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My thesis

I considered PDEs, system of PDEs and system of ODEs that
models phenomena in population dynamics: evolution, dependence
from the media, competition, diffusion, . . .

My thesis contains three problems:
1 a model of population diffusion in a periodic media presenting

a fast diffusion channel; this corresponds to the study of a
reaction-diffusion system.

2 (with S.Dipierro, L.Rossi, E.Valdinoci) a model of competitive
and asymmetric aggressive interaction between two species;
we consider a system of ODEs and a controllability problem.

3 (with S.Dipierro and E.Valdinoci) a class of evolution
equations with both classic and fractional time derivatives; we
study the asymptotic decay of solutions.

2 / 29



My thesis

I considered PDEs, system of PDEs and system of ODEs that
models phenomena in population dynamics: evolution, dependence
from the media, competition, diffusion, . . .

My thesis contains three problems:
1 a model of population diffusion in a periodic media presenting

a fast diffusion channel; this corresponds to the study of a
reaction-diffusion system.

2 (with S.Dipierro, L.Rossi, E.Valdinoci) a model of competitive
and asymmetric aggressive interaction between two species;
we consider a system of ODEs and a controllability problem.

3 (with S.Dipierro and E.Valdinoci) a class of evolution
equations with both classic and fractional time derivatives; we
study the asymptotic decay of solutions.

2 / 29



My thesis

I considered PDEs, system of PDEs and system of ODEs that
models phenomena in population dynamics: evolution, dependence
from the media, competition, diffusion, . . .

My thesis contains three problems:
1 a model of population diffusion in a periodic media presenting

a fast diffusion channel; this corresponds to the study of a
reaction-diffusion system.

2 (with S.Dipierro, L.Rossi, E.Valdinoci) a model of competitive
and asymmetric aggressive interaction between two species;
we consider a system of ODEs and a controllability problem.

3 (with S.Dipierro and E.Valdinoci) a class of evolution
equations with both classic and fractional time derivatives; we
study the asymptotic decay of solutions.

2 / 29



My thesis

I considered PDEs, system of PDEs and system of ODEs that
models phenomena in population dynamics: evolution, dependence
from the media, competition, diffusion, . . .

My thesis contains three problems:
1 a model of population diffusion in a periodic media presenting

a fast diffusion channel; this corresponds to the study of a
reaction-diffusion system.

2 (with S.Dipierro, L.Rossi, E.Valdinoci) a model of competitive
and asymmetric aggressive interaction between two species;
we consider a system of ODEs and a controllability problem.

3 (with S.Dipierro and E.Valdinoci) a class of evolution
equations with both classic and fractional time derivatives; we
study the asymptotic decay of solutions.

2 / 29



Today’s talk

1 An aggressive competition Lotka-Volterra system

2 Cross-diffusion models

3 Reinforcement learning
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

Section 1

An aggressive competition Lotka-Volterra
system
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

Two populations Lotka-Volterra competitive system

Two populations:
u size of the first population, u ≥ 0
v size of the second population, v ≥ 0

Reproduction (Verhulst): depends on the size of the population
and the quantity of available resources
u̇ = u(1− u)

Interaction: if the populations live in the same environment, there
is competition for resources:{

u̇ = u (1− u−v) , t > 0,
v̇ = v (1−u − v) , t > 0.
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

More parameters:

ru, rv reproduction rates
ku, kv carrying capacities
αu, αv competition coefficients

u̇ = ruu
(

1− u + αuv
ku

)
, t > 0,

v̇ = rv v
(

1− v + αv u
kv

)
, t > 0.

Complicated dynamics:
- If kuαu < 1 and kvαv < 1, coexistence equilibrium
- If kuαu < 1 < kvαv : u prevails
- If kuαu, kvαv > 1: phase plane splits into two basins
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

A model for civil war

We derive the model from basic principles.

Two rational, strategist populations.

The first population attacks the second one.

The second population defends but does not attack.

The war stops at the extinction of one of the populations.

Space is not taken into account (yet).
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

Modelling civil war

Parameters and how to use them:

1. Aggressiveness: a
probability of :

2. War death rates: ζ and θ
deaths for the first population: ζau
deaths for the second population: θau

3. Missing births1: cu and cv
missing birth for the first population: cuau
missing birth for the second population: cv au

1Vandenbroucke: “During World War I (1914-1918) the birth rate in France
fell by 50%”, (Fertility and Wars, American Economic Journal:
Macroeconomics, 2014).
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

We get:
u̇ = ruu

(
1− u + αuv

ku

)
− a(cu + ζ)u, t > 0,

v̇ = rv v
(

1− v + αv u
kv

)
− a(cv + θ)u, t > 0,

that is very general but not easily treatable.

We assume:
ku = kv
αu = αv = 1

Rescaling, we get:{
u̇ = u(1− u − v)− acu, t > 0,
v̇ = ρv(1− v − u)− au, t > 0. (1)

a aggressiveness, ρ fitness of the second population wrt the first,
c losses of war for the first population wrt the second
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

End of the war
Observation: v may become negative in finite time, in contrast
to what happen with Lotka-Volterra equations.

We can define the stopping time

Ts(u(0), v(0)) =
{

T if v(T ) = 0, u(T ) > 0,
+∞ otherwise,

and consider solutions only up to t = Ts

The first population wins the war if Ts < +∞, thus for initial
value in the set

E :=
{

(u(0), v(0))
∣∣∣ Ts(u(0), v(0)) < +∞

}
.

The second population wins the war if (u, v)→ (0, 1), thus for
initial point in the set

B :=
{

(u(0), v(0))
∣∣∣ Ts(u(0), v(0)) = +∞, (u(t), v(t)) t→∞−→ (0, 1)

}
.
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

Dynamics 1: ac < 1

Equilibria:

(0, 0) unstable,
(0, 1) stable,(

1−ac
1+ρc ρc, 1−ac

1+ρc

)
saddle,

Γ its stable manifold
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Results

Dynamics 2: ac ≥ 1

Equilibria:

(0, 1) stable,
(0, 0) saddle,
Γ stable manifold
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Defining the model
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Strategy
We sympathize with one of the two populations.
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Civil wars
Cross-diffusion models

Reinforcement learning

Defining the model
Results

The first population can influence the dynamics by modulating its
aggressiveness a, we call it strategy.

From now, a(t) piecewise continuous, with finite number of
discontinuities.
The first population wins if (u(0), v(0)) belongs to

V :=
⋃

a(·)∈A
E(a(·)).

Main questions
1 Characterising V;
2 Are constant strategies successful?
3 How to construct a winning strategy?
4 What strategy minimises duration of the war?

Difficulty: the problem is not controllable; we use geometrical
methods.
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Theorem: Characterisation of V
[A., Dipierro, Rossi, Valdinoci, 2020]

For ρ = 1, we have that for all a > 0 we have

E(a) =
{

(u, v) ∈ [0, 1]× [0, 1]
∣∣ v < u

c

}
,

Figure: ρ = 1, c = 0.5,
a1 = 0.01, a2 = 100
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Cross-diffusion systems
y1 size of the first population
y2 size of the second population

Lotka-Volterra with diffusion (due to natural displacement):{
∂ty1 − d1∆y1 = y1 (1− y1 − y2) ,
∂ty2 − d2∆y2 = y2 (1− y1 − y2) .

Cross-diffusion: impact of the presence of the first species on the
movement of the individuals of the second one through a repulsive
effect; new diffusion rate:{

∂ty1 − d1∆y1 = y1 (1− y1 − y2) ,
∂ty2 −∆[y2d2(1 + y1)] = y2 (1− y1 − y2) ,

with homogeneous Neumann boundary conditions.

Presents strong nonlinear coupling, resulting in Turing instability
and causing the pattern formation typical of segregation of
populations
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My problem in cross-diffusion models

Problem: adding some control terms on the boundary
∂ty1 − d1∆y1 = y1 (1− y1 − y2) , in Ω,
∂ty2 −∆[v d2(1 + y1)] = y2 (1− y1 − y2) , in Ω,
(y1, y2) = (u1, u2) on Γ ⊂ ∂Ω
y1 · ν = y2 · ν = 0 on ∂Ω \ Γ.

Question: Can we find a control (u1, u2) that drives an initial
condition (y0

1 , y0
2 ) in a target state (ỹ1, ỹ2)

1 in finite time?
2 approximately?
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Solution strategy:
1 linearise and look for coerciveness of the energy functional; if

unavailable, look at the microscopic model;
2 get controllability through a fixed point argument.

Microscopic model: The cross-diffusion effect is approximated by
the existence of two states for the repulsed population; the
stressed state y2B has higher diffusivity. Then, one writes again the
model for y1 and y2A, y2B such that y2 = y2A + y2B
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What is reinforcement learning?

Reinforcement learning is an area
of machine learning concerned
with how intelligent agents ought
to take actions in an environment
in order to maximize a
cumulative reward, but without
knowing the exact dynamics
without knowing the exact
dynamics of the environment.
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An example of RL: LQR (Recht et al., 2020)

yt state of the system
ut control

Dynamics of the environment: yt+1 = Ayt + But ,
with A and B transition matrices.
The dynamics is linear in both the state and the control

Cost to minimize: 1
T
∑T

t=1 y∗t Qyt + u∗t−1Rut−1
with Q and R definite positive matrices.
The cost is quadratic in both the state and the control

Question: solve the optimisation in a robust way
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Recht’s strategy

1 Use supervised learning to learn a coarse model:
run N experiments and estimate A and B trough least square

2 Estimate the error:
using theoretical bounds, find an upper bound for the
difference between the nominal and the true system. This
estimate is found to depend on the smaller eigenvalue of the
controllability Gramians matrices.

3 Solve an error-friendly optimization problem:
owing the estimate, minimize the cost for the worst case
among all the (A,B) within the confidence intervals by using
Robust Synthesis
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My problem in RL: parabolic diffusion

y(x , t) state of the system
u(x , t) control

Dynamics: ẏ =
∑n

i ,j=1 aij∂ijx + χωu for x ∈ Ω, t > 0
with A = [aij ]ij definite positive (so that the operator is elliptic)
and ω ⊂ Ω an unknown set.
The dynamics is parabolic

Cost to minimize: 1
T
∫ T

0 yQy + uRu dt
with Q and R definite positive matrices.
The cost is quadratic in both the state and the control

Question: solve the optimisation in a robust way
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My strategy

1 Use supervised learning to learn a coarse model:
run N experiments and estimate A and ω through least
squares

2 Estimate the error:
using theoretical bounds, find an upper bound for the
difference between the nominal and the true system. This is
expected to be linked to observability estimate.

3 Solve an error-friendly optimization problem:
owing the estimate, minimize the cost for the worst case
among all the (A,B) within the confidence intervals by using
Robust Synthesis (?)
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Thank you for your
attention!

29 / 29



Other results on civil wars

Section 4

Other results on civil wars

1 / 3



Other results on civil wars

Are constant strategies good enough?

K︸︷︷︸
constants

( A︸︷︷︸
piecewise continuous

Theorem [A., Dipierro, Rossi, Valdinoci, 2020]
For ρ = 1, for all (u0, v0) ∈ V, (all) constants work.
For ρ 6= 1, there exists a point in V for which no constant
strategy works.
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Other results on civil wars

How to construct a winning strategy?
Let H := {a(·) ∈ A : a(t) is piecewise constant with 1 jump}.

K︸︷︷︸
constants

( H︸︷︷︸
Heaviside

( A︸︷︷︸
piecewise continuous

Theorem [A., Dipierro, Rossi, Valdinoci, 2020]
For all points in V, u can win with an Heaviside strategy.

If (u0, v0) ∈ V, then either there exists a constant winning strategy
or u wins for a strategy

a(t) =
{

a1 t < T
a2 t ≥ T

for suitable a1, a2, T .
We can win the war with bang-bang strategies.
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