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MULTILEVEL SELECTIVE HARMONIC MODULATION VIA

OPTIMAL CONTROL

DEYVISS JESÚS OROYA-VILLALTA †, CARLOS ESTEVE-YAGÜE ‡,
AND UMBERTO BICCARI ∗

Abstract. We consider the Selective Harmonic Modulation (SHM) problem,

consisting in the design of a staircase control signal with some prescribed fre-
quency components. In this work, we propose a novel methodology to address
SHM as an optimal control problem in which the admissible controls are piece-
wise constant functions, taking values only in a given finite set. In order to
fulfill this constraint, we introduce a cost functional with piecewise affine pe-
nalization for the control, which, by means of Pontryagin’s maximum principle,
makes the optimal control have the desired staircase form. Moreover, the addi-
tion of the penalization term for the control provides uniqueness and continuity
of the solution with respect to the target frequencies. Another advantage of
our approach is that the number of switching angles and the waveform need
not be determined a priori. Indeed, the solution to the optimal control prob-
lem is the entire control signal, and therefore, it determines the waveform and
the location of the switches. We also provide several numerical examples in
which the SHM problem is solved by means of our approach.

1. Introduction and motivations

Selective Harmonic Modulation (SHM) [1, 2] is a well-known methodology in
power electronics engineering, employed to improve the performance of a converter
by controlling the phase and amplitude of the harmonics in its output voltage. As
a matter of fact, this technique allows to increase the power of the converter and,
at the same time, to reduce its losses.

In broad terms, SHM consists in generating a control signal with a desired har-
monic spectrum by modulating some specific lower-order Fourier coefficients. In
practice, the signal is constructed as a step function with a finite number of switches,
taking values only in a given finite set. Such a signal can be fully characterized by
two features (see Fig. 1):

1. The waveform, i.e. the sequence of values that the function takes in its
domain.

2. The switching angles, i.e. the sequence of points where the signal switches
from one value to following one.

Key words and phrases. Optimal Control; Constrained Control; Switched Systems; Power
Electronics.
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Using this simple characterization of the signal, in many practical situations, the
SHM problem is reduced to a finite-dimensional optimization one in which, for a
given suitable waveform, the aim is to find the optimal location of the switching
angles. However, this approach has the difficulty of choosing a suitable waveform,
which may be quite cumbersome in some situations. In fact, even determining the
number of switching angles is not straightforward in general.

To overcome these difficulties, we propose a new approach to SHM based on
control theory: the Fourier coefficients of the signal are identified with the terminal
state of a controlled dynamical system, where the control is actually the signal,
solution to the SHM problem. We then look for piecewise constant controls, taking
values only in a given finite set, and satisfying the prescribed terminal condition
(see Section 4 for more details).

One of the main difficulties in our approach is that the constraints on the control,
which must have staircase form (taking values only in a given finite set), prevent
us from implementing the standard numerical tools in optimal control. Specifi-
cally, one of the most popular methodologies to solve optimal control problems is
the combination of automatic differentiation with nonlinear convex optimization,
achieving a good algorithmic performance. However, the use of these optimizers
is restricted to cases where the space of admissible controls is convex, not being
directly applicable to our problem.

In order to bypass this obstruction, we consider a variant of the optimal control
problem, removing the staircase constraint on the control, and adding a suitable
convex penalization term, which makes the solution have the desired staircase form.

The main contributions of the present paper are the following ones:

1. We reformulate the SHM problem as an optimal control one, with a staircase-
form constraint on the control. An advantage of this formulation is that
neither the waveform of the solution nor the number of switching angles
need to be a priori determined.

2. We introduce a penalization term for the control which implicitly induces
the desired staircase property on the solution to the optimal control prob-
lem. Different choices of the penalization term can give rise to solutions to
the SHM problem with different waveform.

3. For each choice of the penalization term, we prove uniqueness and continuity
of the solution with respect to the target frequencies. We point out that
this continuity is a highly desirable property in real applications of SHM,
and sometimes, difficult to achieve.

4. We also provide some numerical examples, where we solve the SHM prob-
lem by means of our approach. These numerical examples confirm that
the solution provided by our methodology is, effectively, continuous with
respect to the target frequencies.

This document is structured as follows. In Section 2, we introduce the math-
ematical formulation of the general SHM problem. In Section 3, we recall the
classical methodology casting the SHM problem through finite-dimensional opti-
mization and we show the main criticalities related to this approach. In Section 4,
we present the new approach to SHM as an optimal control problem, and state our
main results concerning the uniqueness and stability of the solution. Section 5 is
devoted to some numerical examples of concrete SHM problems that we have solved
by means of our methodology. In Section 6, we give the proofs of the theoretical
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results presented in Section 4. Finally, in Section 7, we summarize and comment
the conclusions of our work.

2. Preliminaries

This section is devoted to the mathematical formulation of the SHM problem
and to introduce the notation that will be used throughout the paper. Let

U = {u1, . . . , uL} (2.1)

be a given set of L ≥ 2 real numbers satisfying

u1 = −1, uL = 1 and uk < uk+1, for all k ∈ {1, . . . , L}.

The goal is to construct a step function

u(t) : [0, 2π) → U ,

with a finite number of switches, such that some of its lower-order Fourier coeffi-
cients take specific values prescribed a priori.

Due to applications in power converters, it is typical to only consider functions
with half-wave symmetry, i.e. satisfying

u(t+ π) = −u(t) for all t ∈ [0, π). (2.2)

In view of (2.2), in what follows, we will only work with the restriction u|[0,π),
which, with some abuse of notation, we still denote by u. Moreover, as a conse-
quence of this symmetry, the Fourier series of u only involves the odd terms (as the
even terms just vanish), i.e.

u(t) =
∑

j∈N
j odd

aj cos(jt) +
∑

j∈N
k odd

bj sin(jt),

with

aj =
2

π

∫ π

0

u(τ) cos(jτ) dτ,

bj =
2

π

∫ π

0

u(τ) sin(jτ) dτ.

(2.3)

As we anticipated, we are only considering piecewise constant functions with a
finite number of switches, taking values only in U . In other words, we look for
functions u : [0, π) → U of the form

u(t) =
M
∑

m=0

smχ[φm,φm+1)(t), M ∈ N (2.4)

for some S = {sm}Mm=0 satisfying

sm ∈ U and sm 6= sm+1, for all m ∈ {0, . . . ,M}

and Φ = {φm}Mm=1 such that

0 = φ0 < φ1 < . . . < φM < φM+1 = π.

In (2.4), χ[φm,φm+1) denotes the characteristic function of the interval [φm, φm+1).
With these notations, we can define the waveform and the switching angles as
follows.
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Definition 2.1. For a function u : [0, π) → U of the form (2.4), we refer to S as
the waveform and to Φ as the switching angles.

Observe that any function u of the form (2.4) is fully characterized by its wave-
form S and switching angles Φ. An example of such a function is displayed in Fig.
1.

Figure 1. A possible solution to the SHM Problem, where we
considered the control-set U = {−1,−1/2, 0, 1/2, 1}. We show the
switching angles Φ and the waveform S (see Definition 2.1). The
function u(t) is displayed on the whole interval [0, 2π) to highlight
the half-wave symmetry defined in (2.2).

In the practical engineering applications that motivated our study, due to techni-
cal limitations, it is preferable to employ signals taking consecutive values in U . In
the sequel, we will refer to this property of the waveform as the staircase property.
We can rigorously formulate this property as follows:

Definition 2.2. We say that a signal u of the form (2.4) fulfills the staircase
property if its waveform S satisfies

(smin
m , smax

m ) ∩ U = ∅, for all m ∈ {0, . . . ,M − 1}, (2.5)

where smin
m = sm ∧ sm+1 and smax

m = sm ∨ sm+1.

Note that when U = {−1, 1} (which is known in the SHM literature as the
bi-level problem), this property is satisfied for any u of the form (2.4).

We can now formulate the SHM problem as follows.

Problem 2.1 (SHM). Let U be given as in (2.1), and let Ea and Eb be finite sets
of odd numbers of cardinality |Ea| = Na and |Eb| = Nb respectively. For any two
given vectors aT ∈ R

Na and bT ∈ R
Nb , construct a function u : [0, π) → U of the

form (2.4), satisfying (2.5), such that the vectors a ∈ R
Na and b ∈ R

Nb , defined as

a =
(

aj
)

j∈Ea
and b =

(

bj
)

j∈Eb
(2.6)
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satisfy

a = aT and b = bT ,

where the coefficients aj and bj in (2.6) are given by (2.3).

Remark 2.1 (SHE). In Problem 2.1, we gave a very general formulation of SHM.
This formulation contains also the so-called Selective Harmonic Elimination (SHE)
problem (see [2]), in which the target vectors are such that

(aT )1 6= 0 (aT )i6=1 = 0 for all i ∈ Ea

(bT )1 6= 0 (bT )j 6=1 = 0 for all j ∈ Eb.

SHE is of great relevance in the electric engineering literature. Its objective is to

generate a signal with amplitude m1 =
√

a21 + b21 and phase ϕ1 = arctan(b1/a1),
removing some specific high-frequency components. In this way, SHE may be un-
derstood as a generator of clean Fourier modes through a staircase signal.

3. SHM as a finite-dimensional optimization problem

A typical approach to the SHM Problem 2.1 ([2, 3, 4]) is to look for solutions u
with a specific waveform S a priori determined, optimizing only over the location
of the switching angles Φ.

Note that, for a fixed waveform S, the Fourier coefficients of a function u of the
form (2.4) can be written in terms of the switching angles Φ in the following way:

aj = aj(Φ) =
2

jπ

M
∑

m=0

sm

[

sin(jφm+1)− sin(jφm)
]

bj = bj(Φ) =
2

jπ

M
∑

m=0

sm

[

cos(jφm)− cos(jφm+1)
]

Hence, for two sets of odd numbers Ea and Eb as in Problem 2.1, and any fixed
waveform S, we can define the functions

aS(Φ) :=
(

aj(Φ)
)

j∈Ea
∈ R

Na

bS(Φ) :=
(

bj(Φ)
)

j∈Eb
∈ R

Nb
(3.1)

which associates, to any sequence of switching angles {φm}Mm=1, the corresponding
Fourier coefficients. Therefore, SHM can be cast as a finite-dimensional optimiza-
tion problem in the following way.

Problem 3.1 (Optimization problem for SHM). Let Ea, Eb, aT , and bT be given
as in Problem 2.1. Let S := {sm}Mm=0 be a fixed waveform satisfying (2.5). We
look for a sequence of switching angles Φ = {φm}Mm=1 solution to the following
minimization problem:

min
Φ∈[0,π]M

(

‖aS(Φ)− aT ‖
2 + ‖bS(Φ)− bT ‖

2
)

subject to: 0 = φ0 < φ1 < . . . < φM < φM+1 = π.

where aS(Φ) and bS(Φ) are defined as in (3.1).
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At this regard, it is important to notice that the optimization Problem 3.1 solves
the original SHM Problem 2.1 only when the minimum equals zero. This makes
necessary to fully characterize the space of targets (aT , bT ) for which the solution
of Problem 3.1 is a solution of Problem 2.1. With this aim, we will define the the
optimal value and the solvable set as follows:

Definition 3.1 (optimal value). We call optimal value VS : RNa × R
Nb → R, the

function that takes as input variables the target vectors aT and bT and returns the
optimal value of the Problem 3.1.

Definition 3.2 (solvable set). We define a solvable set RS as:

RS =
{

(aT , bT ) ∈ R
Na+Nb

∣

∣ VS(aT , bT ) = 0
}

(3.2)

Furthermore, we define the following policy function which maps the solutions
of Problem 3.1 into the set RS .

Definition 3.3 (Policy). We will call policy to a function ΠS : RS → [0, π]M

such that Φ∗ = ΠS(aT , bT ), with Φ∗ being the optimal switching angles, solutions
to Problem 2.1 with target (aT , bT ).

With the aim of reconstructing the policy ΠS , a typical approach is to solve
numerically Problem 3.1 for a limited number of points in R

Na+Nb and check that
the optimal value is zero. Secondly, one interpolates the function ΠS in the convex
set generated by the points previously obtained. Nevertheless, this approach has
several difficulties and drawbacks.

1. Combinatory problem: in practice, one does not dispose of a suitable wave-
form S which yields a solution to the Problem 2.1. A common approach to
solve the SHM problem consists in fixing the number of switches M , and
then solve Problem 3.1 for all the possible combinations of M elements of
U . However, taking into account that the number of possible M -tuples in
U is of the order (L − 1)M , it is evident that the complexity of the above
approach increases rapidly when L > 1. This problem has been studied
for instance in [4, 5] where, through appropriate algebraic transformations,
the authors are able to convert the SHM problem into a polynomial system
whose solutions’ set contains all the possible waveforms S of M elements
in U . As a drawback of this approach, the number of switches M needs to
be prefixed. However, in some cases, determining the number of switches
which are necessary to reach the desired Fourier coefficients is not a straight-
forward task.

2. Solvable set problem: given a waveform S, the corresponding solvable set
RS is usually very small, yielding to policies ΠS which are not very effec-
tive. This issue is typically addressed by solving Problem 3.1 for a set of
waveforms {Sl}rl=1 and obtaining different policies {ΠSl

}rl=1 and solvable
sets {RSl

}rl=1 for each one of them. By gathering them, one then creates a
new policy applicable in a wider range. However, since the solvable sets cor-
responding to different waveforms may be disjoint or even overlapping, this
union of policies may give rise to regions where the solution for the same
target (aT , bT ) is not unique, or even generate regions with no solution at
all (see Fig. 2).
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Figure 2. In the first picture, we display the optimal switching
angles Φ∗

S associated to different waveforms {Sl}7l=1 for a SHM
problem (see Remark 2.1), considering the sets Ea = {1} and Eb =
{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31}. We chose aT = m for all m ∈
[0, 1.2] and bT = (0, . . . , 0). The second figure shows the solvable
sets for each waveform we considered.

3. Policy problem: due to the complexity of a policy generated by the union
of different waveforms, the continuity of the switching angles cannot be
guaranteed. This is a well known problem in the SHM community [6, 7, 8, 5]
(see Fig. 2).

As we shall see, all these mentioned criticalities may be overcome by our optimal
control approach.

4. SHM as an optimal control problem

Our main contribution in the present paper consists in formulating the SHM
problem as an optimal control one. In this formulation, the Fourier coefficients
of the signal u(t) are identified with the terminal state of a controlled dynamical
system of Na + Nb components defined in the time-interval [0, π). The control of
the system is precisely the signal u(t), defined as a function [0, π) → U , which has
to steer the state from the origin to the desired values of the prescribed Fourier
coefficients.

The starting point of this approach is to rewrite the Fourier coefficients of the
function u(t) as the final state of a dynamical system controlled by u(t). To this
end, let us first note that, in view of (2.3), for all u ∈ L∞([0, π);R) any Fourier
coefficient aj satisfies

aj = y(π),

with y ∈ C([0, π);R) defined as

y(t) =
2

π

∫ t

0

u(τ) cos(j τ)dτ.
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Besides, as a consequence of the fundamental theorem of calculus, y(·) is the
unique solution to the differential equation







ẏ(t) =
2

π
cos(j t)u(t), t ∈ [0, π)

y(0) = 0.
(4.1)

Analogously, we can also write the Fourier coefficients bj , defined in (2.3), as the
solution at time t = π of a differential equation similar to (4.1).

Hence, for Ea, Eb, aT , and bT given, the SHM Problem 2.1 can be reduced
to finding a control function u of the form (2.4), satisfying (2.5), such that the
corresponding solution y ∈ C([0, π);RNa+Nb) to the dynamical system







ẏ(t) =
2

π
D(t)u(t), t ∈ [0, π)

y(0) = 0.
(4.2)

satisfies

y(π) = [aT ; bT ]
⊤,

where

D(t) =
[

D
a(t);Db(t)

]⊤

, (4.3)

with D
a(t) ∈ R

Na and D
b(t) ∈ R

Nb given by

D
a(t) =











cos(e1at)
cos(e2at)

...
cos(eNa

a t)











, D
b(t) =











sin(e1bt)
sin(e2bt)

...

sin(eNb

b t)











(4.4)

Here, eia and eib denote the elements in Ea and Eb, i.e.

Ea = {e1a, e
2
a, e

3
a, . . . , e

Na

a }, Eb = {e1b, e
2
b , e

3
b , . . . , e

Nb

b }.

In the sequel, and in order to simplify the notation, we reverse the time in (4.2)
using the transformation x(t) = y(π− t). In this way, the SHM problem turns into
the following null controllability one, for a dynamical system with initial condition
x(0) = [aT ; bT ]

⊤ (see also Fig. 3).

Problem 4.1 (SHM via null controllability). Let U be given as in (2.1). Let Ea,
Eb and the targets aT and bT be given as in Problem 2.1, we look for a function
u : [0, π) → [−1, 1] of the form (2.4), satisfying (2.5), such that the solution to the
initial-value problem







ẋ(t) = −
2

π
D(t)u(t), t ∈ [0, π)

x(0) = x0 := [aT ; bT ]
(4.5)

satisfies x(π) = 0, where D is given by (4.3)–(4.4).

A natural approach for null controllability problems such as Problem 4.1 is to
formulate them as an optimal control one, where the cost functional to be minimized
is the euclidean distance between the final state x(π) and the origin. In what follows,
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Figure 3. Evolution of the dynamical system (4.5) with Ea =
{1, 2} and Eb = {1, 2} corresponding to the control u in Figure 1.
The positions of the switching angles φ are displayed as well.

for a given vector v ∈ R
d, we denote by ‖v‖ the euclidean norm ‖v‖Rd . Let us

introduce the set of admissible controls.

A :=
{

u : [0, π) → [−1, 1] measurable
}

Aad :=
{

u ∈ A of the form (2.4) satisfying (2.5)
}

Problem 4.2 (OCP for SHM). Let U be a given set as in (2.1). Let Ea, Eb and the
targets aT and bT be given as in Problem 2.1. We look for an admissible control
u ∈ Aad solution to the following optimal control problem:

min
u∈Aad

1

2
‖x(π)‖2 subject to the dynamics (4.5).

Remark 4.1. Note that the cost functional in Problem 4.2 is quadratic and, there-
fore, the existence of at least one minimizer is ensured for any target [aT ; bT ]

⊤.
However, we point out that such a minimizer is a solution to the SHM problem if
and only if the minimum is equal to zero. When it is not the case, we say that the
target [aT ; bT ]

⊤ is unreachable, and then the SHM problem 2.1 (resp. Problem 4.1)
has no solution. In this work, we will not discuss the reachable set for the control
problem 4.1.

A main feature of the SHM problem is that we are looking for signal functions
u of the form (2.4) satisfying (2.5). In principle, this can be directly added as a
constraint in the set of admissible controls Aad as we did in Problem 4.2. However,
considering an optimization problem in a non-convex set is not quite desirable. In-
deed, it is well-known that mathematical optimization, in general, is an NP-hard
problem, whereas for the case of convex optimization, algorithms with a polyno-
mial computational time are available, as for instance, interior point method [9],
projected gradient descent [10] or penalty method [11].

In order to bypass this difficulty, we propose a variant of Problem 4.2, adding a
penalization term for the control to the cost functional, and removing the staircase
constraint on the control.
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Problem 4.3 (Penalized OCP for SHM). Fix ε > 0 and a convex function L ∈
C([−1, 1];R). Let Ea, Eb and the targets aT and bT be given as in Problem 2.1. We
look for a control u ∈ A solution to the following optimal control problem:

min
u∈A

(

1

2
‖x(π)‖2 + ε

∫ π

0

L(u(t))dt

)

subject to the dynamics (4.5).

Observe that, in Problem 4.3, we do not impose the constraint that the control
has to be of the form (2.4), satisfying the staircase property (2.5). Nevertheless, as
we shall see, these features of u will arise naturally in the solution to Problem 4.3,
from a suitable choice of the penalization term L. Another important advantage of
adding a penalization term for the control is that, as we shall prove in Theorems
4.1 and 4.2, it ensures the uniqueness for the solution, and the continuity of this
one with respect to the targets aT and bT .

On the contrary, one needs to take into account that the penalization term
for the control might prevent the optimal trajectory from reaching the target. In
other words, even if there exists a control for which the optimal trajectory satisfies
x(π) = 0, the optimal control in Problem 4.3 might not do so, and therefore, the
solution to Problem 4.3 would not be a solution to the SHM problem. This issue
may be controlled by a proper selection of the weighting parameter ε which allows
to tune the precision of the optimal control for the perturbed problem, guaranteeing
that the final state of the optimal trajectory is close enough to zero. This is the
content of the following proposition.

Proposition 4.1. Assume that [aT , bT ]
⊤ is such that Problem 4.1 admits a solu-

tion, and let u∗ ∈ A be the solution to Problem 4.3. Then the associated trajectory
x∗ ∈ C([0, π);RNa+Nb), solution to (4.5), satisfies

‖x∗(π)‖2 ≤ 4επ‖L‖∞,

where ‖ · ‖∞ denotes the max-norm in C([−1, 1];R).

The proof of Proposition 4.1 is postponed to Section 6. Let us now describe
the construction of penalization functions L which guarantee that any solution to
Problem 4.3 has the form (2.4) and satisfies (2.5). To this end, we will distinguish
two cases, depending on the cardinality of U .

4.1. Bilevel SHM problem via OCP (Bang-Bang Control). In this case, the
control set U defined in (2.1) has only two elements, i.e. U = {−1, 1}. In the control
theory literature, a control taking only two values is known as bang-bang control.
In the SHM literature, this kind of solution are called bi-level solutions. Note that
in this case, any u with the form (2.4) trivially satisfies the staircase property (2.5).

Theorem 4.1. Let U = {−1, 1}, and x0 be given. For some α ∈ R with α 6= 0,
consider the Problem 4.3 with L(u) = αu. Then, the optimal control u∗, solution
to Problem 4.3 is unique and has a bang-bang structure, i.e. it is of the form (2.4).
In addition to that, the solution u∗ to Problem 4.3 is continuous with respect to x0

in the strong topology of L1(0, π).

The proof of Theorem 4.1 is postponed to Section 6, and follows from the op-
timality conditions given by the Pontryagin’s maximum principle. In particular,
the linearity of L and of the dynamical system (4.5), implies that the associated
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Hamiltonian is also linear, and then, the minimum is always attained at the limits
of the interval [−1, 1].

We point out that, by choosing different penalizations L, we may obtain solutions
to the SHM problem with different waveforms due to the change of the Hamiltonian.
See for instance Fig. 9, where we have chosen L(u) = ±u.

4.2. Multilevel SHM problem via OCP. Inspired by the ideas of the previous
subsection, we can address the case when U contains more than two elements.
This is known in the power electronics literature as the multilevel SHM problem.
Now, the goal is to construct a function L such that the Hamiltonian associated to
Problem 4.3 always attains the minimum at points in U . A way to construct such
a function L is to interpolate a parabola in [−1, 1] by affine functions, considering
the elements in U as the interpolating points. Since between any two points in U ,
the function L is a straight line, the Hamiltonian is a concave function in these
intervals, and hence, the minimum is always attained at points in U .

Theorem 4.2. Let x0 be given, and let U be a given set as in (2.1). For any α > 0
and β ∈ R, set the function

P(u) = α(u − β)2. (4.6)

Consider Problem 4.3 with

L(u) =

{

λk(u) if u ∈ [uk, uk+1)

P(1) if u = uL

(4.7)

for all k ∈ {1, . . . , L− 1},

where

λk(u) :=
(u− uk)P(uk+1) + (uk+1 − u)P(uk)

uk+1 − uk

. (4.8)

Assume in addition that the function L has a unique minimum in [−1, 1]. Then,
the optimal control u∗, solution to Problem 4.3, is unique and has the form (2.4)
satisfying (2.5). Moreover, the solution u∗ to Problem 4.3 is continuous with respect
to x0 in the strong topology of L1(0, π).

The assumption of L having a unique minimum in [−1, 1] is actually necessary to
ensure the staircase form (2.4) for the solution. Not assuming this hypothesis would
entail the possibility of having continuous solutions for specific targets. See Fig. 8
for an illustration of this pathology. Nevertheless, the assumption of L having a
unique minimizer can be easily ensured by choosing, for instance, β = ±1.

Remark 4.2. For completeness, we shall mention that, in Theorem 4.2, L can
actually have a more general form, still yielding to a staircase optimal control u∗.
Indeed, as we shall see in Section 6, the proof of Theorem 4.2 does not use the fact
that the function P is a parabola. If we replace this P with any other strictly convex
function, our result remains valid. The choice we made of defining P as in (4.6)
is motivated by the fact that, most often, in optimal control theory the penalization
terms are chosen to be quadratic.

Remark 4.3 (Bang-off-bang control). We note that when U = {−1, 0, 1}, we can
just use the L1-norm of the control as penalization, i.e. L(u) = |u|. This yields
to the so-called bang-off-bang controls, that are widely studied in the literature [12,
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Figure 4. Some examples of convex piecewise affine penalization
functions L. The examples L1, L2 and L3 satisfy the hypothe-
ses of Theorem 4.2. On the contrary, the function L4 has not a
unique minimizer, and then, we cannot ensure that the solution
has staircase form.

13]. By taking a different parabola P, one can then obtain different bang-off-bang
solutions to the SHM problem.

We illustrate in Fig. 4 different examples of penalization functions L giving
rise to multilevel solutions to the SHM problem. We point out that, by varying the
values of α and β in Theorem 4.2, we can obtain solutions with different waveforms.

5. Numerical simulations

In this section, we present several examples in which we implement the optimal
control strategy we proposed to solve the SHM problem. All the simulations we are
going to present can be found also in [14]. Our Experiments were conducted on a
personal MacBook Pro laptop (1,4 GHz Quad-Core Intel Core i5, 8GB RAM, Intel
Iris Plus Graphics 1536 MB).

To solve our optimal control Problem 4.3, we will employ the direct method [15]
which, in broad terms, consists in discretizing the cost functional and the dynamics,
and then apply some optimization algorithm.

The dynamics will be approximated with the Euler method, while for solving the
discrete minimization problem we will employ the nonlinear constrained optimiza-
tion tool CasADi [16]. CasADi is an open-source tool for nonlinear optimization and
algorithmic differentiation which implements the interior point method via the op-
timization software IPOPT [17]. To be efficiently applied to solve an optimal control
problem, we then need the functional we aim to minimize to be smooth. While this
is clearly true in the bi-level case of Problem 4.2, the functional in Problem 4.3, due
to the piecewise affine penalization, is not differentiable at the points uk ∈ U . For
this reason, when treating the multilevel case, we will first need to build a smooth
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approximation of the function L we introduced in (4.7). Once we have this approx-
imation, we will employ the optimal control approach we presented in Section 4 to
solve some specific examples of SHM problem.

5.1. Smooth approximation of L for multilevel control. As we mentioned, to
efficiently employ CasADi for solving our optimal control problem in the multilevel
case, we need to build a smooth approximation of the cost functional. For this
reason, we will regularize the piecewise affine penalization defined in (4.7) in the
following way.

First of all, for all real parameter θ > 0, we define the C∞(R) function

hθ(x) :=
1 + tanh(θx)

2
.

and observe that, for almost every x ∈ R, we have that hθ(x) → h(x) as θ → +∞,
where h is the Heaviside function

h(x) =

{

1 if x > 0

0 if x ≤ 0.

Secondly, for all k ∈ {1, . . . , Nu − 1} we define the (smooth) function χθ
[uk,uk+1)

:

R → R given by

χθ
[uk,uk+1)

(x) : = −1 + hθ(x− uk) + hθ(−x+ uk+1)

=
tanh[θ(x− uk)] + tanh[θ(uk+1 − x)]

2

which, as θ → +∞, converges in L∞(R) to the characteristic function χ[uk,uk+1).

Finally, we employ χθ
[uk,uk+1)

to define

Lθ(u) =

Nu−1
∑

k=1

λkχ
θ
[uk,uk+1)

(u), (5.1)

with λk given by (4.8), which, as θ → +∞, converges in L∞(R) to the penalization
function L defined in (4.7).

Notice that this regularization procedure is independent of the function λk in
(4.7), which is just required to be in the form (4.8). Nevertheless, in our numerical
experiments we shall select some specific λk. In particular, we will use

λk = (uk+1 + uk)(u− uk) + u2
k, (5.2)

which corresponds to taking α = 1 and β = 0 in (4.6).

5.2. Direct method for OCP-SHE. To solve Problem 4.3, we use a direct
method, whose starting point is to discretize the cost functional and the dynamics.
To this end, let us consider a Nt-points partition of the interval [0, π]

T = {tk}
Nt

k=1

and denote by u ∈ R
Nt the vector with components uk = u(tk), k = 1, . . . , Nt.

Then the optimal control problem (4.2) can be written as optimization one with
variable u ∈ R

Nt . In more detail, we can formulate the problem 4.3 as the following
one in discrete time.
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Problem 5.1 (Numerical OCP). Given two sets of odd numbers Ea and Eb with
cardinalities |Ea| = Na and |Eb| = Nb, respectively, the target vectors aT ∈ R

Na and
bT ∈ R

Nb , and the partition T of the interval [0, π], we look for u ∈ R
Nt that solves

the following minimization problem:

min
u∈RNt

[

‖xNt
‖2 + ε

Nt−1
∑

k=1

[

Lθ(utk) + Lθ(utk+1
)

2
∆tk

]

]

subject to:

{

xtk+1
= xtk −∆tk(2/π)D(tk)

xt1 = x0 := [aT , bT ]
⊤

where

∆tk = tk+1 − tk, for all k ∈ {1, . . . , Nt − 1}. (5.3)

5.3. Numerical experiments. We now present several numerical experiments to
show the effectiveness of our optimal control approach to solve SHM problems. All
the examples share the following common parameters

ε = 10−5, θ = 105, and Pt = {0, 0.1, 0.2, . . . , π}.

We consider the frequencies

Ea = Eb = {1, 5, 7, 11, 13}, (5.4)

and the target vectors

aT = bT = (m, 0, 0, 0, 0, 0)⊤, for all m ∈ [−0.8, 0.8]. (5.5)

We shall consider three different control sets U which correspond to the afore-
mentioned types of control:

1. Bang-bang control: U = {−1, 1}.

2. Bang-off-bang control: U = {−1, 0, 1}.

3. 5-multilevel control: U = {−1,−1/2, 0, 1/2, 1}.

The results of our simulations are displayed in Fig. 5, 6 and 7. We have plotted
the function

Φ : [−0.8, 0.8]× [0, π] −→ U
(m, t) 7−→ u∗

m(t),

where, for each m ∈ [−0.8, 0.8], u∗
m(·) represents the solution to the SHM problem

with target frequencies as defined in (5.4)-(5.5).
In Fig. 5,6 and 7, for each value of the parameter m in the horizontal axis,

we observe that the optimal control, solution to Problem 4.3 has the staircase
structure introduced in Definition 2.2. The controls take values only in U , which
are represented by the different colors displayed at the right. For instance, in Fig.
5, the control is u = −1 in the blue region and u = 1 in the red one. Note that, the
numerical results are in accordance with Theorems 4.1 and 4.2.

In addition to that, if we compare the policies Φ(m, ·) = u∗
m displayed in Fig. 5,

6 and 7 with the policies ΠS of Fig. 2, we can see that the issues we mentioned
in Section 3 concerning the solvable set and the continuity of the policy can be
overcome by using our approach. In particular, the optimal control formulation of
SHM allows one to find solutions for an ample range of the parameter m, while
considering always the same optimization Problem 5.1. This is due to the fat that
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Figure 5. Bang-bang control for the SHM problem.

Figure 6. Bang-off-bang control for the SHM problem.

we are not restricting the solution to have a specific waveform. Furthermore, the
combinatory problem arising in the approach presented in Section 3 does not arise
in our approach, as we do not need to launch an optimization process for all the
possible waveforms for a given set U .

Remark 5.1. Let us give an example which illustrates the necessity of assuming
that the function L in Theorem 4.2 has a unique minimizer in [−1, 1].

We consider the same parameters as in the above examples, but this time, the
control set is given by

U = {−1,−3/5,−1/5, 1/5, 3/5, 1}.

This choice corresponds to the penalization function L4 represented in Fig. 4.
Observe that in this case

argmin
|u|≤1

L(u) = [−1/5, 1/5].



16 D. J. OROYA, C. ESTEVE, AND U. BICCARI

Figure 7. Odd multilevel control for the SHM problem.

In this case, the hypotheses of Theorem 4.2 are not fulfilled and we cannot ensure
that the solution has a staircase form. In Fig. 8, we see that the solution is actually
smooth for m close to zero and takes values out of the control set U . This stipulates
that the assumption of L having a unique minimizer is necessary and cannot be
removed if one wants to have a staircase solution. Notwithstanding, this issue can
be overcome by choosing different values for the parameters α and β in the definition
of L in (4.6)-(4.8).

Figure 8. Solution to the optimal control problem 4.3 L not sat-
isfying the uniqueness of the minimizer.

6. Proofs of results in Section 4

This section is devoted to the proofs of the results presented in Section 4, i.e.
Proposition 4.1 and Theorems 4.1 and 4.2. For the sake of readability, we organize
the proofs as follows: in subsection 6.1 we prove the existence a minimizer for
Problem 4.3, and also give the proof of Proposition 4.1; in subsection 6.2, we
deduce the necessary optimality conditions from Pontryagin’s Maximum Principle;
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in subsection 6.3, we prove that, when L is given as in Theorem 4.1, the solutions
to Problem 4.3 are bang-bang; in subsection 6.4 we prove the analogous result
for Theorem 4.2. Finally, in subsection 6.5 we give the proof of uniqueness and
continuity of the solution to Problem 4.3 with respect to the initial condition, when
the penalization term L is given as in Theorems 4.1 or 4.2.

6.1. Existence of minimizers. The existence of a minimizer, solution to Problem
4.3, can be easily proved by means of the direct method in calculus of variations. In-
deed, observe that the dynamical system (4.5) is linear and the admissible controls
in A are uniformly bounded. In addition to that, the functional to be minimized
is convex with respect to the control, which suffices to ensure its weak lower semi-
continuity, allowing us to pass to the limit in the minimizing sequence.

Let us now give the proof of Proposition 4.1, which provides an upper estimate
for the error in the solution to the optimal control problem with the penalization
term for the control, in the case when the SHM problem admits a solution.

of Proposition 4.1. Since we are supposing that Problem 4.1 has a solution, there
exists a control ũ ∈ Aad such that its corresponding trajectory x̃, solution to (4.5),
satisfies x̃(π) = 0.

Now, let u∗ ∈ A be the solution to Problem 4.3, and let x∗ be its corresponding
trajectory. By the optimality of u∗ we have

1

2
‖x∗(π)‖2 + ε

∫ π

0

L(u∗(τ))dτ ≤ ε

∫ π

0

L(ũ(τ))dτ,

and hence, we deduce that ‖x∗(π)‖2 ≤ 4επ‖L‖∞. �

6.2. Optimality conditions. The proofs of Theorems 4.1 and 4.2 are based on
the optimality conditions for Problem 4.3, which can be deduced by means of
Pontryagin’s maximum principle [18, Chapter 2.7].

To this end, let us first introduce the Hamiltonian associated to the Optimal
Control Problem 4.3:

H(t,p, u) = εL(u)−
2

π

(

p ·D(t)
)

u(t), (6.1)

where p ∈ R
Na+Nb is the so-called adjoint variable, and arises from the restriction

imposed by the dynamical system (4.5). In view of the definition of D(t) in (4.3)-
(4.4), we will sometimes write the state and the adjoint variables using the following
notation:

x(t) =
[

a(t), b(t)
]⊤

and p(t) =
[

pa(t),pb(t)
]⊤

.

Now, let us derive the optimality conditions arising from Pontryagin’s Maximum
Principle.

1. The adjoint system: for any u∗ ∈ A solution to Problem 4.3, there
exists a unique adjoint trajectory p∗ ∈ C([0, π);RNa+Nb) which satisfies
the following terminal-value problem







ṗ∗(t) = −∇xH(u(t),p∗(t), t), t ∈ [0, π)

p∗(π) = ∇xΨ(x∗(π))

where Ψ(x) = 1
2‖x‖

2 is the terminal cost. Moreover, since the Hamiltonian

does not depend on the state variable x, we simply have ṗ∗(t) = 0 for all
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t ∈ [0, π). We therefore deduce that the adjoint trajectory is constant, and
given by

p∗(t) = x∗(π), for all t ∈ [0, π). (6.2)

2. The Optimal Control: now, using the optimal adjoint trajectory, we can
deduce the necessary optimality condition for the control, which reads as
follows:

u∗(t) ∈ argmin
|u|≤1

H(t,p∗(t), u), for all t ∈ [0, π). (6.3)

As we will see in subsections 6.3 and 6.4, for penalization functions L as
the ones we consider in Theorems 4.1 and 4.2, this argmin is a singleton
for almost every t ∈ [0, π). Hence, given the adjoint p∗, the condition (6.3)
uniquely determines the optimal control almost everywhere in [0, π). The
only points where the control is not uniquely determined are, precisely, the
switching angles, i.e. the points of discontinuity of the solution.

In view of the form of the adjoint trajectory (6.2) associated to the optimal state
trajectory x∗, let us introduce the function

µ∗(t) :=
2

π

(

x∗(π) ·D(t)
)

(6.4)

=
∑

j∈Ea

a∗j (π) cos(jt) +
∑

j∈Eb

b∗j (π) sin(jt).

Then, in view of (6.1) and (6.2), we can write the optimality condition (6.3) as

u∗(t) ∈ argmin
|u|≤1

J (u, µ∗(t)). (6.5)

where J is defined as

J (u, µ∗(t)) := εL(u)− µ∗(t)u. (6.6)

We are now ready to prove that the solutions to Problem 4.3, when L is chosen
as in Theorems 4.1 and 4.2, have the desired staircase form (2.4)–(2.5).

6.3. Proof of Theorem 4.1 (bang-bang control). We need to prove that, if
L(u) = αu for some 0 6= α ∈ R, then any optimal control u∗ has the form (2.4) with
U = {−1, 1}. Or in other words, u∗(t) takes values in U for all t ∈ [0, π), except for
a finite number of times.

Let u∗ ∈ A be a solution to Problem 4.3, and let x∗ be its associated optimal
trajectory. We just need to notice that, due to (6.5) and the choice of L, the
function u∗ satisfies

u∗(t) =

{

−1 if µ∗(t) < εα

1 if µ∗(t) > εα
.

Observe that, in the case when µ∗(t) = 0, which corresponds only to the cases
when x∗(π) = 0, the optimal control is constant and is just given by u∗(t) =
−sgn(α).

In all the other cases, when x∗(π) 6= 0, the function µ∗(t) is a linear combination
of sines and cosines, and therefore, the equality µ∗(t) = εα can only hold for a finite
number of times t ∈ [0, π), which are the discontinuity points of u∗ (the switching
angles). Note that the choice of u∗ at these points is irrelevant as it represents a
set of zero measure. See Fig. 9 for a graphical illustration of the proof.
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Figure 9. Bi-level SHE: in the left column, we see two examples
of functions L as in Theorem 4.1. In the right column, we see the
corresponding function J (·, µ) for different values of µ. For each
of them, the minumun is marked with a point. We can see that
the minimum is always attained at −1 or 1.

6.4. Proof of Theorem 4.2 (multilevel control). In this case, we suppose that
U = {uk}Lk=1 is a finite set of real numbers in [−1, 1] satisfying

−1 = u1 < u2 < . . . < uL = 1, with L > 2. (6.7)

The case L = 2 is just the bi-level case. As in the previous proof, our goal is to
show that the argmin in (6.5) is a singleton and belongs to U for every t ∈ [0, π)
except for a finite number of points in [0, π).

In this case, the study of the minimizers of J is slightly more involved since
the penalization function L defined in (4.7)-(4.8) is not differentiable at the points
uk ∈ U .

Since L is an affine interpolation of a convex function and, therefore, it is Lips-
chitz and convex, we deduce that also J is Lipschitz and convex as a function of u.
In view of this, we have that u∗ minimizes J (u, µ) if and only if

0 ∈ ∂uJ (u∗, µ), (6.8)

where ∂u denotes the subdifferential with respect to u.
Let us recall below the definition of subdifferential from convex analysis:

∂uJ (u, µ) = {c ∈ R s.t.

J (v, µ)− J (u, µ) ≥ c(v − u), ∀v ∈ [−1, 1]}.

In the case of a convex function as J (·, µ), one can readily show that the sub-
differential at u ∈ (−1, 1) is the nonempty interval [a, b], where a and b are the
one-sided derivatives

a = lim
v→u−

J (v, µ)− J (u, µ)

v − u
, b = lim

v→u+

J (v, µ)− J (u, µ)

v − u
.



20 D. J. OROYA, C. ESTEVE, AND U. BICCARI

Moreover, the subdifferential at u = −1 and u = 1 is given by (−∞, b] and
[a,+∞) respectively. Notice that, if J is differentiable at some u ∈ (−1, 1), then
the left and the right derivatives coincide, and thus, ∂uJ (u, µ) is just the classical
derivative.

Using this characterization of the subdifferential, we can compute ∂uJ (u, µ) for
all u ∈ [−1, 1] in terms of µ. To this end, let us define

pk :=
d

du
λk(u) =

P(uk+1)− P(uk)

uk+1 − uk

for all k ∈ {1, . . . , L − 1}, with λk(u) given by (4.8). Using the definition of J in
(6.6) and L in (4.7), we can compute

∂uJ (−1, µ) = (−∞, εp1 − µ],

∂uJ (1, µ) = [εpL−1 − µ,+∞),

∂uJ (uk, µ) = [εpk−1 − µ, εpk − µ],

for all k ∈ {2, . . . , L− 1}, and

∂uJ (u, µ) = {εpk − µ},

for all u ∈ (uk, uk+1) and all k ∈ {1, . . . , L− 1}. In view of the above computation,
we obtain that

0 ∈ ∂uJ (−1, µ) iff µ ≤ εp1,

0 ∈ ∂uJ (1, µ) iff µ ≥ εpL−1,

0 ∈ ∂uJ (uk, µ) iff εpk−1 ≤ µ ≤ εpk,

(6.9)

for all k ∈ {2, . . . , L− 1}, and

0 ∈ ∂uJ (u, µ) for all u ∈ [uk, uk+1] iff µ = εpk (6.10)

for all k ∈ {1, . . . , L− 1}.
Using (6.9), along with the optimality condition (6.8), we deduce that, for a.e

µ ∈ R, we have
argmin
|u|≤1

J (u, µ) = {uk} for some uk ∈ U . (6.11)

Indeed, (6.11) does not hold if and only if

µ = εpk for some k ∈ {1, . . . , L− 1}. (6.12)

Observe that, in the case when µ∗(t) = 0, which corresponds only to x∗(π) =
0, the optimal control is constant and is just given by u∗(t) = argmin|u|≤1 L(u)
which, by hypothesis, is a singleton and belongs to U (note that between any two
consecutive points of U , the function L is a straight line).

In all the other cases, i.e. when x∗(π) 6= 0, the function µ∗(t) is a linear combi-
nation of sines and cosines, and therefore, the equality µ∗(t) = εpk can only hold,
for each k ∈ {1, . . . , L − 1}, a finite number of times in [0, π). These are precisely
the discontinuity points of u∗ (the switching angles).

We have proved that, for all t ∈ [0, π) except for a finite number of discontinuity
points, which are precisely the switching angles {φm}Mm=0, we have u∗(t) ≡ uk for
some uk ∈ U . Observe that, due to the continuity of µ∗(t), along with (6.9), it is
clear that u∗(t) does not change value between two consecutive switching angles.
Therefore, u∗ is piecewise constant, with a finite number of switches. The choice of
u∗ at the discontinuity points is irrelevant as it represents a set of zero measure.
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Finally, the staircase property of the waveform (2.5) can be deduced from (6.5)
and (6.9), along with the continuity of the function µ∗(t). Following the same
idea of Figure 9 for the Bang-Bang control, we can see in Fig. 10 a graphical
interpretation of the proof for the multilevel case.

Figure 10. Multilevel SHM: in the left column, we see three differ-
ent penalization functions L fulfilling the hypotheses of Theorem
4.2. In the right column, we see the corresponding function J (·, µ)
for different values of µ. For each of them, the minumun is marked
with a point. We can see that the minimum is always attained in
U .

6.5. Uniqueness and continuity of solutions. The proofs in this subsection
apply to both Theorems 4.1 and 4.2 (the bilevel and the multilevel case).

uniqueness. We first prove that Problem 4.3 admits a unique solution, i.e. for each
x0 ∈ R

N , there exists a unique u∗ ∈ A minimizing the functional

F (u,x0) :=
1

2
‖x(π)‖2 + ε

∫ π

0

L(u(t))dt, (6.13)

where, for each u ∈ A, x(π) is given by

x(π) = x0 −
2

π

∫ π

0

D(t)u(t)dt.
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We argue by contradiction. Suppose that there exist two functions u1, u2 ∈ A
solutions to Problem 4.3, which are different in a set of positive measure. As both
of them are optimal, using the arguments in subsections 6.2, 6.3 and 6.4, we deduce
that the controls u1 and u2 are uniquely determined a. e. in [0, π) by the final
state of the associated trajectory, i.e. x∗

1(π) and x∗
2(π), respectively. Therefore, if

u1 6= u2 in a set of positive measure, then we have x∗
1(π) 6= x∗

2(π).
Let us now consider the control

ũ(t) =
u1(t) + u2(t)

2
.

By the linearity of the dynamics (4.5), the convexity of L, and using that x∗
1(π) 6=

x∗
2(π), we obtain

F (ũ,x0) =
1

2

∥

∥

∥

∥

x∗
1(π) + x∗

2(π)

2

∥

∥

∥

∥

2

+ ε

∫ π

0

L

(

u1(t) + u2(t)

2

)

dt

<
F (u1,x0) + F (u2,x0)

2
.

Hence, using that both u1 and u2 minimize the functional F (·,x0), we obtain

F (ũ,x0) < F (u1,x0),

which contradicts the optimality of u1. We therefore conclude that the u1(t) = u2(t)
for a.e. t ∈ [0, π). �

continuity w.r.t. initial condition. Let us now give the proof of the L1-continuity
of the unique solution u∗ to Problem 4.3 with respect to the initial condition.

Let x0 be fixed. We need to prove that, for all γ > 0, there exists δ > 0 such
that

‖x1 − x0‖ ≤ δ implies ‖u∗
1 − u∗

0‖L1(0,π) < γ,

where u∗
0 and u∗

1 are the optimal controls corresponding to the initial conditions x0

and x1 respectively.
As we have proved in subsections 6.3 and 6.4, for any x1, the optimal control

u∗
1, solution to Problem 4.3, is piecewise constant, taking values in U , with a finite

number of discontinuity points (switching points).
We claim that the number of switching points is bounded from above by a

constant M∗ ∈ N, independent of x1 ∈ R
N .

Indeed, as we proved in subsection 6.2, the optimal control u∗
1 is determined by

the optimality condition (6.5), using the function µ∗ defined in (6.4). If µ∗ ≡ 0,
then u∗

1 is constant and there are no switching points. In the other cases, µ∗(t) is
a linear combination of sines and cosines with fixed frequencies. In the bilevel case,
in subsection 6.3 we proved that the switching points correspond to the intersection
points of µ∗(t) with εα. In the multilevel case, we proved in subsection 6.4 that
the switching points correspond to the intersections of µ∗(t) with εpk, see (6.12).
In view of (6.4), as the frequencies are fixed, the number of these intersection
points in the interval [0, π) cannot exceed a certain number M∗, independent of the
coefficients a∗j and b∗k in (6.4). Actually, M∗ only depends on max{Ea, Eb} and the
cardinality of U . The claim then follows.

Using the fact that, for any x1, the solution u∗
1 is piecewise constant taking values

only in U , and with a finite number of switches less than some M∗ independent of
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x1, we deduce that there exists K > 0, independent of x1 such that

‖u∗
1‖BV ≤ K.

See (6.19) below for the definition of the BV norm. We then obtain that, for
any x1 ∈ R

N ,

u∗
1 ∈ A∗

K := {u ∈ A : ‖u‖BV ≤ K}.

Now, for any γ > 0 fixed, we can apply Lemma 6.1 below, to ensure the existence
of η > 0 such that

F (u,x0) ≥ F (u∗
0,x0) + η, (6.14)

for all for all u ∈ A∗
K , with ‖u− u∗

0‖L1(0,π) = γ.
Since the set A∗

K is convex and u∗
0 minimizes F (·,x0), we can use (6.14) and the

convexity of the function u 7→ F (u,x0), to deduce that

F (u,x0) ≥ F (u∗
0,x0) + η, (6.15)

for all u ∈ A∗
K such that ‖u− u∗

0‖L1(0,π) ≥ γ.
Observe that, for any u ∈ A, the function x 7→ F (u,x) is locally Lipschitz, and

therefore, there exists a constant CF > 0 satisfying

|F (u,x1)− F (u,x0)| ≤ CF ‖x1 − x0‖ (6.16)

for any x1 such that ‖x1 − x0‖ ≤ 1. Notice that, since u ∈ A only takes values in
[−1, 1], CF can be chosen independently of u.

Now, combining (6.15) and (6.16), for all u ∈ A∗
K such that ‖u− u∗

0‖L1(0,π) ≥ γ,
we obtain

F (u∗
0,x1) ≤ F (u∗

0,x0) + CF ‖x1 − x0‖

≤ F (u,x0)− η + CF ‖x1 − x0‖ (6.17)

≤ F (u,x1)− η + 2CF ‖x1 − x0‖

Finally, we can choose δ ∈ (0, 1) such that δ < η
4CF

, and from (6.17), we deduce

that, if ‖x1 − x0‖ ≤ δ, then

F (u∗
0,x1) ≤ F (u,x1)−

η

2

for all u ∈ A∗
K such that ‖u− u∗

0‖L1(0,π) ≥ γ, which then implies that necessarily

‖u∗
1 − u∗

0‖L1(0,π) ≤ γ.

This concludes the proof of the L1-continuity of the solution with respect to the
initial condition. �

Let us conclude the section with the following Lemma, which has been used in
the previous proof.

Lemma 6.1. Let x0 ∈ R
N be given and let L be a function as in Theorem 4.1 or

4.2. Let u∗
0 ∈ A be the unique solution to Problem 4.3. For any K > 0, define the

set of controls

A∗
K := {u ∈ A : ‖u‖BV ≤ K}. (6.18)

Then, for any γ > 0, there exists η := η(γ,K) > 0 such that

F (u∗
0,x0) ≤ F (u,x0)− η,

for all u ∈ A∗
K such that ‖u− u∗

0‖L1(0,π) = γ.
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In the definition of A∗
K , we are considering measurable functions of bounded

variation in (0, π), i.e. functions whose distributional derivative is a Radon measure
in (0, π), that we denote by |Du|, and such that |Du|(0, π) is finite. We recall that
the norm ‖ · ‖BV is defined as

‖u‖BV :=

∫ π

0

|u(t)|dt+ |Du|(0, π). (6.19)

See [19, Chapter 3] for further details on the space of functions of bounded
variation.

Proof of Lemma 6.1. We need to prove that

Iγ,K = F (u∗
0,x0) + η,

for some η > 0, where

Iγ,K := inf
{

F (u,x0) : u ∈ A∗
K with ‖u− u∗

0‖L1(0,π) = γ
}

.

The result follows from the fact that the space BV (0, π) is compactly embedded
in L1(0, π), see [19, Theorem 3.23]. Consider any minimizing sequence un ∈ A∗

K

with ‖un − u∗
0‖L1(0,π) = γ, satisfying

lim
n→+∞

F (un,x0) = IK,γ .

By [19, Theorem 3.23], there exists a subsequence of un which converges to some
ũ ∈ A, strongly in L1(0, π).

From the continuity of the L1-norm and of the functional F (·,x0) with respect
to the strong L1-topology, we deduce that the limit ũ satisfies

‖ũ− u∗
0‖L1(0,π) = γ and F (ũ,x0) = IK,γ .

Finally, since u∗
0 is the unique minimizer of F (·,x0), we conclude that

Iγ,K − F (u∗
0,x0) = F (ũ,x0)− F (u∗

0,x0) = η > 0.

�

7. Conclusions

In this paper, we propose a novel optimal control based approach to the Selective
Harmonic Modulation problem. More precisely, we have described how the SHM
Problem 2.1 can be reformulated in terms of a null-controllability one for which
the solution u plays the role of the control and can be obtained through the min-
imization of a suitable cost functional. Besides, we have shown both theoretically
and through numerical simulations that with our methodology we are able to solve
several critical issues (described in detail in Section 3) arising in practical power
electronic engineering applications.

1. Combinatory problem: in our approach, neither the waveform nor the num-
ber of switching angles need to be a priori determined, as they are implicitly
established by the optimal control. This has two relevant advantages with
respect to existing techniques as the one presented in Section 3. On the one
hand, this renders a computationally lighter methodology to solve the SHM
problem, as it does not need to repeatedly solve an optimization problem
for different waveforms. On the other hand, it bypasses the task of a priori
estimating the number of switches which is necessary to reach the desired
Fourier coefficients.
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2. Solvable set problem: as we are not restricting the solution to have a pre-
scribed waveform, our approach provides solutions for an ample solvable
set.

3. Policy problem: the policy obtained through our methodology is not a gath-
ering of several policies to which may correspond disjoint or even overlap-
ping solvable sets. Hence, the continuity of the solution angles is guaranteed
and we do not generate regions with no solution to the SHM problem.

However, some relevant issues have not been completely covered by our study,
and will be considered in future works:

1. Minimal number of switching angles. In practical applications, to
optimize the converters’ performance, it is required to maintain the number
of switches in the SHM signal the lowest possible. It then becomes very
relevant to determine which is the minimum number of switches allowing
to reach the desired target Fourier coefficients.

2. Stability of the waveform and number of switching angles. Related
to the previous point, we observe in our numerical simulations in Section 5
that, although the optimal control u∗ is L1-continuous with respect to the
initial condition, the waveform and even the number of switching angles may
change when varying the parameter m continuously. A finer analysis of the
Problem 4.3 may provide more information and understanding concerning
this phenomenon.

3. Characterization of the solvable set. It would be interesting to have
a full characterization of the solvable set for the SHM problem, thus de-
termining the entire range of Fourier coefficients which can be reached by
means of our approach.

4. Reduce the computational cost. In this paper, we have used existing
numerical tools in optimal control to solve problem 4.3. It would be inter-
esting to design algorithms adapted to our specific problem and compare
their performance with other existing techniques in the SHM literature.
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