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Abstract. We consider the neural ODE and optimal control perspective of super-
vised learning with L1(0, T ;Rdu) control penalties, where rather than only mini-
mizing a final cost for the state, we integrate this cost over the entire time horizon.
Under natural homogeneity assumptions on the nonlinear dynamics, we prove that
any optimal control (for this cost) is sparse, in the sense that it vanishes beyond
some positive stopping time. We also provide a polynomial stability estimate for
the running cost of the state with respect to the time horizon. This can be seen as
a turnpike property result, for nonsmooth functionals and dynamics, and without
any smallness assumptions on the data, both of which are new in the literature. In
practical terms, the temporal sparsity and stability results could then be used to
discard unnecessary layers in the corresponding residual neural network (ResNet),
without removing relevant information.
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1. Introduction

1.1. Motivation. Sparsity is a highly desirable property in many machine learning
and optimization tasks due to the inherent reduction of computational complexity.
Typically induced by `1 penalties/regularizations, it has been used extensively for
simplifying machine learning tasks by selecting, in an automatized manner, a strict
subset of the available features to be used. This is exemplified by the well-known Lasso
(least absolute shrinkage and selection operator, [Santosa and Symes, 1986; Tibshirani,
1996]), which consists in minimizing a least squares cost function and an `1 parameter
penalty for an affine parametric model y = wx+ b. As the `1 penalty enforces a subset
of the optimizable parameters (w, b) to become zero, the associated features may be
discarded safely.
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With such insights in mind, in this work we analyze supervised learning problems
viewed from the lens of optimal control and neural ODEs, and demonstrate the appear-
ance of sparsity patterns for global minimizers in the context of L1(0, T ;Rdu) control
penalties. Rather than typical sparsity in which, at a given time t, all but few of the
components of a control u(t) ∈ Rdu are zero, we shall demonstrate a temporal sparsity
property, namely that an optimal control u(t) concentrates all its value within an in-
terval [0, T ∗], and vanishes beyond time t > T ∗. We motivate our setting and main
result in what follows, and refer the reader to Section 1.6 for a roadmap of the paper.

1.2. Supervised learning. To put the above discussion into context, we recall that
supervised learning addresses the problem of predicting from labeled data, which con-
sists in approximating an unknown function f : X → Y from known samples{

x(i), y(i)
}
i∈[n]

⊂ X × Y.

Here and henceforth, [n] := {1, . . . , n} and X ⊂ Rd. Depending on the nature of the
label space Y, one distinguishes two types of supervised learning tasks: classification,
when labels take values in a finite set of m > 2 classes, e.g. Y = [m], and regression,
when the labels take continuous values in Y ⊂ Rm with m > 1. To solve a supervised
learning problem, one seeks to construct a map fapprox : X → P(Y), which, desirably,
is such that for any x ∈ X and for any Borel measurable A ⊂ Y, fapprox(x)(A) ' 1
whenever f(x) ∈ A, and fapprox(x)(A) ' 0 whenever f(x) 6∈ A; here, P(Y) denotes the
space of probability measures on Y. In other words, one looks for a map fapprox which
approximates the map x → δf(x) where δz denotes the Dirac measure centered at z.
Ultimately, this translates to simultaneously interpolating the above dataset through
fapprox, whilst ensuring generalization/extrapolation, namely reliable prediction on
points in X which are outside of said dataset ([Mallat, 2016]).

1.3. An optimal control perspective. There are various ways in which one can
construct such an approximation fapprox, with different degrees of empirical and the-
oretical guarantees. In this paper, following a recent trend started with the works [E,
2017; Haber and Ruthotto, 2017; Chen et al., 2018], we shall focus on parametrizing
fapprox by the flow of neural ODEs, such as{

ẋi(t) = w(t)σ(xi(t)) + b(t) for t ∈ (0, T ),

xi(0) = x(i),
(1.1)

for i ∈ [n] and T > 0, with σ being a scalar, globally Lipschitz function defined
componentwise in (1.1). The matrix w(t) ∈ Rd×d and vector b(t) ∈ Rd play the role of
controls (called parameters in machine learning jargon), which in practice are found
by solving an empirical risk minimization problem of the form

inf
u=(w,b)∈U

xi solves (1.1)

1

n

n∑
i=1

loss
(
Pxi(T ), y

(i)
)

︸ ︷︷ ︸
:=E (x(T ))

+

∫ T

0
‖u(t)‖1 dt. (1.2)
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Here, U is an appropriate Banach subspace of L1(0, T ;Rdu), P : Rd → Rm is an affine
map which we suppose to be given1, and which serves to match the states xi(T ) with
the labels y(i) (typically of different dimensions), while

loss(·, ·) : Rm × Y → R+

is such that x 7→ loss(x, y) is continuous for all y ∈ Y, loss(x, y) 6= 0 whenever
µ(x) 6= δy, and loss(x, y)→ 0 when µ(x)→ δy in an appropriate sense of measures (e.g.,
for some Wasserstein distance, or for the Kullback-Liebler divergence). A canonical
example is given by the square of the euclidean distance (least squares error). But
more tailored loss functions may be used, including positive and non-coercive ones,
such as the cross-entropy loss commonly used for classification tasks

loss
(
x, y
)
:= − log

(
exy∑m
j=1 e

xj

)
for x ∈ Rm, y ∈ [m]. (1.3)

Once a solution u = (w, b) to (1.2) is found, one may construct the approximation
fapprox by setting fapprox(x) = µ(x(T )) for x ∈ X ⊂ Rd, where x(T ) solves (1.1) with
x(0) = x and control u. The choice of µ : X → P(Y) depends on the loss function and
task at hand; for the least squares error loss for instance, one sets µ(x) := δPx, while
for the cross-entropy loss, one sets µ := softmax◦P , with softmax(z)` = ez`/

∑m
j=1 e

zj for
` ∈ [m] and z ∈ Rm, as in (1.3) (designating a smooth approximation of the argmax).

The above presentation thus leads one to note that, in the neural ODE setting,
supervised learning is a particular optimal control problem, wherein one looks to find
a single pair of controls u = (w, b) which steer n trajectories of a nonlinear ODE such
as (1.1), corresponding to n different initial data, to n different targets.

1.4. The role of T . Let us motivate our reason for considering the neural ODE
and optimal control interpretation of supervised learning. In practice, one typically
considers some discrete-time analog of (1.1), e.g. a forward Euler scheme of the formxk+1

i = xki +4t
(
wkσ

(
xki
)
+ bk

)
for k ∈ {0, . . . , nt − 1},

x0
i = x(i),

(1.4)

for i ∈ [n], where nt > 2 and 4t = T/nt. The scheme (1.4) is an example of a
residual neural network (ResNet), a popular neural network architecture introduced
in [He et al., 2016]. As shown in [He et al., 2016], such neural networks provide,
empirically, remarkable interpolation and extrapolation performance when nt is large
(of the orders of hundreds or thousands). Here, nt is referred to as the depth of the
network (1.4) and each time-step k is called a layer. When nt is large, one is said
to do deep learning. However, the theory supporting these empirical results is not
completely mature ([Zhang et al., 2021]).

We observe that when 4t > 0 is fixed, the time horizon T can be used to estimate
the depth nt. This warrants the study of the behavior of optimal control problems for
neural ODEs when T is increased. On another hand, for many problems in optimal
control, tracking the control and the trajectory over the entire time interval yields
quantitative stability estimates for both when T is large enough. This is for instance

1In practice, P is either an optimizable variable, or its coefficients may be chosen at random. While
we fix P for technical purposes, our numerical experiments indicate that the results presented in what
follows persist when P is optimized as well.
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the case in turnpike theory for linear quadratic (LQ) problems ([Porretta and Zuazua,
2013]). Consequently, in this work, rather than (1.2), we are led to consider

inf
u=(w,b)∈U

xi solves (1.1)

∫ T

0
E (x(t)) dt+

∫ T

0
‖u(t)‖1 dt, (1.5)

where E is defined in (1.2), and where we set x(t) = {xi(t)}i∈[n]. Our goal in this work
is to provide a rather complete picture of the behavior of solutions to (1.5) and (1.1)
as functions of T .

1.5. Our result: temporal sparsity. As insinuated in above discussions, penalizing
the L1(0, T ;Rdu) norm promotes the control u(t) to be sparse in time. This can already
be confirmed through numerical experiments2 before proceeding with theoretical setups
and proofs. In Figure 1 (see Figure 2–Figure 3 for further illustrations), we depict a
solution of (1.5) for a binary classification task (Y := {−1, 1}), with σ ≡ tanh, using
the cross-entropy loss defined in (1.3), with T = 5, 4t = 1/3 with a midpoint scheme,
and n = 3000. We also impose the constraint ‖u(t)‖1 6 M with M = 8, to avoid
concentration near t = 0. (See Remark 1.) The numerical results show that optimal
controls u(t) = (w(t), b(t)) concentrate within an interval [0, T ∗], and vanish beyond
time T ∗. Furthermore, the corresponding states {xi(t)}i∈[n] are, naturally, stationary
for t > T ∗, but actually in the regime in which E (x(t)) is near 0, as desired. In the
following section, we shall mathematically formalize these results and provide rigorous
proofs ensuring their validity in a wide array of functional settings.
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Figure 1. (Left) Sparsity in time for optimal controls u(t) solv-
ing (1.5). (Right) Decay of the error E (x(t)) of the optimal states
{xi(t)}i∈[n] to zero. Both vanish in a finite time T ∗ ∼ 1.5, which cor-
responds to 5 layers. More layers are hence not necessary.

1.6. Outline. The remainder of this work is structured as follows. In Section 2, we
provide the functional setting and our main result (Theorem 2.1), which corroborates
the numerical experiment presented just above. Further numerical visualizations of
the same experiment may also be found therein. The proof of Theorem 2.1 may be
found in Section 3. We conclude with a selection of open problems in Section 4.

2Codes may be found at https://github.com/borjanG/dynamical.systems. Experiments were
done using PyTorch [Paszke et al., 2017]. Minimization was done with Adam [Kingma and Ba, 2014].

https://github.com/borjanG/dynamical.systems
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1.7. Notation. We denote R+ := [0,+∞). For any tensor u = (u1, . . . , udu) ∈ Rdu
and any p ∈ [1,+∞), we denote by ‖u‖p the p-Frobenius norm of u. We focus on
p = 1, but our results hold for any p.

2. Main result

2.1. Setup. We henceforth suppose we are given a dataset{
x(i), y(i)

}
i∈[n]

⊂ X × Y (2.1)

with X ⊂ Rd and x(i) 6= x(j) for i 6= j. The label space Y may either be a finite
subset of N, or a subset of Rm. To have a more coherent presentation and simplify the
technical details, we shall stack all of the trajectories xi(t) appearing in neural ODEs
as (1.1), in order, into one single vector x(t) ∈ Rdn. Namely, we set

x(t) :=

x1(t)
...

xn(t)

 ∈ Rdx , x0 :=

x
(1)

...
x(n)

 ∈ Rdx

for i ∈ [n] and t > 0, where dx := dn, and consider stacked neural ODEs in the general
form {

ẋ(t) = f(x(t), u(t)) for t ∈ (0, T ),

x(0) = x0,
(2.2)

where u(t) := (w(t), b(t)) ∈ Rd2+d. We provide some important comments on the
choice of initial datum x0 to Remark 3. As presented in (1.1), for the stacked system
the nonlinearity f : Rdx × Rdu → Rdx may take the form

f(x, u) =

w . . .
w

σ(x) +
b...
b

 (2.3)

for x ∈ Rdx and u = (w, b) ∈ Rdu , with du := d2+d. Once again, σ ∈ Lip(R) is defined
componentwise, so that each component of f coincides with the canonical neural ODE
given in (1.1). Permutations may also be considered, such as

f(x, u) = σ


w . . .

w

x+

b...
b


 , (2.4)

as in the original paper [E, 2017]. Actually the key assumption we shall henceforth
make regarding f is the following.

Assumption 1 (Homogeneous dynamics). We suppose that σ ∈ Lip(R). We suppose
that f is 1–homogeneous with respect to the controls u, in the sense that

f(x, αu) = α f(x, u)

for all (x, u) ∈ Rdx × Rdu and for all α > 0.

This is clearly the case for dynamics f parametrized as in (2.3), whilst for (2.4), we
shall moreover assume that σ is 1–homogeneous – a canonical example is the ReLU
σ(x) = max{x, 0}, or more general variants such as σ(x) = max{ax, x} for a ∈ [0, 1).
Such homogeneity assumptions are not rare in neural network theory, in which one



6 CARLOS ESTEVE-YAGÜE AND BORJAN GESHKOVSKI

commonly makes use of scaling arguments, see [Chizat and Bach, 2018] for instance.
Now, as seen in (1.5), given T > 0 we shall consider the following minimization problem

inf
u∈Uad,T

x solves (2.2)

∫ T

0
E (x(t)) dt+

∫ T

0
‖u(t)‖1 dt︸ ︷︷ ︸

:=JT (u)

, (2.5)

where E is defined in (1.2), and

Uad,T :=
{
u ∈ L1(0, T ;Rdu) : ‖u(t)‖1 6M a.e. in (0, T )

}
for a fixed thresholding constant M > 0. Note that for such controls, (2.2) admits a
unique solution x ∈ C0([0, T ];Rdx) by the Cauchy-Lipschitz theorem. We postpone
commenting the need of having an L∞ constraint in Uad,T to Remark 1. Before doing
so, we make precise the exact assumptions we shall henceforth make regarding the loss
function inducing the error E , defined in (1.2), appearing in (2.5).

Assumption 2 (The loss function). We suppose that loss(·, ·) : Rm×Y → R+ appear-
ing in (1.2) satisfies

loss(·, y) ∈ Liploc(Rm;R+) and inf
x∈Rm

loss(x, y) = 0

for all y ∈ Y.
This assumption is generic among most losses considered in practice, including all
those induced by a distance (e.g., least squares error) and the cross-entropy loss (1.3).

2.2. Main result. Throughout the paper, we will assume that the neural ODE can
interpolate the dataset defined in (2.1), either in finite or in infinite time. This is an
exact controllability assumption, as we shall suppose that there exist controls for which
the corresponding stacked trajectory x(t) makes E (x(·)) (defined in (1.2)) vanish in
finite or in infinite time respectively.

Definition 1 (Interpolation). We say that
(i) (2.2) interpolates the dataset (2.1) in some time T > 0 if there exists T > 0

and u ∈ L∞(0, T ;Rdu) such that the solution x ∈ C0([0, T ];Rdx) to (2.2)
satisfies

E (x(T )) = 0.

(ii) (2.2) asymptotically interpolates the dataset (2.1) if there exist T > 0, some
function h ∈ C∞([T,+∞);R+) satisfying

ḣ < 0 and lim
t→+∞

h(t) = 0,

and some u ∈ L∞(R+;Rdu) such that the solution x ∈ C0(R+;Rdx) to (2.2)
set on R+ satisfies

E (x(t)) 6 h(t)

for t > T .

These conditions actually hold for the dynamics f and many of the errors E we consider
here – we postpone this discussion to Remark 2. We may now state our main result.



SPARSE APPROXIMATION IN LEARNING VIA NEURAL ODES 7

Theorem 2.1. Suppose T > 0 and M > 0 are fixed. Let uT ∈ Uad,T be any (should it
exist3) solution to (2.5). Let xT ∈ C0([0, T ];Rdx) denote the corresponding solution to
(2.2). Then, there exists some time T ∗ ∈ (0, T ] such that

‖uT (t)‖1 =M for a.e. t ∈ (0, T ∗),

‖uT (t)‖1 = 0 for a.e. t ∈ (T ∗, T ). (2.6)

Moreover, T ∗ is such that

E (xT (T
∗)) 6 E (xT (t)) for t ∈ [0, T ], (2.7)

and, furthermore,
(i) If system (2.2) interpolates the dataset in some time T0 > 0 as per Defini-

tion 1, then there exists a constant C > 0 independent of both T and M , such
that

T ∗ 6 C

(
1

M
+

1

M2

)
and

E (xT (T
∗)) 6

C

T

(
1

M
+ 1

)
.

(ii) If system (2.2) asymptotically interpolates the dataset as per Definition 1, then
there exists a constant C(M) > 0 independent of T such that

T ∗ 6
C(M)

M
h−1

(
1

T

)
+

1

M

and
E (xT (T

∗)) 6
C(M)

T
h−1

(
1

T

)
+

1

T
,

where h−1 denotes the inverse function of h.

Sketch of the proof. In the proof of the theorem, which may be found in Section 3, the
stopping time T ∗ > 0 is precisely defined as

T ∗ := min

{
t ∈ [0, T ] : E (xT (t)) = min

s∈[0,T ]
E (xT (s))

}
.

This implies (2.7) by definition. One then shows that the temporal sparsity in equa-
tions (2.6) holds. This is done by a contradiction argument: one supposes that either
of both conclusions doesn’t hold, and in both cases, constructs auxiliary controls which
are strict minimizers for JT defined in (2.5). This is quite transparent in the case in
which ‖uT (t)‖ 6= 0 for t > T ∗, in which case, one can simply use a zero extension of
uT (t) for t > T ∗ to conclude. On the other hand, if ‖uT (t)‖ < M for t ∈ (0, T ∗), the
construction is more delicate and technical, and makes crucial use of the scaling pro-
vided provided by the homogeneous dynamics, and the invariance of the L1(0, T ;Rdu)
by this scaling. The estimates on the stopping time T ∗ and on the error evaluated at
the stopping time can then be obtained by making use of the interpolation assump-
tions and the mentioned scaling, for constructing suboptimal controls which can be
estimated appropriately. In particular, our arguments do not rely on studying the

3One can show that a minimizer exists when f is as in (2.3) by means of the direct method in
the calculus of variations. However, for f as in (2.4), it’s not clear if there is enough compactness to
convert weak convergences into pointwise ones for passing to the limit inside σ.
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first-order optimality system, and is specifically tailored to the particular ODEs in
question. This allows us to avoid smallness assumptions on the data, and smoothness
assumptions on the nonlinearity.

2.3. Turnpike property. The behavior displayed in Theorem 2.1 and Figure 1 –
Figure 5 can, in some contexts, be seen as a novel manifestation of the turnpike property
in optimal control: over long time horizons, the optimal pair (uT (t),xT (t)) should be
"near" an optimal steady pair (u,x), namely a solution to the problem

inf
(u,x)∈Rdu×Rdx

f(x,u)=0

E (x) + ‖u‖1. (2.8)

(See [Porretta and Zuazua, 2013; Trélat and Zuazua, 2015].) Let us suppose that
loss(x, y) = ‖x− y‖22 (but the discussion remains true for any distance) and drop the
subscript T , hence

E (x(t)) =
1

n

n∑
i=1

∥∥∥Pxi(t)− y(i)∥∥∥2
2
.

Theorem 2.1 then implies that∥∥∥Pxi(t)− y(i)∥∥∥2
2
6
C(M)

T
(2.9)

for all t > T ∗ and i ∈ [n]. Now note that f(x, 0) = 0 for any x ∈ Rdx . In particular,
if P : Rd → Rm is surjective, then taking xi ∈ P−1

(
y(i)
)
for i ∈ [n], we see that

there exists some x ∈ Rdx , with xi ∈ P−1
(
y(i)
)
such that (0,x) is the unique solution

to the steady problem (2.8). Now, on one hand, the sparsity in time result already
ensures a finite-time turnpike property for the optimal controls uT (t) to the steady
correspondent u ≡ 0. On the other hand, (2.9) can be seen as∥∥∥P(xi(t)− xi

)∥∥∥2
2
6
C(M)

T

for all t > T ∗, i ∈ [n] and for some xi ∈ P−1
(
y(i)
)
. This is a turnpike property for (a

projection of) the state x(t).
Actually, one can see that the above artifact is not bound to machine learning, and

applies to more classical optimal control problems of the form

inf
u∈Uad,T

x solves (2.11)

∫ T

0
‖x(t)− x‖pp +

∫ T

0
‖u(t)‖1 dt, (2.10)

where p ∈ [1,+∞), x ∈ Rdx is fixed, and the underlying system is of driftless control-
affine form 

ẋ(t) =

du∑
j=1

uj(t)fj(x(t)) in (0, T ),

x(0) = x0,

(2.11)

with fj : Rdx → Rdx for j ∈ [du]. Then (u,x) = (0,x) is the optimal steady pair,
namely the unique solution to

inf
(u,x)∈Rdu×Rdx∑du

j=1 ujfj(x)=0

‖x− x‖pp + ‖u‖1,
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and we have the following corollary of Theorem 2.1.

Corollary 2.1 (Turnpike property). Suppose x0,x ∈ Rdx are given, and let T > 0,
M > 0 be fixed. Suppose fj ∈ Lip(Rdx ;Rdx) for j ∈ [du]. Let uT ∈ Uad,T be any
solution to (2.10). Let xT denote the corresponding solution to (2.11). Then there
exists some time T ∗ ∈ (0, T ] and some constant C > 0 independent of both T and M
such that

‖uT (t)‖1 =M1[0,T ∗](t)

holds for a.e. t ∈ (0, T ), and

‖xT (t)− x‖pp 6
C

T

(
1

M
+ 1

)
.

holds for all t ∈ [T ∗, T ].

Theorem 2.1 and Corollary 2.1 can then be seen as a new result in the turnpike lit-
erature: they provide a finite-time, exact turnpike for any optimal control uT solving
(2.10) (new on its own, due to the L1 penalty of the controls), and a polynomial turn-
pike for the corresponding optimal state xT (t) for t ∈ [T ∗, T ], without any smallness
assumptions on the initial data x0, on the target x, or smoothness assumptions on the
dynamics f . The latter are deemed necessary for arguments which make use of the
Pontryagin Maximum Principle and linearization ([Trélat and Zuazua, 2015]). A final
arc near t = T doesn’t appear as the running cost is at its minimal value for t ∈ [T ∗, T ].
Similar results have been obtained for L2 penalties in [Esteve et al., 2020a,b] (see also
[Faulwasser et al., 2021; Effland et al., 2020; Gugat et al., 2021]).
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Figure 2. For the experiment of Figure 1, we see that not only the
error E (x(t)) decays (at least polynomially), but the trajectories x(t)
also reach some stationary point which ought to be near argmin E . (See
Section 2.3.)

It is curious that in Figure 2, we actually see this phenomenon for the trajectories
when E is given by the cross-entropy loss (1.3). In this case, E is not coercive: E (x(t))
approaches 0 only if the margin γ(xT (T )) defined in (2.12) goes to +∞. Namely,
every trajectory xi(T ) for i ∈ [n] ought to grow to +∞ in an appropriate direction in
Rd. Thus, in this non-coercive case, we do not interpret the graph of Figure 2 as a
turnpike property, since the turnpike would depend on (and increase with) T . Rather,
the trajectories x(t) become stationary beyond time t > T ∗ to some point x ∈ Rdx ,
which is polynomially "sliding" to +∞ (the "argmin" of E ) as T → +∞.
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2.4. Discussion. Let us provide a structured commentary regarding the different as-
sumptions surrounding the above result, possible extensions, and novelty with respect
to past literature on both neural ODEs and optimal control.

Remark 1 (L∞ constraint). Penalizing the L1 norm in (2.5) enforces the use of sparse
controls, which without an L∞ constraint, would a priori concentrate near t = 0 as
a Dirac mass. We include the L∞ constraint in the definition of Uad,T in order to
prevent such degeneracy. One can then recover a Dirac mass centered at t = 0 when
M → +∞.
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Figure 3. The matrix wT (t) ∈ R3×3 part of uT (t) = (wT (t), bT (t))
for the experiment of Figure 1 at t ∈ {0.33, 0.67, 1, 1.33, 1.67, 4.33},
seen from left to right, indicating the temporal sparsity (here, beyond
T ∗ ∼ 1.5) shown in Theorem 2.1 and seen in Figure 1. One sees the
lack of coordinate-wise sparsity (ui(t)uj(t) = 0 for i 6= j and all t), for
which different penalties should be used ([Kalise et al., 2020]).

Remark 2 (Interpolation). In the case where E attains its infimum (here 0), (finite-
time) interpolation as per Definition 1, which can be seen as simultaneous or ensemble
controllability, has been shown to hold for the dynamics f as considered here in several
recent works [Cuchiero et al., 2020; Li et al., 2019; Esteve et al., 2020a; Agrachev
and Sarychev, 2021; Ruiz-Balet and Zuazua, 2021; Ruiz-Balet et al., 2021; Bárcena-
Petisco, 2021]. We have stated it as an assumption in Theorem 2.1 to make transparent
the ingredients used in the proof. On another hand, as our setting includes losses
which do not attain their infimum, one cannot expect exact interpolation to always
hold. This is exemplified by the cross-entropy defined in (1.3), which motivates the
asymptotic interpolation hypothesis. Under the assumption that there exits a control
u ∈ L∞(0, T0;Rdu) for which the margin γ = γ(x(T0)) defined as

γ(x(T0)) := min
i∈[n]


(
Pxi(T0)

)
y(i)
− max

j∈[m]

j 6=y(i)

(
Pxi(T0)

)
j

 (2.12)



SPARSE APPROXIMATION IN LEARNING VIA NEURAL ODES 11

is positive in some T0 > 0, in [Geshkovski, 2021, Proposition 7.4.2] asymptotic inter-
polation is shown to hold for the cross-entropy (1.3) with

h(t) = log
(
1 + (m− 1)e−γe

t
)
.

Remark 3 (Initial data in (2.2)). In binary classification tasks (Y = {−1, 1}) for
instance, we are looking to approximate a characteristic function of some set A ⊂ Rd.
If the dataset is not linearly separable, in the sense that there exists w ∈ Rd such that

min
i∈[n]

(
y(i)w>x(i)

)
> 0,

then solving such a problem would entail separating, over time, the dataset by means
of the controlled flow of an ODE. This cannot always be done due to the backward
uniqueness of ODEs, as trajectories cannot cross in the state space Rd. As noted in
[Dupont et al., 2019], a simple remedy is to embed every datum x(i) ∈ Rd into Rd+1 by
appending a 0 to its tail, namely considering

x0
i =

[
x(i)

0

]
.

This is seen in Figure 4. By abuse of notation, whenever the dataset is not linearly
separable, we shall suppose that x(i) are already in an augmented form, and keep the
same notation for simplicity.

Remark 4 (The dynamics). • While there are several works in the literature
which prove sparsity in time for controls found by minimizing some func-
tional, even for systems with drifts (unlike ours), the theory is either done
for linear systems ([Zuazua, 2010; Alt and Schneider, 2015; Geshkovski and
Zuazua, 2021]), or nonlinear ones for specific regression functionals and/or
differentiable dynamics and/or infinite time horizons ([Kalise et al., 2017,
2020; Vossen and Maurer, 2006]). Similar considerations can be found in the
literature on optimal control of multi-agent/mean-field systems ([Caponigro
et al., 2013; Fornasier et al., 2014; Caponigro et al., 2015]). The setting we
presented herein makes no such assumptions, and our results can then be seen
as complementary to these works. Our consideration of divergences instead of
distances in the optimization problem can be seen as a novelty in the optimal
control context.
• More complicated neural ODEs of the form{

ẋi(t) = w2(t)σ
(
w1(t)xi(t)

)
in (0, T )

xi(0) = x0
(2.13)

for i ∈ [n], where w2(t) ∈ Rd×dhid and w1(t) ∈ Rdhid×d (we omit the trans-
lation control for simplicity), tend to perform well in experiments due to the
higher number of controls. When σ is 1–homogeneous, and w2(t) = ±1 or
is an orthogonal matrix for all t, Theorem 2.1 still holds due to the fact
that Lemma 3.1 applies for such dynamics. When we remove such assump-
tions on w2(t), the technical impediment we encounter is the lack of invari-
ance of the L1(0, T ;Rdu) norm with respect to the canonical scaling induced
by the equation (Lemma 3.1). Indeed, if one sets w1

1(t) := Tαw1(tT ) and
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Figure 4. The evolution of (a part of) the states {xi(t)}i∈[n] solving
(1.1), for the experiment of Figure 1. Clockwise from top to bottom:
t = 0, t 6 1.33, t 6 5, t = 5. The states are stationary in a separation
regime beyond t > T ∗, as indicated by Figure 1.
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Figure 5. The learned predictor fapprox through the neural ODE flow.
It captures the shape of the dataset given by f , accurately classifies the
test data, thus ensuring satisfactory generalization.

w2
1(t) := T 1−αw2(tT ) for t ∈ [0, 1] and some α ∈ (0, 1), then it can be seen
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that x1
i (t) := xi(tT ) solves (2.13) on [0, 1]. Yet,∫ T

0

∥∥w1(t)
∥∥
1
dt+

∫ T

0

∥∥w2(t)
∥∥
1
dt = Tα−1

∫ 1

0

∥∥w1
1(s)

∥∥
1
ds+ T−α

∫ 1

0

∥∥w2
1(s)

∥∥
1
ds.

This is incompatible with our proof strategy. However, noting the above iden-
tity, one could investigate the applicability of our techniques to (2.13) and
parameter regularizations of the form∫ T

0

∥∥w1(t)
∥∥1/α

1
dt+

∫ T

0

∥∥w2(t)
∥∥1/1− α

1
dt,

which would be invariant by the above scaling. In such a case, the sparsity
pattern should be defined with respect to the regularization one considers. Due
to the likely nontrivial nature of the proof, we leave it open.

3. Proofs

In this section we provide the proof of Theorem 2.1. We shall split the proof into
two parts. We first state and prove Proposition 3.1, which contains the first part of
Theorem 2.1, concerning the temporal sparsity of optimal controls. The proof of the
latter is done throughout Section 3.1. We then provide the remainder of the proof in
Section 3.2.

3.1. Preliminary results. The main goal of this subsection is to state and prove
Proposition 3.1, ensuring the temporal sparsity of optimal controls. A cornerstone of
our forthcoming arguments is the possibility of rescaling any trajectory of (2.2) set in
[0, T0] to obtain the same trajectory set on [0, T ].

Lemma 3.1. Let x0 ∈ Rdx , T0 > 0, uT0 ∈ L1(0, T0;Rdu), and let xT0 be the unique
solution to (2.2) set on [0, T0], with control uT0. Let T > 0, and define

uT (t) :=
T0
T
uT0

(
t
T0
T

)
for t ∈ [0, T ],

and

xT (t) := xT0

(
t
T0
T

)
for t ∈ [0, T ].

Then xT is the unique solution to (2.2) with control uT .

Such time-scaling arguments are standard in the context of driftless control-affine
systems (see [Coron, 2007, Chapter 3, Section 3.3]). It is here that the homogeneity
of the dynamics with respect to the controls plays a crucial role. We omit the proof,
which is straightforward. We also summarize the notion of temporal sparsity through
the following definition.

Definition 2 (Sparse controls). Let M > 0 and 0 < T ∗ 6 T be fixed. We say that
u ∈ Uad,T is sparse in (T ∗, T ) if

‖u(t)‖1 =M a.e. t ∈ (0, T ∗), (3.1)
‖u(t)‖1 = 0 a.e. t ∈ (T ∗, T ). (3.2)

For any T ∗ > 0, we shall denote by Usp,T ∗ the set consisting of all u ∈ Uad,T which are
sparse in (T ∗, T ), namely which satisfy (3.1) – (3.2).
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Proposition 3.1. Let T > 0 andM > 0 be fixed. Let uT ∈ Uad,T be a global minimizer
of JT defined in (2.5), and let xT be the corresponding unique solution to (2.2). Then
uT ∈ Usp,T ∗, where T ∗ is defined as

T ∗ := min

{
t ∈ [0, T ] : E (xT (t)) = min

s∈[0,T ]
E (xT (s))

}
. (3.3)

Note that the T ∗ is clearly well defined, as the set over which the min is taken is clearly
bounded, and is also closed as the preimage of the singleton{

min
s∈[0,T ]

E (xT (s))

}
under the continuous map t 7−→ E (x(t)). The core of the proof of Proposition 3.1 lies
in the following lemma, which ensures that if a control uT ∈ Uad,T does not saturate
the L∞–constraint before some time T ∗, then uT is not optimal for JT and can always
be "improved" through the scaling of Lemma 3.1.

Lemma 3.2. Let T > 0 and M > 0 be fixed. Let uT ∈ Uad,T be any admissible
(but not necessarily optimal) control, and let T ∗ > 0 be defined as in (3.3). Assume
that, for some θ ∈ (0, 1), there exists a finite collection of disjoint non-empty intervals
{(aj , bj)}j∈[I] with (aj , bj) ⊂ (0, T ∗) for which

‖uT (t)‖1 6 (1− θ)M for a.e. t ∈ OI, (3.4)

and
E (xT (t))− E (xT (T

∗)) > θ for all t ∈ OI (3.5)
hold, where

OI :=
I⋃
j=1

(aj , bj) .

Then there exists some u ∈ Uad,T satisfying

u(t) = 0 for a.e. t ∈ (T ∗ − τ, T ), (3.6)

and
JT (u) 6JT (uT )− θτ,

where

τ := θmeas(OI) = θ
I∑
j=1

(bj − aj).

We may now provide the proof to Proposition 3.1.

Proof of Proposition 3.1. We argue by contradiction. Suppose that uT ∈ Uad,T is a
global minimizer of JT such that uT 6∈ Usp,T ∗ , where T ∗ > 0 is defined as in the
statement. Hence, either condition (3.1) or condition (3.2) does not hold.

Case 1: (3.2) does not hold. Let us thus suppose that

‖u(t)‖1 6= 0 a.e. t ∈ (T ∗, T ). (3.7)

Consider

u(t) =

{
uT (t) for t ∈ [0, T ∗]

0 for t ∈ (T ∗, T ].
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Clearly u ∈ Uad,T . Furthermore, we have

x(t) = xT (t) for t ∈ [0, T ∗],

and since f(·, 0) ≡ 0, also

x(t) = x(T ∗) = xT (T
∗), for t ∈ [T ∗, T ].

Combining these facts with the definition (3.3) of T ∗, we are lead to∫ T

0
E (x(t)) dt =

∫ T ∗

0
E (xT (t)) dt+

∫ T

T ∗
E (xT (T

∗)) dt 6
∫ T

0
E (xT (t)) dt.

By virtue of (3.7) we also find∫ T

0
‖u(t)‖1 dt =

∫ T ∗

0
‖uT (t)‖1 dt

<

∫ T ∗

0
‖uT (t)‖1 dt+

∫ T

T ∗
‖uT (t)‖1 dt =

∫ T

0
‖uT (t)‖1 dt.

Combining the two previous inequalities, we deduce that JT (u) < JT (uT ), which
contradicts the optimality of uT .

Case 2: (3.1) does not hold. The idea is to again construct an auxiliary control
which improves uT to deduce a contradiction. We now split the proof in three steps.
Step 1. If (3.1) is not fulfilled, then there must exist some θ ∈ (0, 1) such that the set

Aθ :=
{
t ∈ (0, T ∗) : ‖uT (t)‖1 6 (1− θ)M

}
has positive Lebesgue measure, namely meas(Aθ) > 0. Now set ω := meas(Aθ)

2 , and
using elementary set theory we find

Aθ ∩ (0, T ∗ − ω) = Aθ \
(
(0, T ∗) \ (0, T ∗ − ω)

)
= Aθ \ [T ∗ − ω, T ∗),

whence the set
Bθ := Aθ ∩ (0, T ∗ − ω)

also has positive Lebesgue measure: meas(Bθ) > 0. By classical results in Lebesgue
measure theory (see [Yeh, 2006, Thm. 3.25]), for all ε > 0 there exists a finite collection
of disjoint nonempty intervals {(aj , bj)}j∈[n(ε)], with (aj , bj) ⊂ (0, T ∗ − ω), such that
the set

Oε :=

n(ε)⋃
j=1

(aj , bj)

satisfies
meas (Oε \Bθ) < ε and meas (Bθ \Oε) < ε. (3.8)

In particular,
meas (Oε) > meas(Bθ)− ε. (3.9)

Step 2. Let ε ∈ (0,meas(Bθ)) be arbitrary and to be chosen later, and let {(aj , bj)}j∈[n(ε)]
be the corresponding collection of disjoint intervals satisfying (3.8), with Oε denoting
the union of these intervals as defined above. We now look to construct a control
uε ∈ Uad,T such that

‖uε(t)‖1 6 (1− θ∗)M
and

E (xε(t))− E (xε(T•)) > θ
∗
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for some θ∗ > 0 and for all t ∈ Oε, where

T• := min

{
t ∈ [0, T ] : E (xε(t)) = min

s∈[0,T ]
E (xε(s))

}
should also satisfy T• > T ∗ − ω. To this end, set

uε(t) :=

{
uT (t) for t ∈ (0, T ) \ (Oε \Bθ)

0 for t ∈ Oε \Bθ.

Since uT ∈ Uad,T , it may readily be seen that

‖uε(t)‖1 6M for a.e. t ∈ (0, T ).

Hence uε ∈ Uad,T . Now let xε denote the solution to (2.2) associated to uε. By virtue
of the specific form of f , the Lipschitz continuity of σ, and the Grönwall inequality, we
may readily deduce that there exists a constant C1 = C1(T,M, σ) > 0 independent of
ε such that ∥∥xε(t)− xT (t)

∥∥
1
6 C1

∫ T

0

∥∥uε(s)− uT (s)∥∥1 ds (3.10)

for all t ∈ [0, T ]. On the other hand, by using (3.8), we also deduce that∫ T

0

∥∥uε(s)− uT (s)∥∥1 ds 6Mmeas (Oε \Bθ) < Mε. (3.11)

Combining (3.10) and (3.11) leads us to∥∥xε(t)− xT (t)
∥∥
1
< C1Mε

for t ∈ [0, T ]. Now since xT ∈ C0([0, T ];Rdx), the stacked trajectory xT (t) remains in
a compact subset of Rdx for all t ∈ [0, T ]. Due to (3.1), and since ε 6 meas(Bθ), we
also find that xε remains in a slightly larger compact subset, independent of ε. Hence,
by the locally Lipschitz character of loss

(
·, y
)
, implying that of E , the estimate∣∣∣E (xε(t))− E

(
xT (t)

)∣∣∣ 6 C2Mε, (3.12)

holds for some C2 = C2(T,M, σ,E ) > 0 independent of ε, and for all t ∈ [0, T ]. On
the other hand, using only the definition (3.3) of T ∗, we find that there exists some
λ > 0 such that

E (xT (t)) > E (xT (T
∗)) + λ (3.13)

for all t ∈ [0, T ∗ − ω]. Estimate (3.12) combined with (3.13) yields

E (xε(T ∗)) 6 E (xT (T
∗)) + C2Mε 6 E (xT (t))− λ+ C2Mε

6 E (xε(t))− λ+ 2C2Mε, (3.14)

for all t ∈ [0, T ∗ − ω], which, by choosing ε < λ/2C2M, implies that T• > T ∗ − ω, as
desired. The computations done in (3.14) also yield

E
(
xε(t)

)
> E

(
xε(T ∗)

)
+ λ− C2Mε

> E
(
xε(T•)

)
+ λ− 2C2Mε (3.15)

for all t ∈ [0, T ∗−ω]. As we chose ε < λ/2C2M, we have that λ− 2C2Mε > 0, and may
then set

θ∗ := min {θ, λ− 2C2Mε} ,
so that θ∗ > 0. By virtue of (3.15),

E
(
xε(t)

)
− E

(
xε(T•)

)
> θ∗
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holds for all t ∈ Oε. Now, observe that uε also satisfies

‖uε(t)‖1 6 (1− θ∗)M
for a.e. t ∈ Oε. Indeed, if t ∈ Oε \Bθ, then uε(t) = 0 by definition, so the inequality
clearly holds. On the other hand, if t ∈ Oε ∩Bθ, then t ∈ Aθ, and since θ∗ > θ, the
conclusion follows.
Step 3. We may now apply Lemma 3.2, which ensures the existence of some uε ∈ Uad,T
for which

JT (uε) 6JT (uε)− (θ∗)2 meas (Oε) (3.16)

holds. As a consequence of (3.11) and (3.12), we have

JT (uε) 6JT (uT ) + (1 + C2T )Mε,

which, when combined with (3.16) and (3.9), yields

JT (uε) < JT (uT ) + (1 + C2T )Mε− (θ∗)2(meas(Bθ)− ε).
Looking at the above inequality, we may note that, by choosing ε > 0 even smaller
(namely taking

ε 6
(θ∗)2 meas(Bθ)

(1 + C2T )M

would do), we may ensure that

JT (u
ε) < JT (uT ),

which contradicts the optimality of uT . This concludes the proof. �

We conclude this section with a proof of Lemma 3.2.

Proof of Lemma 3.2. We will argue by induction over the number of intervals I > 1,
constructing appropriately the control u explicitly in each step via affine transforma-
tions of uT – the desired estimates will follow by using the time-scaling invariance of
the L1–norm of the controls.

Step 1). Initialization. Let us first assume that I = 1. Consider

u(t) :=



uT (t) for t ∈ (0, a1)

b1 − a1
c1 − a1

uT

(
(t− a1)

b1 − a1
c1 − a1

+ a1

)
for t ∈ [a1, c1)

uT (t+ b1 − c1) for t ∈ [c1, T
∗ − (b1 − c1)),

0 for t ∈ [T ∗ − (b1 − c1), T ),
where c1 ∈ (a1, b1) is chosen so that

b1 − a1
c1 − a1

(1− θ) = 1,

which is equivalent to
b1 − c1 = θ(b1 − a1) =: τ.

Observe that as a consequence of (3.4), we clearly have u ∈ Uad,T . In addition, by
virtue of the choice of c1, and the definition of τ , u(t) also satisfies (3.6). Now, making
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use of the scaling provided by Lemma 3.1, and the fact that f(·, 0) ≡ 0, one can check
that the state trajectory x(t) associated to u(t) is exactly given by

x(t) =



xT (t) for t ∈ [0, a1)

xT

(
(t− a1)

b1 − a1
c1 − a1

+ a1

)
for t ∈ [a1, c1)

xT (t+ b1 − c1) for t ∈ [c1, T
∗ − (b1 − c1)),

xT (T
∗) for t ∈ [T ∗ − (b1 − c1), T ].

Moreover, observe that since τ := b1 − c1,
E (x(t)) = E (xT (T

∗)) for t ∈ [T ∗ − τ, T ]. (3.17)

Let us now evaluate the functional JT along u. We start by computing the L1 norm
of u:

‖u‖L1(0,T ;Rdu ) =

∫ a1

0
‖uT (t)‖1 dt+

∫ T ∗−(b1−c1)

c1

‖uT (t+ b1 − c1)‖1 dt

+
b1 − a1
c1 − a1

∫ c1

a1

∥∥∥∥uT ((t− t1)b1 − a1c1 − a1
+ a1

)∥∥∥∥
1

dt

=

∫ b1

0
‖uT (s)‖1 ds+

∫ T ∗

T ∗−b1
‖uT (s)‖1 ds

6 ‖uT ‖L1(0,T ;Rdu ) . (3.18)

On the other hand, by virtue of (3.17), (3.5), the definition (3.3) of T ∗, and the same
changes of variable used to deduce (3.18), we find∫ T

0

(
E (x(t))− E

(
xT (T

∗)
))

dt =

∫ a1

0

(
E (xT (t))− E

(
xT (T

∗)
))

dt

+
c1 − a1
b1 − a1︸ ︷︷ ︸

1−θ

∫ b1

a1

(
E (xT (t))− E (xT (T

∗))
)
dt

+

∫ T ∗

b1

(
E (xT (t))− E (xT (T

∗))
)
dt

6
∫ T

0

(
E (xT (t))− E (xT (T

∗))
)
dt− θ2(b1 − a1).

By combining the above inequality with (3.18), it follows that

JT (u) 6JT (uT )− θ2(b1 − a1).
The statement of the Lemma thus holds for I = 1.

Step 2). Heredity. Let us suppose that, for some n > 1, the statement of the lemma
holds whenever I = n, and let uT satisfy (3.4) and (3.5) with I = n + 1. Assume
without loss of generality that a1 > aj for all j ∈ {2, . . . ,I}. Using precisely the same
argument as in Step 1, we can construct a control u1 satisfying

u1(t) = 0 for a.e. t ∈ (T ∗ − τ1, T )
with τ1 = θ(b1 − a1), and

JT (u1) 6JT (uT )− θ2(b1 − a1),
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and which is such that u1(t) = uT (t) for all t ∈ (0, t1). Now observe that, since a1 > aj
for all j > 2, and in view of (3.17), it follows that u1 satisfies (3.4) and (3.5) with
I− 1 = n number of intervals and with T ∗1 = T ∗ − τ1 instead of T ∗. By the induction
hypothesis, we conclude that there exists some control u ∈ Uad,T such that

u(t) = 0 for a.e. t ∈ (T ∗1 − τ, T )
with τ = θ

∑I
j=2(bj − aj), and

JT (u) 6JT (u1)− θ2
I∑
j=2

(bj − aj) 6JT (uT )− θ2
I∑
j=1

(bj − aj).

The statement of the Lemma thus also holds for I = n + 1. This concludes the
proof. �

3.2. Proof of Theorem 2.1.

Proof of Theorem 2.1. Properties (2.6) and (2.7) for the minimizers of JT follow di-
rectly from Proposition 3.1. Let us give the proof of the statements (i) and (ii) in
Theorem 2.1.

Proof of (i). If the interpolation property holds, then there exist T0 > 0 and some
control uT0 ∈ L∞(0, T0;Rdu) such that the associated solution xT0 ∈ C0([0, T0];Rdx)
to (2.2) satisfies E (xT0(T0)) = 0. Set

T1 :=
T0 ‖uT0‖L∞(0,T0;Rdu )

M
, (3.19)

and consider

uT1(t) :=
M

‖uT0‖L∞(0,T0;Rdu )
uT0

(
t
T0
T1

)
for t ∈ (0, T1).

Observe that uT1 ∈ Uad,T1 . Furthermore, in view of Lemma 3.1, the associated solution
xT1 to (2.2), is given by

xT1(t) = xT0

(
t
T0
T1

)
for t ∈ (0, T1),

and hence,
E (xT1(T1)) = E (xT0(T0)) = 0.

Now for any T > 0, we define

u(t) =

{
uT1(t) for t ∈ (0, T ) ∩ (0, T1)

0 for t ∈ (0, T ) \ (0, T1).

Clearly u ∈ Uad,T . By a simple change of variable, and using (3.19), one sees that

JT (u) 6
∫ T1

0
E (xT1(t)) dt+M T1

=
‖uT0‖L∞(0,T0;Rdu )

M

∫ T0

0
E (xT0(t)) dt+ ‖uT0‖L∞(0,T0;Rdu ) T0

=
C1

M
+ C2, (3.20)
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holds, where C1 > 0 and C2 > 0 are independent of both T and M . In view of (2.6),
any minimizer uT of JT satisfies uT ∈ Usp,T ∗ for some T ∗ ∈ (0, T ]. Since u ∈ Uad,T ,
using (3.20), we obtain

JT (uT ) =

∫ T

0
E (xT (t)) dt+M T ∗ 6JT (u) 6

C1

M
+ C2. (3.21)

Since E > 0, using (3.21) we deduce that

T ∗ 6
C1

M2
+
C2

M
.

Moreover, using (2.7) in (3.21), we also deduce that

TE (xT (T
∗)) 6JT (uT ) 6

C1

M
+ C2.

The last two estimates imply (i) in the statement of Theorem 2.1, as desired.

Proof of (ii). If the asymptotic interpolation property holds, then there exist T0 > 0,
a function h as in Definition 1, and some control u∞ ∈ L∞(R+;Rdu) such that the
corresponding solution x∞ to (2.2) set on R+ satisfies

E (x∞(t)) 6 h(t) (3.22)

for all t > T0. Combining this with the continuity of the map t 7−→ E (x∞(t)), we can
readily deduce that there exists a constant C0 > 0 depending only on T0 > 0 such that

E (x∞(t)) 6 C0 (3.23)

for all t > 0. Let us henceforth set

λ :=
M∥∥u∞∥∥
L∞(R+;Rdu )

.

For any T1 > 0, we also define

uT1(t) =

{
λu∞(λt) for t ∈ (0, T1]

0 for t > T1.

Observe that, by definition of λ, one has uT1 ∈ Uad,T for any T > 0. By virtue of
Lemma 3.1, the state associated to uT1 is precisely

xT1(t) =

{
x∞ (λt) for t ∈ (0, T1)

x∞ (λT1) for t > T1.

Now, by virtue of the definition of uT1 , for any T > 0, we have

JT (uT1) 6
∫ T1

0
E (x∞ (λt)) dt+max

{
0, T − T1

}
E
(
x∞ (λT1)

)
+M T1

6 (C0 +M)T1 + T E
(
x∞ (λT1)

)
. (3.24)

We now distinguish two cases. If T 6 1/h(T0), then using (3.23), the optimality of uT
as well as the fact that uT1 ∈ Uad,T , along with uT ∈ Usp,T ∗ , and the definition (3.3)
of T ∗, through (3.24) we find

TE (xT (T
∗)) +MT ∗ 6 (C0 +M)T1 +

C0

h(T0)
,
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and choosing T1 = 1 leads us to the conclusion. Now suppose that T > 1/h(T0). By
Definition 1, the decreasing function h is a bijection from (T0,+∞) onto its range
(0, h(T0)), and so h−1 (1/T) is well defined precisely for T > 1/h(T0). We set

T1 :=
1

λ
h−1

(
1

T

)
.

Combining the optimality of uT with (3.24), and using the fact that uT ∈ Usp,T ∗ , we
find

JT (uT ) =M T ∗ +

∫ T

0
E (xT (t)) dt 6JT (uT1)

6 C(M)h−1
(
1

T

)
+ T E

(
x∞

(
h−1

(
1

T

)))
,

(3.25)

where the constant

C(M) :=
(C0 +M)

λ
is independent of T . Now since h−1 : (0, h(T0)) → (0,+∞) is non-decreasing, and
T > 1/h(T0), we have that h−1(1/T) > T0. Using this fact, along with (3.22) in (3.25),
combined with the definition (3.3) of T ∗, allows us to deduce that

TE (xT (T
∗)) +MT ∗ 6 C(M)h−1

(
1

T

)
+ 1.

The desired statement (ii) then follows also for T > 1/h(T0). This concludes the proof.
�

4. Concluding remarks

4.1. Epilogue. We have presented a manifestation of temporal sparsity and approx-
imation/stability properties for supervised learning problems for neural ODEs with
L1(0, T ;Rdu) penalties. Our main result ensures that any solution uT to (2.5) is sparse
in time, in the sense that uT ≡ 0 on (T ∗, T ) for some T ∗ ∈ (0, T ]. Under appropriate
controllability assumptions, we also provide estimates on the stopping time T ∗, and
on the error E (xT (t)) for t > T ∗. The impact of this result, corroborated by numerical
experiments, is (at least) twofold:

(i) When extrapolated to the discrete-time, ResNet context, a shorter time-
horizon in the optimal control problem can be interpreted as (safely) con-
sidering a shallower ResNet, namely a ResNet with less layers nt, which could
naturally lower the computational cost of the optimization process. In com-
puting terms, the stabilization result further indicates that, perhaps, a model
predictive control (MPC)-type strategy is warranted for an optimal choice of
the stopping time (see [Grüne et al., 2019; Esteve et al., 2020a] for similar
considerations).

(ii) Our result also applies for more classical optimal control problems, and pro-
vides a polynomial turnpike property for optimal states, and an exact turnpike
property for optimal controls, minimizing a functional with a running cost
for the state and an L1 penalty for the control. This conclusion also comes
along without any smallness conditions on the data, targets, or smoothness
assumptions on the functional and/or dynamics (which, albeit, ought to be
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homogeneous with respect to the control), which is new in the literature. We
believe that the setting presented in this paper also invites the consideration
of more unconventional functionals in control theory, e.g. minimizing diver-
gences, which are more common in the literature on machine learning and
inverse problems.

4.2. Outlook. We comment some questions that remain regarding our study.
1. The existence of minimizers for (2.5)– (2.4) remains unclear. It can be ensured

if one replaces the L1 penalty by a BV one, for which compactness of minimiz-
ing sequences holds. BV controls fit in the setting of temporal sparsity, unlike
W 1,1 ones, which are continuous. The BV norm is also invariant with respect
to the scaling of Lemma 3.1. But a complete extension of our arguments to
this case would require further work.

2. It is curious that, when seen in the classical L2 tracking context (i.e. the loss
is the squared `2 distance) with an L1 penalty for the controls, Theorem 2.1
only provides a polynomial turnpike estimate for the state. This is different
to the L2 penalty context, presented in [Esteve et al., 2020a,b], in which an
exponential turnpike/stabilization estimate for the state is shown. There is
reason to believe that for more specific loss functions, our stability results can
be sharpened.

3. As a matter of fact, since uT (t) = 0 for t > T ∗, and our numerical experiments
show that the state is stable in a regime in which the error E is 0, one could
also stipulate that a result of the mould E (xT (t)) = 0 for t > T ∗ holds. Such
an exact turnpike property for the state has been obtained in the linear setting
in [Gugat et al., 2021]. However, the transfer of the techniques of the latter
paper to our setting does not appear straightforward.
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