
Generative modelling and normalizing flows

Pierre Mordant

April 19th 2021

1 / 12 Pierre Mordant Generative modelling and normalizing flows



Unsupervised learning

Supervised learning

Given 2 random variables X ∈ Rn and Y ∈ R, we want to
construct a function f : Rn → R so that f (X ) = Y

We have a usually large but finite set of samples
{(Xi ,Yi )} ∈ (Rn × R)p

For that purpose, we usually construct a loss function L over a
definite set of functions G and we take f = arg min

g∈G
L(g)

2 / 12 Pierre Mordant Generative modelling and normalizing flows



Unsupervised learning

Supervised learning

Given 2 random variables X ∈ Rn and Y ∈ R, we want to
construct a function f : Rn → R so that f (X ) = Y

Unsupervised learning

Given a random variable X ∈ Rn of probability distribution X , we
want to construct a model that will be able to determine the inner
patterns of the dataset.

Main difference : Build a model based on p(X |Y ) VS build a
model based on p(X )

3 / 12 Pierre Mordant Generative modelling and normalizing flows



Examples :
Clustering Anomaly detection

4 / 12 Pierre Mordant Generative modelling and normalizing flows



Generative modelling

Definition

Given a random variable X ∈ Rn of probability distribution X , we
want to learn a representation of that distribution.
For that purpose, we train a generator g : Rq → Rn so that
g(Z) = X where Z is a tractable probability distribution
supported in Rq

5 / 12 Pierre Mordant Generative modelling and normalizing flows



Applications

Generate new samples : deepfake

Estimate density function

Estimate likelihood of new data points

6 / 12 Pierre Mordant Generative modelling and normalizing flows



Deep Generative modelling

Generative models trained with neural networks.

3 main types of deep generative models :

Generative adversarial networks

Variatonal auto-encoders

Normalizing flows

7 / 12 Pierre Mordant Generative modelling and normalizing flows



Normalizing flows

Change of variables theorem

If x = gθ(z) where gθ is a diffeomorphism, we have

pX (x) = pZ (z) (detJgθ(z))−1

with Jgθ the Jacobian matrix of gθ

Normalizing flows

Constructing a diffeomorphism T : Rn → Rn such that T (Z ) = X ,
using multiple transformations Ti such that Ti (Zi ) = Zi+1 with
Z0 = Z and Zp = X

Maximum likelihood training

We train the model by minimizing the negative log-likelihood :

JML(x) = EX

(
−log

(
pZ (g−1

θ (x))(detJg−1
θ

(x)
))

8 / 12 Pierre Mordant Generative modelling and normalizing flows



Residual flows

We consider a class of invertible transformation of the general form
:

z
′

= z + f (z)

2 main ways to get an invertible transformation :

Contractive residual flows

Residual flows based on the matrix determinant lemma

9 / 12 Pierre Mordant Generative modelling and normalizing flows



Continuous normalizing flows

Idea : replacing a large number of finite steps by a continuous time
approach.

Definition

Let zt be the state of the flow at time t.
A continuous time flow is constructed using a function gθ such that

dzt
dt

= gθ(zt , t)

with zt0 = Z and zt1 = X

We can then compute : x = z +
∫ t1

t0
gθ(zt , t)dt

The log density can be computed with the trace of the Jacobian
matrix

10 / 12 Pierre Mordant Generative modelling and normalizing flows



Continuous normalizing flows

Advantages :

Memory efficiency : single call to an ODE solver

Adaptive computation

Using multiple hidden units in linear cost

11 / 12 Pierre Mordant Generative modelling and normalizing flows



Thanks for the attention!

12 / 12 Pierre Mordant Generative modelling and normalizing flows


