}.

Moreover, in the sequel, we shall make use of the following standard mountain pass theorem (see for example [3]).
Theorem 3.3. Let E be a real Banach space and $J \in C^{1}(E, \mathbb{R})$ with $J(0)=0$. Suppose that
(i) There exist $\rho, \delta>0$ such that $J(u) \geq \delta$ for all $u \in E$ with $\|u\|_{E}=\rho$.
(ii) There exists $e \in E$ satisfying $\|e\|_{E}>\rho$ such that $J(e)<0$.

Define $\Gamma=\left\{\gamma \in C^{1}([0,1] ; E) \mid \gamma(0)=1\right.$ and $\left.\gamma(1)=e\right\}$. Then

$$
c=\inf _{\gamma \in \Gamma} \max _{0 \leq \sigma \leq 1} J(\gamma(\sigma)) \geq \delta
$$

and there exists $a(P S)_{c}$ sequence $\left\{u_{j}\right\}_{j} \subset E$.
Theorem 3.3 applied to the functional I_{λ} will be the starting point to prove our main result. To this end, we first need to check that I_{λ} possesses the mountain pass geometry (i) and (ii). This is ensured by the following lemma.
Lemma 3.4. Assume that the assumptions ((P1a), (S2), (V1)-(V2), (K1) and (2.17) are satisfied. Then

1. For all $\lambda>0$, there exist $\rho>0$ and $\delta>0$ such that

$$
\begin{equation*}
I_{\lambda}(u)>\delta \text { for all } u \in E_{\lambda} \text { with }\|u\|_{\lambda}=\rho . \tag{3.1}
\end{equation*}
$$

2. There exists $e \in E_{\lambda}$ with $\|e\|_{\lambda}>\rho$, where $\rho>0$ is fixed in (3.1), such that $I_{\lambda}(e)<0$ for all $\lambda>0$.

Proof. We divide the proof into two steps, one for each different result we are claiming.

Step 1. Let us start by proving the first mountain pass property. Using the fractional Sobolev inequality and (2.14), for all $u \in E_{\lambda}$, we have

$$
\begin{align*}
& \int_{\Omega}\left(\frac{\alpha}{p(x)}|u|^{p(x)}+\frac{\beta}{k(x)}|u|^{k(x)}\right) \mathrm{d} x \tag{3.2}\\
& \quad \leq \frac{\alpha}{p^{-}} \int_{\Omega}|u|^{p(x)} \mathrm{d} x+\frac{\beta}{k^{-}} \int_{\Omega}|u|^{k(x)} \mathrm{d} x \\
& \quad \leq \frac{\alpha}{p^{-}} \max \left(\mathcal{C}_{p}^{p^{-}}\|u\|_{\lambda}^{p^{-}}, \mathcal{C}_{p}^{p^{+}}\|u\|_{\lambda}^{p^{+}}\right)+\frac{\beta}{k^{-}} \max \left(\mathcal{C}_{k}^{k^{-}}\|u\|_{\lambda}^{k^{-}}, \mathcal{C}_{k}^{k^{+}}\|u\|_{\lambda}^{k^{+}}\right)
\end{align*}
$$

We then get from (3.2) that

$$
I_{\lambda} \geq \min \left(\frac{1}{q^{+}}, \frac{1}{2}\right)\|u\|_{\lambda}^{2}-\frac{\alpha}{p^{-}} \max \left(\mathcal{C}_{p}^{p^{-}}, \mathcal{C}_{p}^{p^{+}}\right)\|u\|_{\lambda}^{p^{+}}-\frac{\beta}{k^{-}} \max \left(\mathcal{C}_{k}^{k^{-}}, \mathcal{C}_{k}^{k^{+}}\right)\|u\|_{\lambda}^{k^{+}}
$$

for all $u \in E_{\lambda}$ with $\|u\|_{\lambda} \geq 1$.
Set the constants A, B and C as in (2.18) and let $\phi:[0,+\infty) \rightarrow \mathbb{R}$ be an auxiliary function such that

$$
\phi(\sigma)=\psi(\sigma) \sigma^{k^{+}} \text {for all } \sigma \geq 0
$$

where

$$
\psi(\sigma)=D \sigma^{2-k^{+}}-A \alpha \sigma^{p^{+}-k^{+}}-B \beta
$$

Let

$$
\sigma^{*}:=\left[\frac{D\left(2-k^{+}\right)}{A \alpha\left(p^{+}-k^{+}\right)}\right]^{\frac{1}{p^{+}-2}}
$$

We then have

$$
\psi\left(\sigma^{*}\right)=\max _{\sigma \geq 0} \psi(\sigma)>0
$$

provided that

$$
B \beta<\left[\frac{D\left(2-k^{+}\right)}{A \alpha\left(p^{+}-k^{+}\right)}\right]^{\frac{2-k^{+}}{p^{+}-2}} \frac{D\left(p^{+}-2\right)}{\left(p^{+}-k^{+}\right)}
$$

that is,

$$
\alpha^{2-k^{+}} \beta^{p^{+}-2} \leq\left[\frac{D\left(2-k^{+}\right)}{A\left(p^{+}-k^{+}\right)}\right]^{2-k^{+}}\left(\frac{D\left(p^{+}-2\right)}{B\left(p^{+}-k^{+}\right)}\right)^{p^{+}-2} .
$$

Moreover, since we are assuming

$$
\alpha \leq \frac{D\left(2-k^{+}\right)}{A\left(p^{+}-k^{+}\right)}
$$

we can readily check that $\sigma^{*} \geq 1$. Then, the first mountain pass property holds with $\rho=\sigma^{*}>0$ and $\delta=\phi\left(\sigma^{*}\right)>0$.

Step 2. Let us now prove the second mountain pass property. In order to do that, let us select $v_{0} \in E_{\lambda}$ such that

$$
\left\|v_{0}\right\|_{\lambda}=1 \quad \text { and } \quad \int_{\Omega}\left|v_{0}(x)\right|^{p(x)} \mathrm{d} x>0
$$

Then for all $\sigma \geq 1$, we get

$$
\begin{aligned}
I_{\lambda}\left(\sigma v_{0}\right) & \leq \max \left(\frac{1}{q^{-}}, \frac{1}{2}\right) \sigma^{2}\left\|v_{0}\right\|_{\lambda}^{2}-\int_{\Omega}\left(\frac{\alpha}{p(x)}\left|\sigma v_{0}(x)\right|^{p(x)}+\frac{\beta}{k(x)}\left|\sigma v_{0}(x)\right|^{k(x)}\right) \mathrm{d} x \\
& \leq \max \left(\frac{1}{q^{-}}, \frac{1}{2}\right) \sigma^{2}\left\|v_{0}\right\|_{\lambda}^{2}-\frac{\alpha \sigma^{p^{-}}}{p^{+}} \int_{\Omega}\left|v_{0}(x)\right|^{p(x)} \mathrm{d} x
\end{aligned}
$$

Since $p^{-}>2$, we can chose $\sigma \geq 1$ large enough such that $\left\|\sigma v_{0}\right\|_{\lambda}>\rho$ and $I_{\lambda}\left(\sigma v_{0}\right)<0$. Then, the second mountain pass property is satisfied by letting $e=\sigma v_{0}$.

Let us now show that the functional I_{λ} provides the $(P S)_{c}$ condition in E_{λ}. To this end, in the same spirit of Theorem 3.3, let us define

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{0 \leq \sigma \leq 1} I_{\lambda}(\gamma(\sigma))
$$

and

$$
c\left(\Omega_{0}\right)=\left.\inf _{\gamma \in \widetilde{\Gamma}} \max _{0 \leq \sigma \leq 1} I_{\lambda}\right|_{\mathcal{H}_{0}^{s(\cdot)}\left(\Omega_{0}\right)}(\gamma(\sigma)),
$$

where:

- the set Ω_{0} is the one provided by assumption (区2);
- $\left.I_{\lambda}\right|_{\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)}$ is a restriction of I_{λ} on $\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)$;
- $\Gamma=\left\{\gamma \in C^{1}\left([0,1] ; E_{\lambda}\right) \mid \gamma(0)=1\right.$ and $\left.\gamma(1)=e\right\} ;$
- $\widetilde{\Gamma}=\left\{\gamma \in C^{1}\left([0,1] ; \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)\right) \mid \gamma(0)=1\right.$ and $\left.\gamma(1)=e\right\}$.

Clearly, $c\left(\Omega_{0}\right)$ is independent of λ. Moreover, note that, for all $u \in \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)$, we have

$$
\begin{aligned}
\left.I_{\lambda}\right|_{\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)}(u)= & \int_{\Omega_{0}} \int_{\Omega_{0}} \frac{1}{q(x, y)} \frac{|u(x)-u(y)|^{q(x, y)}}{|x-y|^{n+q(x, y) s(x, y)}} \mathrm{d} x \mathrm{~d} y+\frac{\lambda}{2} \int_{\Omega_{0}} V(x)|u(x)|^{2} \mathrm{~d} x \\
& -\int_{\Omega_{0}}\left(\frac{\alpha}{p(x)}|u|^{p(x)}+\frac{\beta}{k(x)}|u|^{k(x)}\right) \mathrm{d} x
\end{aligned}
$$

By the proof of Lemma 3.4, we can infer that $\left.I_{\lambda}\right|_{\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)}$ satisfies the mountain pass proprieties of Theorem 3.3. Since $\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right) \subset E_{\lambda}$ for all $\lambda>0$, one has $0<\alpha \leq c_{\lambda} \leq c\left(\Omega_{0}\right)$ for all $\lambda>0$. Clearly, for all $\sigma \in[0,1], \sigma e \in \widetilde{\Gamma}$. Thus, there exists $\mathcal{C}_{0}>0$ such that

$$
\begin{equation*}
c\left(\Omega_{0}\right) \leq \max _{0 \leq \sigma \leq 1} I_{\lambda}(\sigma e) \leq \mathcal{C}_{0}<+\infty \tag{3.3}
\end{equation*}
$$

since $p^{-}>2$. Then,

$$
0<\delta \leq c_{\lambda} \leq c\left(\Omega_{0}\right)<\mathcal{C}_{0}
$$

for all $\lambda>0$. By Lemma 3.4 and Theorem 2.6, we get that for all $\lambda>0$, there exists $\left\{u_{j}\right\}_{j} \subset E_{\lambda}$ such that

$$
\begin{equation*}
I_{\lambda}\left(u_{j}\right) \rightarrow c_{\lambda}>0 \quad \text { and } \quad I_{\lambda}^{\prime}\left(u_{j}\right) \rightarrow 0, \quad \text { as } j \rightarrow+\infty \tag{3.4}
\end{equation*}
$$

Hence, $\left\{u_{j}\right\}_{j}$ is a $(P S)_{c_{\lambda}}$ sequence.

Lemma 3.5. Under the assumptions (P1a), (S2), (V1), (V2), (K1) and (2.17), the sequence $\left\{u_{j}\right\}_{j}$ given by (3.4) is bounded in E_{λ} for all $\lambda>0$.

Proof. Using the Hölder inequality, by (2.17), we obtain

$$
\begin{align*}
c_{\lambda}+ & o(1) \geq I_{\lambda}\left(u_{j}\right)-\frac{1}{p^{-}}\left\langle I_{\lambda}^{\prime}\left(u_{j}\right), u_{j}\right\rangle \\
= & \iint_{\mathbb{R}^{2 n}} \frac{1}{q(x, y)} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{q(x, y)}}{|x-y|^{n+q(x, y) s(x, y)}} \mathrm{d} x \mathrm{~d} y+\frac{\lambda}{2} \int_{\Omega} V(x)\left|u_{j}(x)\right|^{2} \mathrm{~d} x-\frac{1}{p^{-}}\left\|u_{j}\right\|_{\lambda}^{2} \\
& -\int_{\Omega}\left(\alpha\left(\frac{1}{p(x)}-\frac{1}{p^{-}}\right)\left|u_{j}(x)\right|^{p(x)}+\beta\left(\frac{1}{k(x)}-\frac{1}{p^{-}}\right)\left|u_{j}(x)\right|^{k(x)}\right) \mathrm{d} x \\
\geq & \left(\min \left(\frac{1}{2}, \frac{1}{q^{+}}\right)-\frac{1}{p^{-}}\right)\left\|u_{j}\right\|_{\lambda}^{2} \\
& -\beta\left(\frac{1}{k^{-}}-\frac{1}{p^{-}}\right) \max \left(\mathcal{C}_{k}^{k^{-}}\left\|u_{j}\right\|_{\lambda}^{k^{-}}, \mathcal{C}_{k}^{k^{+}}\left\|u_{j}\right\|_{\lambda}^{k^{+}}\right) . \tag{3.5}
\end{align*}
$$

Arguing by contradiction, we assume that $\left\{u_{j}\right\}_{j}$ is not bounded in $\mathcal{H}_{0}^{s(.)}(\Omega)$. Then there exists a subsequence, still denoted by $\left\{u_{j}\right\}_{j}$, such that $\left\|u_{j}\right\|_{\lambda} \rightarrow+\infty$ as $j \rightarrow+\infty$. Hence, by (3.5), we have

$$
\frac{c_{\lambda}+o(1)}{\left\|u_{j}\right\|_{\lambda}^{2}} \geq\left(D-\frac{1}{p^{-}}\right)-\beta\left(\frac{1}{k^{-}}-\frac{1}{p^{-}}\right) \max \left(\mathcal{C}_{k}^{k^{-}}\left\|u_{j}\right\|_{\lambda}^{k^{-}-2}, \mathcal{C}_{k}^{k^{+}}\left\|u_{j}\right\|_{\lambda}^{k^{+}-2}\right)
$$

which yields $2 \geq p^{-}$or $q^{+} \geq p^{-}$. This is a contradiction, thus $\left\{u_{j}\right\}_{j}$ is bounded in E_{λ} for all $\lambda>0$.

Lemma 3.6. Assume that (P1a), (S2), (V1)-(V2), (K1) and (2.17) hold. Then I_{λ} satisfies the $(P S)_{c}$ condition in E_{λ} for all $c \in \mathbb{R}$ and $\lambda>0$.

Proof. Let $\left\{u_{j}\right\}_{j}$ be a $(P S)_{c}$ sequence with $c<\mathcal{C}_{0}$, where \mathcal{C}_{0} is te constant introduced in (3.3). By Lemma 3.5, $\left\{u_{j}\right\}_{j}$ is bounded in E_{λ} and there exists $\mathcal{C}>0$ such that $\left\|u_{j}\right\|_{\lambda} \leq \mathcal{C}$. Thus, there exist a subsequence of $\left\{u_{j}\right\}_{j}$, still denoted by $\left\{u_{j}\right\}_{j}$, and u_{0} in E_{λ} such that as $j \rightarrow+\infty$

$$
\begin{array}{ll}
u_{j} \rightharpoonup u_{0} & \text { weakly in } E_{\lambda}, \\
u_{j} \rightharpoonup u_{0} & \text { a.e. in } \mathbb{R}, \\
\left|u_{j}\right|^{p(.)-2} u_{j} \rightharpoonup\left|u_{0}\right|^{p(.)-2} u_{0} & \text { weakly in } L^{\frac{p(.)}{p(.)-1}}(\Omega)
\end{array}
$$

Our aim now is to prove that $u_{j} \rightarrow u_{0}$ strongly in E_{λ}. By Proposition 2.3, we obtain $u_{j} \rightarrow u_{0}$ in $L^{p(.)}(\Omega)$ and $L^{k(.)}(\Omega)$, respectively. Thus

$$
\lim _{j \rightarrow+\infty} \int_{\Omega}\left|u_{j}(x)-u_{0}\right|^{p(x)} \mathrm{d} x=0
$$

and

$$
\lim _{j \rightarrow+\infty} \int_{\Omega}\left|u_{j}(x)-u_{0}\right|^{k(x)} \mathrm{d} x=0
$$

It follows from (3.4) that

$$
\begin{aligned}
o(1)= & \left\langle I_{\lambda}^{\prime}\left(u_{j}\right)-I_{\lambda}^{\prime}\left(u_{0}\right), u_{j}-u_{0}\right\rangle \\
= & \left(u_{j}-u_{0}, u_{j}-u_{0}\right)_{\lambda}-\alpha \int_{\Omega}\left(\left|u_{j}\right|^{p(x)-2} u_{j}-\left|u_{0}\right|^{p(x)-2} u_{0}\right)\left(u_{j}-u_{0}\right) \mathrm{d} x \\
& -\beta \int_{\Omega}\left(\left|u_{j}\right|^{k(x)-2} u_{j}-\left|u_{0}\right|^{k(x)-2} u_{0}\right)\left(u_{j}-u_{0}\right) \mathrm{d} x,
\end{aligned}
$$

which means that

$$
\lim _{j \rightarrow+\infty}\left\|u_{j}-u_{0}\right\|_{\lambda}=0
$$

This completes the proof.
Proof of Theorem 2.6. First of all, from Lemmas 3.4.3.5 and Theorem 3.3, we deduce that for all $\lambda>0$ there exists a $(P S)_{\alpha \lambda}$ sequence $\left\{u_{j}\right\}_{j}$ for I_{λ} on E_{λ}.

Now, by Lemma 3.5 and the fact that $0<c_{\lambda}<c\left(\Omega_{0}\right)<\mathcal{C}_{0}$ for all $\lambda>0$, where \mathcal{C}_{0} is the constant introduced in (3.3), we obtain that there exists a subsequence of $\left\{u_{j}\right\}_{j}$, still denoted by $\left\{u_{j}\right\}_{j}$, and $u_{\lambda}^{(1)} \in E_{\lambda}$ such that $u_{j} \rightarrow u_{\lambda}^{(1)}$ strongly in E_{λ}. Moreover, $I_{\lambda}\left(u_{j}\right)=c_{\lambda} \geq \delta$ and $u_{\lambda}^{(1)}$ is a solution of (1.1).

Next, we show that system (1.1) has another solution. For this purpose, let us define

$$
\widetilde{c}_{\lambda}:=\inf \left\{I_{\lambda}(u) \mid u \in \bar{B}_{\rho}\right\}
$$

where $B_{\rho}=\left\{u \in E_{\lambda} \mid\|u\|_{\lambda}<\rho\right\}$ and $\rho>0$ is given by Lemma 3.4 Moreover, let $w_{0} \in \mathcal{H}_{0}^{s(.)}(\Omega) \subset E_{\lambda}$ be such that

$$
\int_{\Omega}\left|w_{0}\right|^{k(x)} \mathrm{d} x>0
$$

We can readily check that

$$
I_{\lambda}\left(\tau w_{0}\right) \leq \tau^{2} \max \left(\frac{1}{q^{-}}, \frac{1}{2}\right)\left\|w_{0}\right\|_{\lambda}^{2}-\frac{\beta \tau^{k^{+}}}{k^{+}} \int_{\Omega}\left|w_{0}\right|^{k(x)} \mathrm{d} x
$$

Hence, since by (K1) we have $k^{+}<2$, for all $\tau<\tau_{0}$ with

$$
\tau_{0}:=\left[\frac{\beta}{k^{+}\left\|w_{0}\right\|_{\lambda}^{2}}\left(\int_{\Omega}\left|w_{0}\right|^{k(x)} \mathrm{d} x\right)\left(\max \left(\frac{1}{q^{-}}, \frac{1}{2}\right)\right)^{-1}\right]^{\frac{1}{2-k+}}
$$

we immediately have $I_{\lambda}\left(\tau w_{0}\right)<0$ for all $\lambda>0$.
On the other hand, by taking $\tau \leq \rho\left\|w_{0}\right\|_{\lambda}^{-1}$, we also have that $\tau w_{0} \in B_{\rho}$. Hence, if $\tau \leq \min \left(\tau_{0}, \rho\left\|w_{0}\right\|_{\lambda}^{-1}\right)$, there exists $z_{0}=\tau w_{0} \in B_{\rho}$ such that $I_{\lambda}\left(z_{0}\right)<0$ for all $\lambda>0$. This clearly implies that $\widetilde{c}_{\lambda}<0$ for all $\lambda>0$.

It then follows from Lemma 3.4 and the Ekeland variational principle (see [20]) applied in B_{ρ}, that there exists a sequence $\left\{u_{j}\right\}_{j}$ such that

$$
\begin{equation*}
\widetilde{c}_{\lambda} \leq I_{\lambda}\left(u_{j}\right) \leq \widetilde{c}_{\lambda}+\frac{1}{j} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\lambda}(v) \geq I_{\lambda}\left(u_{j}\right)-\frac{1}{j}\left\|u_{j}-v\right\|_{\lambda} \tag{3.7}
\end{equation*}
$$

for all $v \in B_{\rho}$.

Now we show that $\left\|u_{j}\right\|_{\lambda}<\rho$ for n sufficiently large. Arguing by contradiction, we assume that $\left\|u_{j}\right\|_{\lambda}=\rho$ for infinitely many j. Without loss of generality, we may assume that $\left\|u_{j}\right\|_{\lambda}=\rho$ for any $j \in \mathbb{N}$. From Lemma 3.4, we deduce that

$$
I_{\lambda}\left(u_{j}\right) \geq \delta>0
$$

This, combined with (3.6), implies that $\widetilde{c}_{\lambda} \geq \delta>0$, which contradicts $\widetilde{c}_{\lambda}<0$. Next we show that $I_{\lambda}^{\prime}\left(u_{j}\right) \rightarrow 0$ in E_{λ}^{*}. Set

$$
w_{j}=u_{j}+\tau v, \text { for all } v \in B_{1}:=\left\{v \in E_{\lambda} \mid\|v\|_{\lambda}=1\right\}
$$

where $\tau>0$ small enough is such that $2 \tau \rho+\tau^{2} \leq \rho^{2}-\left\|u_{j}\right\|_{\lambda}^{2}$ for fixed j large. Then

$$
\left\|w_{j}\right\|_{\lambda}^{2}=\left\|u_{j}\right\|_{\lambda}^{2}+2 \tau \rho\left\langle u_{j}, v\right\rangle_{\lambda}+\tau^{2} \leq\left\|u_{j}\right\|_{\lambda}^{2}+2 \tau \rho+\tau^{2} \leq \rho^{2}
$$

which implies that $w_{j} \in B_{\rho}$. Thus, from (3.7), we obtain

$$
I_{\lambda}\left(w_{j}\right) \geq I_{\lambda}\left(u_{j}\right)-\frac{1}{j}\left\|u_{j}-w_{j}\right\|_{\lambda}
$$

that is

$$
\frac{I_{\lambda}\left(u_{j}+\tau v\right)-I_{\lambda}\left(u_{j}\right)}{\tau} \geq-\frac{1}{j}
$$

Letting $\tau \rightarrow 0^{+}$, we get $\left\langle I_{\lambda}^{\prime}\left(u_{j}\right), v\right\rangle \geq-1 / j$ for any fixed j large. Similarly, choosing $\tau<0$ and $|\tau|$ small enough and repeating the procedure above, one can obtain that $\left\langle I_{\lambda}^{\prime}\left(u_{j}\right), v\right\rangle \leq 1 / j$ for any fixed j large. Thus,

$$
\lim _{j \rightarrow+\infty} \sup _{v \in B_{1}}\left|\left\langle I_{\lambda}^{\prime}\left(u_{j}\right), v\right\rangle\right|=0
$$

which yields that $I_{\lambda}\left(u_{j}\right) \rightarrow 0$ in E_{λ}^{*} as $j \rightarrow+\infty$. Therefore, $\left\{u_{j}\right\}_{j}$ is a $(P S)_{\widetilde{c}_{\lambda}}$ sequence for the functional I_{λ}. Using a similar discussion as in Lemma 3.6 there exists $u_{\lambda}^{(2)} \in E_{\lambda}$ such that $u_{j} \rightarrow u_{\lambda}^{(2)}$ in E_{λ}. Thus, we get a nontrivial solution $u^{(2)}$ of (1.1) satisfying

$$
I_{\lambda}\left(u_{\lambda}^{(2)}\right) \leq \zeta<0 \quad \text { and } \quad\left\|u_{\lambda}^{(2)}\right\|_{\lambda}<\rho
$$

We therefore deduce that

$$
I_{\lambda}\left(u_{\lambda}^{(2)}\right)=\widetilde{c}_{\lambda} \leq \zeta<0<\delta<c_{\lambda}=I_{\lambda}\left(u_{\lambda}^{(1)}\right) \quad \text { for all } \lambda>0
$$

which ends the proof.

4. Proof of Theorems 2.7 and 2.8

We give in this section the proof of the others two main results of this paper, namely Theorems 2.7 and 2.8 .

Proof of Theorem 2.7. For any sequence $\left\{\lambda_{j}\right\}_{j}$ such that $1 \leq \lambda_{j} \rightarrow+\infty$ as $j \rightarrow$ $+\infty$, let $u_{j}^{(i)}$ be the critical points of I_{λ} obtained in Theorem 2.6 for $i=1,2$. Thus, we have

$$
I_{\lambda}\left(u_{\lambda}^{(2)}\right) \leq \zeta<0 \quad \text { and } \quad\left\|u_{\lambda}^{(2)}\right\|_{\lambda}<\rho
$$

Hence, we deduce that

$$
\begin{align*}
& I_{\lambda_{j}}\left(u_{j}^{(2)}\right) \leq \zeta<0<\delta<c_{\lambda_{j}}=I_{\lambda_{j}}\left(u_{j}^{(1)}\right)<\mathcal{C}_{0} \tag{4.1}\\
& I_{\lambda_{j}}^{\prime}\left(u_{j}^{(2)}\right)=I_{\lambda_{j}}^{\prime}\left(u_{j}^{(1)}\right)
\end{align*}
$$

where \mathcal{C}_{0} is the constant introduced in (3.3), and

$$
\begin{align*}
I_{\lambda_{j}}\left(u_{j}^{(i)}\right) \geq & \min \left(\frac{1}{2}, \frac{1}{q^{+}}\right)\left\|u_{j}^{(i)}\right\|_{\lambda_{j}}^{2}-\int_{\Omega}\left(\frac{\alpha}{p(x)}\left|u_{j}^{(i)}\right|^{p(x)}+\frac{\beta}{k(x)}\left|u_{j}^{(i)}\right|^{k(x)}\right) \mathrm{d} x \\
\geq & \left(\min \left(\frac{1}{2}, \frac{1}{q^{+}}\right)-\frac{1}{p^{-}}\right)\left\|u_{j}^{(i)}\right\|_{\lambda_{j}}^{2} \\
& -\beta\left(\frac{1}{k^{-}}-\frac{1}{p^{-}}\right) \max \left(\mathcal{C}_{k}^{k^{-}}\left\|u_{j}^{(i)}\right\|_{\lambda_{j}}^{k^{-}}, \mathcal{C}_{k}^{k^{+}}\left\|u_{j}^{(i)}\right\|_{\lambda_{j}}^{k^{+}}\right) \tag{4.2}
\end{align*}
$$

We then get from (4.1) and (4.2) that

$$
\left\|u_{j}^{(i)}\right\|_{\lambda_{j}} \leq \mathcal{C}
$$

where $\mathcal{C}>0$ is independent of λ_{j}. Hence, we can suppose that $u_{j}^{(i)} \rightharpoonup u^{(i)}$ weakly in $\mathcal{H}_{0}^{s(.)}(\Omega)$ and $u_{j}^{(i)} \rightarrow u^{(i)}$ strongly in $L^{p(.)}(\Omega)$ and $L^{k(.)}(\Omega)$, respectively. By Fatous' lemma, we obtain

$$
\int_{\Omega} V(x)\left|u^{(i)}(x)\right|^{2} \mathrm{~d} x \leq \liminf _{j \rightarrow+\infty} \int_{\Omega} V(x)\left|u_{j}^{(i)}(x)\right|^{2} \mathrm{~d} x \leq \liminf _{j \rightarrow+\infty} \frac{\left\|u_{j}^{(i)}\right\|_{\lambda_{j}}^{2}}{\lambda_{j}}=0
$$

Thus, $u^{(i)}=0$ a.e. in $\mathbb{R}^{n} \backslash V^{-1}(0)$ and $u^{(i)} \in \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)$ by (K1).
Similarly to the proof of Theorem [2.6, we can now prove that $u^{(1)}$ and $u^{(2)}$ are two solutions of problem (2.19). Indeed, it follows from (4.1), $u^{(i)}=0$ a.e. in $\mathbb{R}^{n} \backslash V^{-1}(0)$ and the constants ζ, δ are independent of λ that

$$
\max \left(\frac{1}{q^{-}}, \frac{1}{2}\right)\left\|u^{(1)}\right\|_{\lambda}^{2}-\int_{\Omega_{0}} \frac{\alpha}{p(x)}\left|u^{(1)}\right|^{p(x)} \mathrm{d} x-\int_{\Omega_{0}} \frac{\beta}{k(x)}\left|u^{(1)}\right|^{k(x)} \mathrm{d} x \geq \delta>0
$$

and

$$
\min \left(\frac{1}{q^{+}}, \frac{1}{2}\right)\left\|u^{(2)}\right\|_{\lambda}^{2}-\int_{\Omega_{0}} \frac{\alpha}{p(x)}\left|u^{(2)}\right|^{p(x)} \mathrm{d} x-\int_{\Omega_{0}} \frac{\beta}{k(x)}\left|u^{(2)}\right|^{k(x)} \mathrm{d} x \leq \zeta<0
$$

which means that $u^{i} \neq 0$ and $u^{1} \neq u^{2}$. The proof is thus complete.
We conclude this paper with the proof of Theorem 2.8, providing the existence of infinitely many solutions of problem (2.19). To this end, we will employ the following symmetric mountain pass theorem (see [16, Theorem 2.2]).
Theorem 4.1. Let X be a real infinite dimensional Banach space and $J \in C^{1}(X)$ a functional satisfying the $(P S)_{c}$ condition as well as the following three properties:

1. $J(0)=0$ and there exist two constants $\rho, \delta>0$ such that $J(u) \geq \delta$ for all $u \in X$ with $\|u\|=\rho$.
2. J is even.
3. For all finite dimensional subspaces $Y \subset X$ there exists $R=R(Y)>0$ such that $J(u) \leq 0$ for all $u \in X \backslash B_{R}(Y)$, where $B_{R}(Y)=\{u \in Y \mid\|u\| \leq R\}$.
Then J possesses an unbounded sequence of critical values characterized by a minimax argument.

Proof of Theorem 2.8. Obviously, Lemma 3.4 still holds when considering functions $u \in \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)$. Let us now define the functional $I: \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right) \rightarrow \mathbb{R}$ as

$$
I(u) \leq \max \left(\frac{1}{q^{-}}, \frac{1}{2}\right)\|u\|_{\lambda}^{2}-\int_{\Omega_{0}} \frac{\alpha}{p(x)}|u|^{p(x)} \mathrm{d} x-\int_{\Omega_{0}} \frac{\beta}{k(x)}|u|^{k(x)} \mathrm{d} x .
$$

Clearly, $I \in C^{1}\left(\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)\right)$ and the critical points of I are the weak solutions of problem (2.19).

Now we first due that for any finite dimensional subspace \mathcal{W} of $\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)$, there exists $R_{0}=R_{0}(\mathcal{W})$ such that $I(u)<0$ for all $u \in \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right) \backslash B_{R_{0}}(\mathcal{W})$, where $B_{R_{0}}(\mathcal{W})=\left\{u \in \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right) \mid\|u\|_{\lambda}<R_{0}\right\}$.

Next, let \mathcal{W} be a fixed finite dimensional subspace of $\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)$, for any $u \in \mathcal{W}$ such that $\|u\|_{\lambda}^{2}=1$. Thus, we get that for all $\sigma \geq 1$,

$$
\begin{aligned}
I(\sigma u) & \leq \max \left(\frac{1}{q^{-}}, \frac{1}{2}\right) \sigma^{2}\|u\|_{\lambda}^{2}-\int_{\Omega_{0}} \frac{\alpha}{p(x)}|\sigma u|^{p(x)} \mathrm{d} x-\int_{\Omega_{0}} \frac{\beta}{k(x)}|\sigma u|^{k(x)} \mathrm{d} x \\
& \leq \max \left(\frac{1}{q^{-}}, \frac{1}{2}\right) \sigma^{2}\|u\|_{\lambda}^{2}-\frac{\alpha \sigma^{p^{-}}}{p^{+}} \min \left(\|u\|_{L^{p(.)}\left(\Omega_{0}\right)}^{p^{-}},\|u\|_{L^{p(.)}\left(\Omega_{0}\right)}^{p^{+}}\right) .
\end{aligned}
$$

Note that there exists $\mathcal{C}_{\mathcal{W}}>0$ such that $\|u\|_{L^{p(.)}\left(\Omega_{0}\right)} \geq \mathcal{C}_{\mathcal{W}}\|u\|_{\lambda}$, because all norms are equivalent on the finite dimensional Banach space \mathcal{W}. Hence, since $p^{-}>2$, we get

$$
I(\sigma u) \leq \max \left(\frac{1}{q^{-}}, \frac{1}{2}\right) \sigma^{2}\|u\|_{\lambda}^{2}-\frac{\alpha \sigma^{p^{-}}}{p^{+}} \min \left(\mathcal{C}_{\mathcal{W}}^{p^{-}}, \mathcal{C}_{\mathcal{W}}^{p^{+}}\right) \rightarrow-\infty \quad \text { as } \sigma \rightarrow+\infty
$$

Thus, as $R \rightarrow+\infty$,

$$
\sup _{\substack{u \in \mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right) \\\|u\|_{\lambda}=R}} I(u)=\sup _{\substack{u \in \mathcal{H}_{s}^{s(.)}\left(\Omega_{0}\right) \\\|u\|_{\lambda}=1}} I(R u) \rightarrow-\infty .
$$

Therefore, there exists $R_{0}>0$ large enough such that $I(u)<0$ for all $u \in$ $\mathcal{H}_{0}^{s(.)}\left(\Omega_{0}\right)$, with $\|u\|_{\lambda}=R$ and $R \geq R_{0}$. Thus the claim holds true.

Similarly to the proof of Lemma [3.5] one can show that I satisfies the $(P S)_{c}$ condition for any $c \in \mathbb{R}$. Obviously, $I(0)=0$ and I is an even functional. In conclusion, by Theorem 4.1, there exists an unbounded sequence of solutions of problem (2.19).

5. Conclusions and open problems

In this paper, we have considered the following second-order non-local elliptic equation with variable growth conditions driven by the variable-order fractional Laplace operator:

$$
\begin{cases}(-\Delta)_{q(.)}^{s(.)} u+\lambda V u=\alpha|u|^{p(.)-2} u+\beta|u|^{k(.)-2} u & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

Under suitable assumptions for the functions $q(),. s(),. V(),. p($.$) and k($.$) , and$ on the parameters α and β, we employed the mountain pass category theorem and Ekeland's variational principle to obtain the existence of a least two different solutions for all $\lambda>0$. Moreover, we proved that these solutions converge to two solutions of a limit problem as $\lambda \rightarrow+\infty$, and we obtained the existence of infinitely many solutions for this limit problem. Our results generalize the ones previously obtained in [33] in the case $q(.) \equiv q$ constant.

We now conclude this paper by presenting a small collection of open problems related to our work which may be of interest for future research.

1. A crucial assumptions for our results was that

$$
q^{*}(x):=\frac{n q(x, y)}{n-s(x, y) q(x, y)}>r(x)
$$

for all $x \in \bar{\Omega}$ and some continuous function r such that $r(x)>1$. It would be interesting to analyze what results we can get in the case in which $q^{*}\left(x_{0}\right)=r\left(x_{0}\right)$ for some $x_{0} \in \Omega$.
2. It would be worth to investigate what happens if in (1.1) we replace the Dirichlet homogeneous exterior condition $u=0$ in $\mathbb{R}^{n} \backslash \Omega$ with the nonhomogeneous one $u=g$ in $\mathbb{R}^{n} \backslash \Omega$, where g satisfies some regularity property to be defined. Notice that this would correspond to a non-homogeneous boundary condition on $\partial \Omega$ in the local case of the Laplace operator.
3. A final interesting open problem would be to study the existence and multiplicity of solutions for Schrödinger-Kirchhoff type models involving the operator $(-\Delta)_{q(.)}^{s(.)}$ with variable exponent nonlinearities, i.e.

$$
\begin{cases}\mathcal{M}(-\Delta)_{q(.)}^{s(.)} u+\lambda V u=\alpha|u|^{p(.)-2} u+\beta|u|^{k(.)-2} u & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

with $\mathcal{M}=\mathcal{M}\left([u]_{q(.), s(.), \Omega}\right)$. Such kind of problems have been recently analyzed in 46 for the constant-exponent fractional q-Laplacian. Nevertheless, to the best of our knowledge, the case of the variable-exponent operator remains open.

References

[1] Adams, R. A., Sobolev Spaces. Academic Press, 2003.
[2] Alves, C. O. and Ferreira, M. C., Existence of solutions for a class of $p(x)$-Laplacian equations involving a concave-convex nonlinearity with critical growth in \mathbb{R}^{n}, Topol. Methods Nonlinear Anal., 45.2 (2015), 399-422.
[3] Ambrosetti, A. and Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14.4 (1973), 349-381.
[4] Applebaum, D., Lévy processes - from the probability to finance quantum groups, Notices Amer. Math. Soc., 51.11 (2004), 1336-1347.
[5] Autuori, G. and Pucci, P., Elliptic problems involving the fractional Laplacian in \mathbb{R}^{n}, J. Differential Equations, 255.8 (2013), 2340-2362.
[6] Bahrouni, A., Comparison and sub-supersolution principles for the fractional $p(x)$-Laplacian, J. Math. Anal. Appl., 458.2 (2018), 1363-1372.
[7] Bahrouni, A. and Rădulescu, V., On a new fractional Sobolev space and application to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11.3 (2018), 379-389.
[8] Biccari, U., Internal control for a non-local Schrödinger equation involving the fractional Laplace operator, Evol. Eq. Control. Theo., to appear (2021).
[9] Biccari, U. and Hernández-Santamaría, V., Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects, IMA J. Math. Control Inf., 36.4 (2019), 1199-1235.
[10] Biccari, U. and Hernández-Santamaría, V., The Poisson equation from non-local to local, Electron. J. Differential Eq., 2018.145 (2018), 1-13.
[11] Biccari, U. and Warma, M., Null-controllability properties of a fractional wave equation with a memory term, Evol. Eq. Control The., 9.2 (2020), 399-430.
[12] Biccari, U., Warma, M. and Zuazua, E., Controllability of the one-dimensional fractional heat equation under positivity constraints, Commun. Pure Appl. Anal., 19.4 (2020), 19491978.
[13] Biccari, U., Warma, M. and Zuazua, E., Local elliptic regularity for the dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17.2 (2017), 387-409.
[14] Caffarelli, L., Non-local diffusions, drifts games, nonlinear partial differential equations, Abel Symp., 7 (2012), 37-52.
[15] Caffarelli, L. and Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32.8 (2007), 1245-1260.
[16] Colasuonno, F. and Pucci, P., Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74.17 (2011), 5962-5974.
[17] Di Nezza, E., Palatucci, G. and Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136.5 (2012), 521-573.
[18] Diening, L., Harjulehto, P., Hăstö, P. and Ružička, M., Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, Heidelberg, 2011.
[19] Diening, L. and Rûzicka, M., Calderon Zygmund operators on generalized Lebesgue spaces $L^{p(x)}(\Omega)$ and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197220.
[20] Ekeland, I. On the variational principle, J. Math. Anal. Appl., 47.2 (1974), 324-353.
[21] Fan, X., Shen, G. and Zhao, D., Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl, 262.2 (2001), 749-760.
[22] Farcaseanu, M., On an eigenvalue problem involving the fractional (s, p)-Laplacian, Fract. Calc. Appl. Anal., 21.1 (2018), 94-103.
[23] Farcaseanu, M., Mihailescu, M. and Stancu-Dumitru, D., Perturbed fractional eigenvalue problems, Discrete Contin. Dyn. Syst. Ser. A, 37.12 (2017), 6243-6255.
[24] Fu, Y., The existence of solutions for elliptic systems with nonuniform growth, Studia Math., 151 (2002), 227-246.
[25] Kaufmann, U., Rossi, J. and Vidal, R., Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Electron. J. Qual. Theory Differ. Equ., 76 (2017), 1-10.
[26] Kovàcik, O. and Rákosnik, J., On spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$, Czechoslovak Math. J., 41, 1991.
[27] Laskin, N., Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268.4-6 (2000), 298-305.
[28] Lindgren, E. and Lindqvist, P., Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49.1 (2014), 795-826.
[29] Mihăilescu, M., Pucci, P. and Rădulescu, V., Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340.1 (2008), 687-698.
[30] Mihăilescu, M. and Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462.2073 (2006), 2625-2641.
[31] Mingqi, X., Molica Bisci, G., Tian, G. and Zhang B., Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29.2 (2016), 357-374.
[32] Mingqi, X., Binlin, Z. and Xia, Z., Nonhomogeneous Fractional p-Kirchhoff Type Problem Involving Critical Exponent in \mathbb{R}^{n}, Adv. Nonlinear Stud., 17.3 (2017), 611-640.
[33] Mingqi, X., Binlin, Z. and Di, Y., Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlin. Anal., 178 (2019) 190-204.
[34] Molica Bisci, G., Rădulescu, V. and Servadei, R., Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.
[35] Rahmoune, A., On the existence, uniqueness and stability of solutions for semi-linear generalized elasticity equation with general damping term, Acta Math. Sin. Engl. Ser., 33.11 (2017), 1549-1564.
[36] Rahmoune, A., Semilinear hyperbolic boundary value problem associated to the nonlinear generalized viscoelastic equations, Acta Math. Vietnam., 43.2 (2018), 219-238.
[37] Rahmoune, A., Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities, J. Math. Phys., 60.12 (2019), 122701.
[38] Ruzicka, M., Electrorheological fluids: modeling and mathematical theory, Springer-Verlag, Berlin, 2002.
[39] Servadei, R. and Valdinoci, E., Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389.2 (2012), 887-898.
[40] Servadei, R. and Valdinoci, E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33.5 (2013), 2105-2137.
[41] Warma, M., The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42.2 (2015), 499-547.
[42] Warma, M., On the approximate controllability from the boundary for fractional wave equations, Appl. Anal., 96.13 (2017), 2291-2315.
[43] Warma, M., Approximate controllability from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57.2 (2019), 2037-2063.
[44] Warma, M. and Zamorano, S., Null controllability from the exterior of a one-dimensional nonlocal heat equation, Control Cybern., 48.3 (2019), 417-436.
[45] Warma, M. and Zamorano, S., Analysis of the controllability from the exterior of strong damping nonlocal wave equations, ESAIM Control Optim. Calc. Var., 26.42 (2020).
[46] Xiang, M., Zhang, B. and Rădulescu, V. D., Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9.1 (2020), 690-709.
[47] Xiang, M., Rădulescu,V. and Zhang, B., Existence of solutions for perturbed fractional pLaplacian equations, J. Differential Equations, 260.2 (2016), 1392-1413.
[48] Xiang, M. and Wang, F., Fractional Schrödinger-Poisson-Kirchhoff type systems involving critical nonlinearities, Nonlinear Anal., 164 (2017), 1-26.
[49] Xiang, M., Zhang, B. and Ferrara, M., Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424.2 (2015), 10211041.
[50] Xiang, M., Zhang, B. and Guo, X., Infinitely many solutions for a fractional Kirchhoff type problem via Fountain theorem, Nonlinear Anal., 120 (2015), 299-313.
\dagger Laboratory of Pure and Applied Mathematics, University of Laghouat, P.O. Box 37G, Laghouat 03000, Algeria

Email address: abitarahmoune@yahoo.fr

* [1] Chair of Computational Mathematics, Fundación Deusto, Avenida de las Universidades 24,48007 Bilbao, Basque Country, Spain
[2] Facultad de Ingeniería, Universidad de Deusto, Avenida de las Universidades 24, 48007 Bilbao, Basque Country, Spain.

Email address: umberto.biccari@deusto.es, u.biccari@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26A33, 35R11, 74G35.
 Key words and phrases. Fractional elliptic equation, Variable-order fractional Laplacian, Variational methods, Fractional Sobolev spaces.

 This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement NO: 694126DyCon). The work of UB is partially supported by the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-18-1-0242, by the Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain) and by the Elkartek grant KK-2020/00091 CONVADP of the Basque government.

