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Unsupervised learning

Supervised learning

Given 2 random variables X € R" and Y € R, we want to
construct a function f : R” — R so that f(X) =Y

We have a usually large but finite set of samples
{(Xi, Yi)} € (R x R)P

For that purpose, we usually construct a loss function L over a

definite set of functions G and we take f = argminL(g)
geg
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Unsupervised learning

Supervised learning

Given 2 random variables X € R" and Y € R, we want to
construct a function f : R” — R so that f(X) =Y

| A\

Unsupervised learning

Given a random variable X € R" of probability distribution X', we
want to construct a model that will be able to determine the inner
patterns of the dataset.

\

Main difference : Build a model based on p(X|Y) VS build a
model based on p(X)

Pierre Mordant Generative modelling and normalizing flows



Examples :
Clustering

Original unclustered data . Clustered data

Pierre Morda

Anomaly detection

@ Outlier
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Generative modelling

Definition

Given a random variable X € R” of probability distribution X, we
want to learn a representation of that distribution.

For that purpose, we train a generator g : R9 — R” so that
g(Z) = X where Z is a tractable probability distribution

supported in RY
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Applications

@ Generate new samples : deepfake
e Estimate density function

@ Estimate likelihood of new data points
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Deep Generative modelling

Generative models trained with neural networks.

3 main types of deep generative models :
@ Generative adversarial networks
@ Variatonal auto-encoders

o Normalizing flows
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Normalizing flows
Change of variables theorem

If x = gy(z) where gy is a diffeomorphism, we have
px(x) = pz(2) (detJg, (2)) !
with Jg, the Jacobian matrix of gy

Normalizing flows

Constructing a diffeomorphism T : R" — R” such that T(Z) = X,
using multiple transformations T; such that T;(Z;) = Zj+1 with
Zo=Zand Z, =X

Maximum likelihood training

We train the model by minimizing the negative log-likelihood :

(%) = Ex (~log (pz(g5 " (x))(det,1(x)) )
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Residual flows

We consider a class of invertible transformation of the general form

7 =z+f(2)
2 main ways to get an invertible transformation :

@ Contractive residual flows

@ Residual flows based on the matrix determinant lemma
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Continuous normalizing flows

Idea : replacing a large number of finite steps by a continuous time
approach.

Definition

Let z; be the state of the flow at time t.
A continuous time flow is constructed using a function gy such that

dZt

E - g@(zta t)

with z;; = Z and z;;, = X

We can then compute : x =z + ftzl go(z:, t)dt
The log density can be computed with the trace of the Jacobian
matrix
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Continuous normalizing flows

Advantages :
@ Memory efficiency : single call to an ODE solver
@ Adaptive computation

@ Using multiple hidden units in linear cost
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Thanks for the attention!
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