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o % Motivation

Linear optimal control

What is optimal control?

We define optimal control as the active manipulation of dynamical systems to
achieve a given engineering goal.

Indeed, starting from a given initial state at time t = 0 we want to act on the
trajectories through a suitable control in order to match or get close to a
desired final state in time T > 0.

YL =Ab+Bu, telo,T -A:DA)—-H
P(0) =y -Be L (W;D(A)Y)
-u: control

Here, the operator A can be a local or nonlocal operator.
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e 1w Motivation

Why nonlocal operator?

In general relevant models in Continuum Mechanics, Mathematical
Physics and Biology are of nonlocal nature:

® Boltzmann equations in gas dynamics;
® Navier-Stokes equations in Fluid Mechanics;
¢ Keller-Segel model for Chemotaxis.

Here, however, we shall deal with mixed Brownian motion and Lévy
path, due to anomalous dispersion and diffusion terms.

«

In that setting, classical PDE theory fails because of non-locality.

Yet many of the existing techniques can be tuned and adapted, although
this is often a delicate matter because modern PDE analysis is based on
the use of localisation arguments (test and cut-off functions)
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g % Motivation

Optimal Control Applications

What are some applications
® Fluid dynamics: Improve drag reduction, lift increase, and noise
reduction in aeronautics.

® Finance: Maximize profit given a level of risk tolerance.

® Epidemiology: Effectively suppress a disease with constraints of sensing
(blood samples, clinics, etc.) and actuation (vaccines, bed nets, etc.).

© Industry: Increasing productivity subject to constraints like labor and
work safety laws, and environment impact.

® Autonomy and robotics: self-driving cars and autonomous robots is to
achieve a task while interacting safely with a complex environment,
including cooperating with human agents.
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we ~w Motivation

Goal

Try to develop a systematic analysis of the control theoretical consequences
of the possible of mixture of local and non-local terms in the model.

We do it for the following model case of the mixture of Laplace and
Fractional Laplace operator of the form:

L=—A+(-A)°, 0<s<]l, 1)

The generator of an N-dimensional Lévy process has the following general
structure:

Pu=a agdyuty 3 bidjuss | ) —ulx)— T e, (E)v(E
@

where v is the Lévy measure and satisfies f]RN min {1, IE,IZ} dv(§) < +co.
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e % Local and nonlocal operators

Brownian motion — 2"4 order PDEs

|
Expected payoff at 00 u(x) = E (¢(BY)) = E(pay off)

20 solves:

Au =0, in Q,
B
u=a on 0Q).
$:90 - R

* B}": Brownian motion in RN
starting at xo;

* T: stopping time: first time at

Ais a local operator, that
which B hits 0Q);

is: supp [Au] C suppul
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e % Local and nonlocal operators

Lévy process — Integro-differential equations

Expected payoff at RN \ Q u(x) = E (d(X3)) = E(pay off)

solves:
Xz
Lu=0, in Q,

$:RV\Q >R u=¢ on RN\ Q.

* X}° Lévy process with
discontinuous sample paths.

* 1: first time at which X}° is in
L is nonlocal, thatis: supp [Lu| & supp [u] RN\ Q.
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wwews % Local and nonlocal operators

Stable Lévy processes: The fractional Laplacian

A special class of Lévy process when ((y) = p(—y) is radially symmetric and
1(y) = Cnslyl~N+29) fory # 0,0 < s < 1 reduces to the so-called Fractional
Laplacian
(u(x) —uly))

|X _ y |N +2s

(—A)* == Cn sPV. /

RN
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ww % Local and nonlocal operators

Remark: other way of deriving the fractional Laplace operator

¢ Fourier transform : (fA\)su(Z,) = c|&]?T(E)

® One can derive through Long Jump random walks

@@

u(,t+1) = Y  u(ku(x+hk,t).
kezN

and set

* Proceed as in the previous case by setting p(y) = ly|~N+%) fory # 0,
0<s<landt=h? — 0" in the limit, to get

ue(x, 1) + (—A)* = 0.
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g~ Problem Formulation

Mixed local-nonlocal problem

Let Q € RN (N > 1) be a bounded domain with a smooth boundary 9Q. For
T > 0, we consider the minimization problem:

min  J(W(z1,22)), 3)

(z1,22)€EZD

subject to the constraints that the state 1\ := 1(z;, z») solves the following
initial-boundary-exterior value problem:

Y+ 2P =0 in Q:=Qx(0,T),

b=z on ':=0Q x (0,T), @
v =2z in £:=(RN\Q)x(0,T),
P(-,0) =0, in Q.
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w1 Problem Formulation

¢ The functional ] : Zp — [0, o] is weakly lower-semicontinuous (we
shall give the precise expression of | later).

® The control (z1,25) € Zqq With Zq4 C Zp being a closed and convex
subset, where
Zp = L2(T) x [2(Z). ®)

The main question

How to formulate the above optimal control problem?
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g~ Problem Formulation

Questions
©® What is the correct Dirichlet boundary condition associated with .2 ?

® What is the form of normal derivative associated with .#?
To obtain an answer to the above question, we need the following notions.

® Appropriate Sobolev spaces.

® An integration by parts formula for .. That is, an appropriate Green
type formula for .Z.

To provide a flavour to the answer to this question, we start by given the
notion of existence of solution and uniqueness of solution by passing
through some functional setting.
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g~ Problem Formulation

Existing literature in the case of fractional Laplacian

@ H. Antil, R. Khatri, and M. Warma. External optimal control of nonlocal
PDEs. Inverse Problems, 35(8):084003, 35, 2019.

@ H. Antil and D. Verma and M. Warma. External optimal control o
p
fractional parabolic PDEs. ESAIM Control Optim. Calc. Var., 26:Paper No.
20, 33, 2020.

[4 U. Biccari and M. Warma and E. Zuazua. Local regularity for fractional
heat equations. In Recent advances in PDEs: analysis, numerics and
control, volume 17 of SEMA SIMAI Springer Ser., pages 233-249.
Springer, Cham, 2018.

[4 M. Warma and S. Zamorano. Exponential turnpike property for the
fractional parabolic equations with non-zero exterior data. ESAIM: COCV 27
(2021).
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w % Functional setting: Sobolev and fractional order Sobolev Spaces

Sobolev Spaces

We introduce the classical first order Sobolev space
HY(Q) = {u e 2(Q): / |Vu> dx < oo}
Q

which is endowed with the norm defined by

%
HWW@—(/Nﬁhﬁ/NwdQ.
Q Q

Hi(Q) = {we HY(RN) : w = 0in RN \Q}, ©6)

is a (real) Hilbert space endowed with the scalar product and associated norm
[ 9w vodx, el = IVolea )

4
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~w & Functional setting: Sobolev and fractional order Sobolev Spaces

Fractional order Sobolev Spaces

Let Q C RN be an arbitrary open setand 0 < s < 1.
¢ We denote

2
H*(Q) = {uel_z // — yN+22| dxdy<oo}

and we endow it with the norm defined by

1
)|2 2
[ullms (@) = (/ uf? dX+/ / e y|N+25 dxdy | .

® Then, H*(Q) is a Hilbert space.
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e % Functional setting: Sobolev and fractional order Sobolev Spaces

We let H§ (Q) = {u € H* (RN) : u =0 a.e. on RN\Q} and notice that
H3(Q) — HE(Q). ®)
Define the bilinear form F : H5(Q) x Hj(Q) — R by

— Cns (Y)W (x) —(y))
Flo, ) = /]RN /}RN Ix NS dx dy. )

In view of (7) and (8), we can deduce that

(0 W) = Tlo, ) + [ Vo Vipe (10)

defines a scalar product on H(l) (Q) with associated norm

1
2
. 2
ol = (ff(@,(p) + [ 7o dx) . 1)
fol
The norm given in (11) is equivalent to the one given in (7).
Jean-Daniel Djida — Optimal control of mixed local-nonlocal parabolic PDE 746




e % Functional setting: Sobolev and fractional order Sobolev Spaces

The zero Dirichlet boundary-exterior condition (BC) for .#
© The zero Dirichlet BC for A is given by u = 0 on 0Q.
® The zero Dirichlet BC for (—A)® is given by u =0 on RN \ Q.
© Let A be the operator on L%(Q) given by

D(A)=V:={ucH)(Q): (Lu)ln €1%(Q)}, Au=(ZLu)lg in Q.

Then, A be the realization of .Z with the zero Dirichlet exterior
condition. Here, the Dirichlet BC is characterized by u = 0 on 9Q) and
u=0in RM\Q.

Remark 1

We notice that in the situation of zero Dirichlet exterior condition the system
Zw=f in Q, w=gin RN\ Q,

is a well-posed problem. That is, the condition on 9Q is not needed.
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e % Functional setting: Sobolev and fractional order Sobolev Spaces

How can we define a "fractional" normal derivative?

® Recall that if u is a smooth function defined on a smooth open set Q,
then the normal derivative of u is given by

0
%:Vuw?,

where V is the normal vector at the boundary 0Q.
e For0 < s < 1 and a function u defined on RN we let

u(x) —uly)

Ny =
Wg, XGR \Q,

NSU(X) - CN,S /
JQ

provided that the integral exists. This is clearly a nonlocal operator.
* N, is well-defined and continuous from H® (RV) into L? (RM\Q).
® We call N u the nonlocal normal derivative of u.
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e % Functional setting: Sobolev and fractional order Sobolev Spaces

Local & nonlocal normal derivative
¢ Recall the divergence theorem:

/Audx:/ div(Vu) dx:/ audcr, vYu e C3(Q)
Q Q 2

0 0V
¢ For (—A)® we have the following:

/(—A)Su dx:—/ Noudx, Vue C§(RY).
Q RN\Q

Jean-Daniel Djida — Optimal control of mixed local-nonlocal parabolic PDE 24 / 46



e % Functional setting: Sobolev and fractional order Sobolev Spaces

Local & nonlocal normal derivative
® Green Formula: Vu € C2(Q) and W € C'(Q),

/Vu~Vvdx:—/ vAudx+/ va—udcr.
Q Q 00 OV

* For (—A)* we have the following: Vu € C3 (RN) and v € C} (RV)

Cnys (u(x) —u(y))(v(x) —v(y))
2 /]RZN \(RN\Q)? Ix —y[N+2s dx dy

:/ v(—=A)*u dx+/ vNsu dx.
Q RN\Q

RN\ (RM\Q)? = (Q x 0) U (Q x (RM\Q)) U (RM\Q) x Q).

4
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o e NoOtion of weak solutions

Formulation: Mixed Dirichlet boundary-exterior control
problem

Recall that Zp = L?(I') x L*(£) is endowed with the norm given by

1
2
a1, 12) 1z = (Il + ui2lsgs) ) (122)

. We consider the minimization problem

. o ,
min Xz, ’ b
‘PGLZ(Q),(zl,zZ)eLZ(zD)]N’) + 2 121, 22) Iz, (12b)

subject to the Dirichlet boundary-exterior value problem: Find
P €12 ((O,T) X ]RN) solving

P+ Z2P=0 in Q,
v =2z on I,
b=z in %,
P(-,0) =0, in Q,
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e % INOtion of weak solutions

Elliptic problem

Consider the following non-homogeneous Dirichlet problem associated with
the operator .Z, that is

Lw ="~ in Q,
w =g on 0Q), (13)
W =gy in RN\ Q.

28746
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o e NoOtion of weak solutions

Definition 2 (Very-weak solution)

Letf € H71(Q), g1 € [2(3Q), and g, € L2(RN \ Q). A function w € L>(RN)
is called a very-weak solution (or a solution by transposition) of (13), if the
identity

/ wZe dx = (f, (p>H*1(Q],H(1)(Q) —/ 910v @ dﬁ—/ _ 9N dx
Q 20 RN\Q

(14)
holds, for every @ € V := {(p eHLQ): Lo e Lz(Q)}.
4
Remark 3
We notice that Definition 2 of very-weak solutions makes sense if every
function ¢ € V satisfies 9, ¢ € L2(0Q), and N, € L>(RN \ Q). )

O /
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w @ INotion of weak solutions

Very-weak solutions

Let 0 < s < 3/4. Then for every f € H71(Q), g1 € L2(dQ) and

g2 € L2(RN \ Q), the system (13) has a unique very-weak solution

w € [2(RV) in the sense of Definition 2, and there is a constant C > 0 such
that

[Wllz@ny < C (Iflln-a) + l91llizea) + l92llz@naq)) - (15)
In addition, if g; and g, are as in Definition ??, then the following assertions
hold.
® Every weak solution of (13) is also a very-weak solution.

® Every very-weak solution of (13) that belongs to H! (R") is also a weak
solution.

4

5
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o e NoOtion of weak solutions

Proof
Step 1: Let A be the realization of . in L2(Q) with zero Dirichlet exterior
condition, that is,

D(A) =V :={uecH)(Q): (Lu)g €1*(Q)}, Au=(Lu)q in Q. (16)

Notice that [[v||y := || -£V||12(q) defines an equivalent norm on V. This
follows from the fact that the operator A is invertible, has a compact
resolvent, and its first eigenvalue is strictly positive.

We claim that

V= {(p cHY(Q): Lo € 12(Q), v € [2(3Q) and Ny € L2(RN \6)}.

It suffices to show that 3, ¢ € 12(dQ) and Ny € L2(RN \ Q) for every
@ € V. Indeed, let ¢ € V. We have two cases.

5
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o e NoOtion of weak solutions

Proof
® Case 0 < s < 1/2. Since ¢ € H}(Q) — H$(Q), it follows from the
regularity result that (—A)¢ € [2(Q).
Thus, Ny € L2(RN \ Q). As Zu € [%(Q), this also implies that
Ag € 12(Q).

Since Q) is assumed to be smooth, using the well-known elliptic
regularity results for the Laplace operator, we have that ¢ € H*(Q).
Thus, 9@ € H/2(0Q) — 12(3Q).

* Case 1/2 < s < 1. Since ¢ € H}(Q), it follows that (—A)S¢ € HI725(Q).
Hence, Ap € H'725(Q) and this implies that ¢ € H325(Q).

Thus, 9y € H3/2-25(3Q) — 12(3Q) if 3/2 — 25 > 0.
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w @ INotion of weak solutions

Since @ € H372%(Q), it follows that if 3 —4s > 0, then (—A)S¢ € L?().

Since £ ¢ € L?(Q), we can deduce that Ag € [*(Q). From elliptic regularity
for the Laplace operator operator we can conclude that ¢ € H*(Q).

Thus, 9@ € H/2(0Q) — 12(0Q).

Since we have assumed that 0 < s < 3/4, it follows that 3/2 — 2s > 0. and
3—4s > 0.

Thus, we can conclude that 9 ¢ € [2(0Q) and Ny € [2(RN\ Q). The
claim is proved.

Step 2: Apply the Babuska-Lax-Milgram theorem to finish the proof.
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o @ INOtion of weak solutions

Definition 4 (Weak solution to the mixed local-nonlocal
parabolic problem)

Let z, € H((0, T); HY(RN \ Q) and z; € L((0,T); H/2(dQ)) be such that
Zlr =2z1. Let 2 € HY((0, T); HY(RN) be such that Z = z; in £. A function

P e L2((0, T); HY@RN)) n H((0, T); H 1(Q)) is said to be a weak solution of
the system (12c) if Y — 2 € L2((0, T); H}(Q)) N H((0, T); H™1(Q)) and the
identity

(e Orcrga e + [ V- V0 +5(0b,0) =0 7)
holds, for every C € H(lj(Q) and almost every t € (0, T).
y
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o e NoOtion of weak solutions

Weak solution to the mixed local-nonlocal Dirichlet problem

Let z; and z; be as in Definition 4. Then, the system (12c) has a unique weak
solution P € L2((0, T); H'(RN)) n H'((0, T); H1(Q)) in the sense of
Definition 4. In addition, there is a constant C > 0 such that

W2 0,11 ®N ) AH (0, 1)H -1 (@) < Cllz2llp o1 H RM\GY) (18)J

Remark 5

e It is worthwhile noticing that the regularity of (z1,z,) € L*(T') x L*(%) is
not enough to have a weak solution in the sense of Definition 4.

¢ Therefore we need a new notion of solutions. )
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o e NoOtion of weak solutions

Definition 6 (Very-weak solution to the Dirichlet problem)

Let z; € L2(T) and 2z, € L2(X). A function ) € L2((0,T) x RN) is said to be a
very weak-solution (or a solution by transposition) to the system (12c) if the
identity

/d)(—(pt +.$(p) dxdt:—/zlav(p det—/zst(p dxdt, (19)
Q r b3

holds, for every @ € L2((0,T), V) N HL((0, T); L2(Q)) with ¢(-, T) =0 a.e. in
Q.
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o e NoOtion of weak solutions

Existence of very-weak solutions

Let0 < s < 3/4,z; € L?(T'), and z, € L?(L). Then, there exists a unique
very-weak solution { € [%((0,T) x RN) to (12c) according to Definition 6,
and there is a constant C > 0 such that

[Wllz(om)xry) < C (llz1llzm + l1z2lliz(z)) - (20)

Moreover, if z; and z; are as in Definition 4, then the following assertions
hold.

® Every weak solution of (12¢) is also a very-weak solution.

® Every very-weak solution of (12c) that belongs to
L2((0, T); HY(RN)) n H((0, T); H-1(Q)) is also a weak solution.
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e~ Mixed local-nonlocal optimal control problem

Dirichlet boundary-exterior control problem
In view of the above existence result, the following (solution-map)
control-to-state map is well-defined

S:L2(N x LX(2) = L2(Q), (z1,22) > S(z1,22) =

and is linear and continuous. We also notice that for

(z1,22) € Zp = L*(T") x L*(£), we have that 1 := S(z1,2,) € L2 ((0,T) x RN).
As a result we can write the reduced Dirichlet boundary-exterior control
problem

min  J((z1,22)) = min <](5(7~1/7~2))+;H(Zl,Zz)HZZ,D) (21)

(z1,22)€Zqa (z1,22)€Zqa

with

J(S(z1,22)) = 5 0((z1,22)) — Zh [ -
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e~ Mixed local-nonlocal optimal control problem

Existence: Dirichlet boundary-exterior control problem

Let0 < s <3/4,z € 12(T"), and z, € L?(%). Let Z44 be a closed and convex
subset of Zp, and let { = (z1, z,) satisfy

i+ LH=0 in Q
b=z on I,
b=z in X,
P(-,0) =0, in Q,

(22)

in the very-weak sense. Then, there exists a unique control (z;,z;) € Zqa

solution of

(Mizr)lgZD J((z1,22)). (23)

4
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e~ Mixed local-nonlocal optimal control problem

The adjoint operator S*
The adjoint operator $* : [2(Q) — L2(T") x L?(£) of the control-to-state map S
(solution-map) is given by

n+— §'n = (—0vp, —Nsp).

where p € L% ((0,T); H)(Q)) N H! ((0, T); L?(Q)) is the weak solution to the
parabolic problem

—pt+Zp=mn  inQ

p=0 in T,
. (24)
p=0 inZ,
p(T,-) =0 in Q.
4
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e~ Mixed local-nonlocal optimal control problem

Sketch of the proof.

According to the definition of $* we have Vn € L*(Q) and
V(z1,22) € L2(T) x [2(Z),

(n,S2)12(0) = (SN, 2) 2 (kN0 -

Testing (24) with Sz and using the fact that Sz is a very-weak solution of (12c),
we arrive at

M, d)r2(q) = (&, —Pt + LP)12(q) = (S"z,M)12(q)
=(z1,0vP)r2(r) + (=22, NsP)12(5)-

This yields the asserted result. m|
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o % Mixed local-nonlocal optimal control problem

First Order Necessary Optimality Conditions for (21)

Let0<s < 3/4 Let Zp be an open set in 12 (X) such that Zqq C Zp. Let

P — J() : L2(Q) — R be Fréchet differentiable with J' (1)) € L2(Q). Let
(z1,2,) be a minimizer of (21). Then,

(0vP +&z1,21 — Z1) 12 () + NsP + €22, 220 — Z2)12(5) 2 0, V(z1,22) € Zaa,

where p € L2 ((0, T); H}(Q)) nH! ((0, T); H1(Q)) solves the adjoint equation

P +Zp=J() inQ, p=0in L, P(,T)=0in Q.

Equivalently we can write (25) as

1 1
21,22) =Pz, | —=0P, —=NP
(Z1,2) Za ( £ % p)

where Pz, is the projection onto the set Z, 4. If ] is convex then (25) is also a

sufficient condition.

(25)

(26)

(27)

4
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e~ Mixed local-nonlocal optimal control problem

Future perspectives:

* Numerical approximations and simulation of the optimal control
problem.

® Question of null and approximate controllability of the problem with
Dirichlet, Neumann and Robin type boundary conditions.

¢ Investigate Turnpike property for the mixed local-nonlocal problem.
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e % Mixed local-nonlocal optimal control problem

Thank you !
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