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Karhunen-Loève and principal components analysis.
Directional wavelets and scattering transform.

Author: Javier Minguillón Sánchez Fourier Multipliers, Hausdorff Measure and Classification with Scattering Transform



Multipliers Operators Hausdorff FDA References

Fourier transform and Fourier multipliers

Let d ∈ N and f ∈ L1(Rd), we define the Fourier transform of f
as

Ff (ξ) = f̂ (ξ) =

∫
Rd

f (x)e−2πix ·ξdx . (1.1)

Whenever f ∈ L2(Rd), we have ‖Ff ‖2 = ‖f ‖2 (Plancherel).

Definition

Let m ∈ L∞(Rd) and f ∈ L2(Rd). Consider the linear operator

T̂mf (ξ) = m(ξ)f̂ (ξ). (1.2)

The function m is a Fourier multiplier and Tm is a Fourier
multiplier operator.

Let 1 ≤ p <∞. If there is C > 0 such that ‖Tmf ‖p ≤ C‖f ‖p,
we can extend to Tm : Lp → Lp.
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Examples of multipliers

A few examples of multipliers operator are

Translation by τ ∈ Rd with mτ (ξ) = e2πiτ ·ξ through

Tτ f (x) = f (x − τ) = F−1
(
e2πiτ ·ξ f̂ (ξ)

)
(x).

Partial differentiation with respect to xi , i = 1, ..., d through

∂

∂xi
f (x) = F−1

(
(2πiξi )f̂ (ξ))

)
.

A low-pass filter through

Φr f (x) = F−1
(
χRr

(ξ)f̂ (ξ)
)
,

where Rr = [−r , r ]× · · · × [−r , r ] and χ· is the indicator
function.
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Properties of multipliers

Below we have a property related to the composition of a
multiplier and an affine transformation.

Proposition

Fix 1 ≤ p <∞. Let Tm : Lp(Rd)→ Lp(Rd) be a multiplier
operator with multiplier m and B ∈ GLd(Rd). Let
m̃(ξ) = m(Bξ + ξ0). Then the operator norms coincide,

‖Tm̃‖p,Lp = sup
f ∈Lp
‖f ‖p=1

‖Tm̃f ‖p = sup
f ∈Lp
‖f ‖p=1

‖Tmf ‖p = ‖Tm‖p,Lp

.
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Properties of multipliers

The following is property that holds when some (differentiable)
multiplier and its derivatives have a decay.

Theorem (Hörmander-Mikhlin)

Let m ∈ Ck(Rd \ {0}) where k ∈ N and k > d
2 . Suppose there is

C > 0 such that, for all α = (α1, ..., αd) with |α| = k,∣∣∣∣( ∂

∂x

)α
m(x)

∣∣∣∣ ≤ C |x |−|α|, (1.3)

Then, there is Ap > 0 such that for all f ∈ Lp(Rd),

‖Tmf ‖p ≤ Ap‖f ‖p, 1 < p <∞. (1.4)
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The Disk Multiplier

Definition

Let d ∈ N and f ∈ L2(Rd). The r -disk multiplier is the operator
given by

D̂r f (ξ) = f̂ (ξ)χ|ξ|≤r (ξ). (2.1)

Will Dr f −−−→
r→∞

f in some sense?

In the L2(Rd) norm, thanks to Plancherel’s identity.

In the Lp norm on d = 1, thanks to the Hilbert transform.

Not in the Lp norm d > 1, p 6= 2. It is related to the
unboundedness of the operator Dr (Fefferman).
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The Counterexample

The reductions to prove that Dr is unbounded for d > 1, p 6= 2.

For all r > 0, ‖Dr‖p,Lp = ‖D1‖p,Lp .
If 1/p + 1/q = 1, then ‖D1‖p,Lp = ‖D1‖q,Lq .
For d ≥ 2, we have ‖D1‖p,Lp(Rd−1) ≤ ‖D1‖p,Lp(Rd ) (de Leeuw).

It suffices to build a counterexample to boundedness for
r = 1, p > 2 and d = 2.

The counterexample we build relies on the following
transformations.

M1

M2
R

R̃ R∗

Figure: The transformations R∗ y R̃ of a rectangle R.
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The Counterexample

The construction relies on two lemmas.

Lemma (1)

Let p > 2. There exist constants 0 < C1 ≤ C2 such that, given
R ⊂ Rd with dimensions A2 × aA with A, a > 0 large enouch, the
following holds.
There is a smooth function fR : R2 → R with supp fR ⊂ R so that
|fR | ≤ 1 in R and C1 ≤ |D1fR | ≤ C2 in R∗.

Using Besicovitch sets, one can prove the next lemma.

Lemma (2)

Let ε > 0, a > 0. If A > 0 is large enough, then there is a finite
colection R of A2 × aA pairwise disjoint rectangles satisfying∣∣⋃

R∈R R∗
∣∣ ≤ ε ∣∣⋃R∈R R

∣∣.
Fixing ε and using the two lemmas, one constructs

fε = f (x) =
∑

R∈R σR fR(x), where σR ∈ {−1, 1}. There is a

choice of the σR so that ‖D1f ‖pp ≥ Cpε
1− p

2 ‖f ‖pp.
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The Spherical Operator

Denote by dσ the normalized measure on the unit sphere Sd−1

inside Rd . Take d̂σ(ξ) =
∫
Sd−1 e

−2πix ·ξdσ(x).

Definition

Let d ≥ 2, t > 0 and f ∈ S (Rd). The t−spherical mean of f is

St f (x) =

∫
Sd−1

f (x − ty)dσ(y) = F−1
(
f̂ (ξ)d̂σ(tξ)

)
(x).

The operator norm is ‖St‖p,Lp ≤ 1 for all 1 ≤ p ≤ ∞.
Given 1 < p <∞, we have that St f −−→

t→0
f in several senses:

If f ∈ Lp(Rd), then we have St f → f in the Lp norm.

Provided that p > d
d−1 as well, then we have St f → f a.e..
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Spherical Maximal Operator and Rubio de Francia
The spherical maximal operator is Mσf (x) = supt>0 |St f (x)|.

Theorem (Stein, Bourgain)

Given d ≥ 2 and p > d
d−1 , there is C > 0 such that, for all

f ∈ Lp(Rd),
‖Mσf ‖p ≤ C‖f ‖p.

This can be proven by a theorem due to Rubio de Francia and

the fact that |d̂σ(ξ)| ≤ C |ξ|
d−1

2 .

Theorem (Rubio de Francia)

Let dµ be a compactly supported finite Borel measure and let
{Tt}t>0 be a family of multiplier operators defined by

T̂t f (ξ) = f̂ (ξ)d̂µ(tξ).

Let Mµf (x) = supt>0 |Tt f |(x). If there is C > 0 such that

|d̂µ(ξ)| ≤ C |ξ|−a, ξ ∈ Rd , then Mµ is bounded for all p > 2a+1
2a

with a > 1/2.
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Hausdorff measure and Hausdorff dimension

Let s > 0,E ⊂ Rd and δ > 0. We define

Hδs (E ) = inf


∞∑
j=1

diam(Ej)
s : E ⊂

∞⋃
j=1

Ej , diam(Ej) ≤ δ

 .

As it turns out, ms(E ) = limδ→0Hδs (E ) defines a measure on the
Borelian sets of Rd : the s-dimensional Haussdorff measure.

The measure ms has an important property. Given t > 0 and A
Borelian in Rd ,

if ms(A) <∞ and t > s, then mt(A) = 0.

if ms(A) > 0 and t < s, then mt(A) =∞.

Definition

Let A be a Borelian in Rd . The Hausdorff dimension of A is

dimA = inf{t : mt(A) = 0}
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Construction of fractal sets

One can construct self similar sets of arbitrary Hausdorff
dimension.

Theorem

Let S1, ...,Sm be similitudes of ratio 0 < r < 1. Then, there exists
exactly one non empty compact set F such that

F = S̃(F ) := S1(F ) ∪ · · · ∪ Sm(F ).

We say that m similitudes are separated if there exists an
bounded open set U 6= ∅ such that Si (U) ∩ Sj(U) = ∅ for all

1 ≤ i < j ≤ m and S̃(U) ⊂ U.

Proposition

Let F be a compact set such that F = S̃(F ) where S1, ...Sm are

separated similarities with ratio 0 < r < 1. Then, dimF = log m

log( 1
r )
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The Geometric Measure Theory results

Lemma (Frostman)

Let A be a Borelian and s > 0. We have ms(A) > 0 if and only if
there exists a finite Borel measure dµ that is compactly supported
on A and satisfies

dµ(B) ≤ r s (3.1)

for all balls B of radius r within Rd .
Thus, dimA = sup{s > 0 : there exists dµ such that (3.1) holds}.

Given t ∈ Sd−1 ⊂ Rd , the projection length is Pt(x) = x · t.

Theorem

Let A be a Borelian in Rd and s = dimA.

i) If s ≤ 1, then dimPt(A) = s for almost all t ∈ Sd−1 with
respect to dσ.

ii) If s > 1, then |Pt(A)| > 0, (in particular, dimPt(A) = 1) for
almost all t ∈ Sd−1 with respect to dσ.
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Functional Data Statistics

It is the statistical analysis of functional data. Here the random
elements that we want to predict are stochastic processes. For our
purposes, we say a stochastic process is a random element

X : (Ω,Σ,P)→ (L2(T ), ‖ · ‖2),

where T is a compact interval of R.
The weak expectation of X is given by

EX (t) = E [X (t)] =

∫
Ω
X (ω, t)dP(ω), t ∈ T .

The covariance function of X is γ(t, s) = E [X (t)X (s)] and the
covariance operator of X is

ΓX (t) =

∫
T
γ(t, s)X (s)ds.
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Karhunen-Loève theorem

Now we can state the decomposition theorem.

Theorem

Let X be a stochastic process with EX (t) = 0 and EX 2(t) <∞
for all t ∈ T . Suppose that γ(s, t) is continuous. Let {ek}∞k=1 be
the set of eigenfunctions of Γ with respective eigenvalues {λk}∞k=1.
Then we have a decomposition

X (t) =
∞∑
k=1

Zkek(t),

where the sum converges in the L2(Ω) norm uniformly over T and:

(i) The {ek}∞k=1 ⊂ L2(T ) form an orthonormal set.

(ii) The Zk =
∫
T X (t)ek(t)dt are pairwise uncorrelated random

variables with E [Zk ] = 0 and E [Z 2
k ] = λk , 1 ≤ k ≤ ∞.
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Principal Components Analysis

We want to find the directions of larger variance of a suitable
process X .

Let X with EX 2(t) ∈ L2(Ω) for all t ∈ T . Take a ∈ L2(T ) and
Y = X − EX .

By (i) of Karhunen-Loève, 〈a,Y 〉 =
∑

k∈N Zk〈a, ek〉 and, thanks
to (ii), we have that

V (〈a,Y 〉) =
∑
k∈N

λj〈a, ej〉2 ≤ λmax

∑
k∈N
〈a, ej〉2 = λmax‖a‖2

L2(T ).

Now we discard the direction k = max and repeat the process.

The principal components correspond to the largest eigenvalues.
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Directional wavelets and scattering transform

Let ψ ∈ L2(R2) and let φ ∈ L1 ∩ L2(R2) with ‖φ‖1 = 1 be a
low-pass filter. Fix a scale K ∈ N and denote ΦK = 2−2Kφ(2−Kx).

The directional wavelets associated to ψ ∈ L2(R2) are given by

ψk,θ(x) = 2−2kψ(2−k rθx), k < K , θ ∈ Θ,

where Θ is a set of angles.

Fix a function f : T1 × T2 → R and an order m ∈ N and
consider the following vector-valued functions,

Sq,K f (x) =
(∣∣| · · · |f ∗ ψk1,θ1 | ∗ · · · | ∗ ψkq ,θq

∣∣ ∗ φK)k1<···<kq<K
θ1,...,θq∈Θ

.

Definition

The scattering transform of f is SK f (x) = (Sq,K f (x))0≤q≤m .
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Directional wavelets and PCA

The scattering distance between two pictures f and g is

|||SK f − SKg |||2 =

∫
‖SK f (x)− SKg(x)‖2dx . (4.1)

Suppose there are L types of pictures. Then, each picture
sample f can be seen as a realization of a random element F`
where 1 ≤ ` ≤ L.

Our objective is to classify images looking at their scattering
tranform. We need to train a classifier.

We take many images of some class ` and estimate the
covariance function of SKF` − E [SKF`]. After that, we diagonalize
it to find D directions of high variability that form a linear space
VD,`. We repeat this process for all ` ∈ {1, ..., L}.

The classifier is ˆ̀ = arg minl≤L |||SK f − E [SKF`]−PVD,`
(SK f )|||.

Here PVD,`
is the projection over VD,`.
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