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Motivation

Linear optimal control

What is optimal control?
We define optimal control as the active manipulation of dynamical systems to
achieve a given engineering goal.

Indeed, starting from a given initial state at time t = 0 we want to act on the
trajectories through a suitable control in order to match or get close to a
desired final state in time T > 0.


dψ
dt = Aψ+ Bu, t ∈ [0, T ] - A : D(A)→ H

ψ(0) = ψ0 - B ∈ L (U;D(A)∗)

- u : control

Here, the operator A can be a local or nonlocal operator.
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Motivation

Why nonlocal operator?

In general relevant models in Continuum Mechanics, Mathematical
Physics and Biology are of nonlocal nature:

Here, however, we shall deal with mixed Brownian motion and Lévy
path, due to anomalous dispersion and diffusion terms.

Yet many of the existing techniques can be tuned and adapted, although
this is often a delicate matter because modern PDE analysis is based on
the use of localisation arguments (test and cut-off functions)

• Boltzmann equations in gas dynamics;
• Navier-Stokes equations in Fluid Mechanics;
• Keller-Segel model for Chemotaxis.

In that setting, classical PDE theory fails because of non-locality.
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Motivation

Optimal Control Applications

What are some applications
1 Fluid dynamics: Improve drag reduction, lift increase, and noise

reduction in aeronautics.

2 Finance: Maximize profit given a level of risk tolerance.

3 Epidemiology: Effectively suppress a disease with constraints of sensing
(blood samples, clinics, etc.) and actuation (vaccines, bed nets, etc.).

4 Industry: Increasing productivity subject to constraints like labor and
work safety laws, and environment impact.

5 Autonomy and robotics: self-driving cars and autonomous robots is to
achieve a task while interacting safely with a complex environment,
including cooperating with human agents.
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Motivation

Goal
Try to develop a systematic analysis of the control theoretical consequences
of the possible of mixture of local and non-local terms in the model.

We do it for the following model case of the mixture of Laplace and
Fractional Laplace operator of the form:

L B −∆+ (−∆)s, 0 < s < 1, (1)

The generator of an N-dimensional Lévy process has the following general
structure:

Lu = α
∑
i,j

aij∂iju+γ
∑
j

bj∂ju+β

ˆ
RN

(u(x+ξ)−u(x)−ξ·∇u(x))χB1(ξ)dν(ξ),

(2)
where ν is the Lévy measure and satisfies

´
RN min

{
1, |ξ|2

}
dν(ξ) < +∞.
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Local and nonlocal operators

Brownian motion→ 2nd order PDEs

Expected payoff at ∂Ω

Bx0
τ

x0

Ω
∂Ω

φ : ∂Ω→ R

∆ is a local operator, that
is: supp [∆u] ⊂ supp[u]

u(x) = E (φ(Bx0
τ )) = E(pay off)

solves: ∆u = 0, in Ω,

u = φ on ∂Ω.

• Bx0
t : Brownian motion in RN

starting at x0;

• τ: stopping time: first time at
which Bx0

t hits ∂Ω;
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Local and nonlocal operators

Lévy process→ Integro-differential equations

Expected payoff at RN \Ω

Xx0
τ

x0

Ω

φ : RN \Ω→ R

L is nonlocal, that is: supp
[
Lu
]
* supp [u]

u(x) = E (φ(Xx0
τ )) = E(pay off)

solves: L u = 0, in Ω,

u = φ on RN \Ω.

• Xx0
t Lévy process with

discontinuous sample paths.
• τ: first time at which Xx0

t is in
RN \Ω.
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Local and nonlocal operators

Stable Lévy processes: The fractional Laplacian
A special class of Lévy process when µ(y) = µ(−y) is radially symmetric and
µ(y) = CN,s|y|

−(N+2s) for y , 0, 0 < s < 1 reduces to the so-called Fractional
Laplacian

(−∆)s B CN,sP.V.
ˆ
RN

(u(x) − u(y))

|x− y|N+2s dy.
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Local and nonlocal operators

Remark: other way of deriving the fractional Laplace operator

• Fourier transform : ̂(−∆)su(ξ) = c|ξ|2sû(ξ)
• One can derive through Long Jump random walks

and set
u(x, t+ τ) =

∑
k∈ZN

µ(k)u(x+ hk, t).

• Proceed as in the previous case by setting µ(y) = |y|−(N+2s) for y , 0,
0 < s < 1 and τ = h2s → 0+ in the limit, to get

ut(x, t) + (−∆)s = 0.
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Problem Formulation

Mixed local-nonlocal problem
LetΩ ⊂ RN (N > 1) be a bounded domain with a smooth boundary ∂Ω. For
T > 0, we consider the minimization problem:

min
(z1,z2)∈ZD

J(ψ(z1, z2)), (3)

subject to the constraints that the state ψ := ψ(z1, z2) solves the following
initial-boundary-exterior value problem:

ψt + Lψ = 0 in Q B Ω× (0, T),
ψ = z1 on Γ := ∂Ω× (0, T),
ψ = z2 in Σ B (RN \Ω)× (0, T),
ψ(·, 0) = 0, in Ω.

(4)
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Problem Formulation

• The functional J : ZD → [0,∞] is weakly lower-semicontinuous (we
shall give the precise expression of J later).

• The control (z1, z2) ∈ Zad with Zad ⊂ ZD being a closed and convex
subset, where

ZD B L
2(Γ)× L2(Σ). (5)

The main question
How to formulate the above optimal control problem?
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Problem Formulation

Questions
1 What is the correct Dirichlet boundary condition associated with L ?

2 What is the form of normal derivative associated with L ?
To obtain an answer to the above question, we need the following notions.
• Appropriate Sobolev spaces.

• An integration by parts formula for L . That is, an appropriate Green
type formula for L .

To provide a flavour to the answer to this question, we start by given the
notion of existence of solution and uniqueness of solution by passing
through some functional setting.
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Problem Formulation

Existing literature in the case of fractional Laplacian

H. Antil, R. Khatri, and M. Warma. External optimal control of nonlocal
PDEs. Inverse Problems, 35(8):084003, 35, 2019.

H. Antil and D. Verma and M. Warma. External optimal control of
fractional parabolic PDEs. ESAIM Control Optim. Calc. Var., 26:Paper No.
20, 33, 2020.

U. Biccari and M. Warma and E. Zuazua. Local regularity for fractional
heat equations. In Recent advances in PDEs: analysis, numerics and
control, volume 17 of SEMA SIMAI Springer Ser., pages 233–249.
Springer, Cham, 2018.

M. Warma and S. Zamorano. Exponential turnpike property for the
fractional parabolic equations with non-zero exterior data. ESAIM: COCV 27
(2021).
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Functional setting: Sobolev and fractional order Sobolev Spaces

Sobolev Spaces
We introduce the classical first order Sobolev space

H1(Ω) :=

{
u ∈ L2(Ω) :

ˆ
Ω

|∇u|2 dx <∞}
which is endowed with the norm defined by

‖u‖H1(Ω) =

(ˆ
Ω

|u|2 dx+
ˆ
Ω

|∇u|2 dx
) 1

2

.

H1
0(Ω) B

{
w ∈ H1(RN) : w ≡ 0 in RN \Ω

}
, (6)

is a (real) Hilbert space endowed with the scalar product and associated norm
ˆ
Ω

∇w · ∇ϕdx, ‖ϕ‖H1
0(Ω) B ‖∇ϕ‖L2(Ω). (7)
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Functional setting: Sobolev and fractional order Sobolev Spaces

Fractional order Sobolev Spaces
LetΩ ⊂ RN be an arbitrary open set and 0 < s < 1.
• We denote

Hs(Ω) B

{
u ∈ L2(Ω) :

ˆ
Ω

ˆ
Ω

|u(x) − u(y)|2

|x− y|N+2s dx dy <∞}
and we endow it with the norm defined by

‖u‖Hs(Ω) =

(ˆ
Ω

|u|2 dx+
ˆ
Ω

ˆ
Ω

|u(x) − u(y)|2

|x− y|N+2s dx dy
) 1

2

.

• Then, Hs(Ω) is a Hilbert space.

Jean-Daniel Djida – Optimal control of mixed local-nonlocal parabolic PDE 20 / 46



Functional setting: Sobolev and fractional order Sobolev Spaces

We let Hs0(Ω) =
{
u ∈ Hs

(
RN
)
: u = 0 a.e. on RN\Ω

}
and notice that

H1
0(Ω) ↪→ Hs0(Ω). (8)

Define the bilinear form F : Hs0(Ω)×Hs0(Ω)→ R by

F(ϕ,ψ) B
CN,s

2

ˆ
RN

ˆ
RN

(ϕ(x) −ϕ(y))(ψ(x) −ψ(y))

|x− y|N+2s dxdy. (9)

In view of (7) and (8), we can deduce that

(ϕ,ψ)H1
0(Ω) := F(ϕ,ψ) +

ˆ
Ω

∇ϕ · ∇ψdx (10)

defines a scalar product on H1
0(Ω) with associated norm

‖ϕ‖H1
0(Ω) B

(
F(ϕ,ϕ) +

ˆ
Ω

|∇ϕ|2 dx
) 1

2

. (11)

The norm given in (11) is equivalent to the one given in (7).
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Functional setting: Sobolev and fractional order Sobolev Spaces

The zero Dirichlet boundary-exterior condition (BC) for L

1 The zero Dirichlet BC for ∆ is given by u = 0 on ∂Ω.
2 The zero Dirichlet BC for (−∆)s is given by u = 0 on RN \Ω.
3 LetA be the operator on L2(Ω) given by

D(A) = V B {u ∈ H1
0(Ω) : (Lu)|Ω ∈ L2(Ω)}, Au = (Lu)|Ω in Ω.

Then,A be the realization of L with the zero Dirichlet exterior
condition. Here, the Dirichlet BC is characterized by u = 0 on ∂Ω and
u = 0 in RN\Ω.

Remark 1
We notice that in the situation of zero Dirichlet exterior condition the system

Lw = f in Ω, w = g in RN \Ω,

is a well-posed problem. That is, the condition on ∂Ω is not needed.
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Functional setting: Sobolev and fractional order Sobolev Spaces

How can we define a "fractional" normal derivative?
• Recall that if u is a smooth function defined on a smooth open setΩ,

then the normal derivative of u is given by

∂u

∂ν
B ∇u · ~ν,

where ~ν is the normal vector at the boundary ∂Ω.
• For 0 < s < 1 and a function u defined on RN we let

Nsu(x) = CN,s

ˆ
Ω

u(x) − u(y)

|x− y|N+2s dy, x ∈ RN\Ω,

provided that the integral exists. This is clearly a nonlocal operator.
• Ns is well-defined and continuous from Hs

(
RN
)

into L2
(
RN\Ω

)
.

• We call Nsu the nonlocal normal derivative of u.
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Functional setting: Sobolev and fractional order Sobolev Spaces

Local & nonlocal normal derivative
• Recall the divergence theorem:

ˆ
Ω

∆u dx =
ˆ
Ω

div(∇u) dx =
ˆ
∂Ω

∂u

∂ν
dσ, ∀u ∈ C2(Ω)

• For (−∆)s we have the following:
ˆ
Ω

(−∆)su dx = −

ˆ
RN\Ω

Nsu dx, ∀u ∈ C2
0
(
RN
)

.
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Functional setting: Sobolev and fractional order Sobolev Spaces

Local & nonlocal normal derivative
• Green Formula: ∀u ∈ C2(Ω) and ∀v ∈ C1(Ω),

ˆ
Ω

∇u · ∇v dx = −

ˆ
Ω

v∆u dx+
ˆ
∂Ω

v
∂u

∂ν
dσ.

• For (−∆)s we have the following: ∀u ∈ C2
0

(
RN
)

and v ∈ C1
0

(
RN
)

CN,s

2

ˆ
R2N\(RN\Ω)

2

(u(x) − u(y))(v(x) − v(y))

|x− y|N+2s dx dy

=

ˆ
Ω

v(−∆)su dx+
ˆ
RN\Ω

vNsu dx.

R2N\
(
RN\Ω

)2
:= (Ω×Ω) ∪

(
Ω×

(
RN\Ω

))
∪
((
RN\Ω

)
×Ω

)
.

Jean-Daniel Djida – Optimal control of mixed local-nonlocal parabolic PDE 25 / 46



1 Motivation

2 Local and nonlocal operators

3 Problem Formulation

4 Functional setting: Sobolev and fractional order Sobolev Spaces

5 Notion of weak solutions

6 Mixed local-nonlocal optimal control problem



Notion of weak solutions

Formulation: Mixed Dirichlet boundary-exterior control
problem

Recall that ZD B L2(Γ)× L2(Σ) is endowed with the norm given by

‖(u1,u2)‖ZD
=
(
‖u1‖2

L2(Γ) + ‖u2‖2
L2(Σ)

) 1
2
. (12a)

. We consider the minimization problem

min
ψ∈L2(Q),(z1,z2)∈L2(ZD)

J(ψ) +
α

2
‖(z1, z2)‖2

ZD
, (12b)

subject to the Dirichlet boundary-exterior value problem: Find
ψ ∈ L2

(
(0, T)×RN

)
solving

ψt + Lψ = 0 in Q,
ψ = z1 on Γ ,
ψ = z2 in Σ,
ψ(·, 0) = 0, in Ω,

(12c)

and the control constraints

(z1, z2) ∈ Zad, (12d)

with Zad ⊂ ZD being a closed and convex subset.
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Notion of weak solutions

Elliptic problem
Consider the following non-homogeneous Dirichlet problem associated with
the operator L , that is 

Lw = f in Ω,
w = g1 on ∂Ω,
w = g2 in RN \Ω.

(13)
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Notion of weak solutions

Definition 2 (Very-weak solution)

Let f ∈ H−1(Ω), g1 ∈ L2(∂Ω), and g2 ∈ L2(RN \Ω). A function w ∈ L2(RN)
is called a very-weak solution (or a solution by transposition) of (13), if the
identity
ˆ
Ω

wLϕ dx = 〈f,ϕ〉H−1(Ω),H1
0(Ω) −

ˆ
∂Ω

g1∂νϕ dσ−

ˆ
RN\Ω

g2Nsϕ dx

(14)

holds, for every ϕ ∈ V :=
{
ϕ ∈ H1

0(Ω) : Lϕ ∈ L2(Ω)
}

.

Remark 3
We notice that Definition 2 of very-weak solutions makes sense if every
function ϕ ∈ V satisfies ∂νϕ ∈ L2(∂Ω), and Nsϕ ∈ L2(RN \Ω).
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Notion of weak solutions

Very-weak solutions
Let 0 < s 6 3/4. Then for every f ∈ H−1(Ω), g1 ∈ L2(∂Ω) and
g2 ∈ L2(RN \Ω), the system (13) has a unique very-weak solution
w ∈ L2(RN) in the sense of Definition 2, and there is a constant C > 0 such
that

‖w‖L2(RN) 6 C
(
‖f‖H−1(Ω) + ‖g1‖L2(∂Ω) + ‖g2‖L2(RN\Ω)

)
. (15)

In addition, if g1 and g2 are as in Definition ??, then the following assertions
hold.

1 Every weak solution of (13) is also a very-weak solution.
2 Every very-weak solution of (13) that belongs to H1(RN) is also a weak

solution.

Jean-Daniel Djida – Optimal control of mixed local-nonlocal parabolic PDE 30 / 46



Notion of weak solutions

Proof
Step 1: LetA be the realization of L in L2(Ω) with zero Dirichlet exterior
condition, that is,

D(A) = V B {u ∈ H1
0(Ω) : (Lu)|Ω ∈ L2(Ω)}, Au = (Lu)|Ω in Ω. (16)

Notice that ‖v‖V := ‖L v‖L2(Ω) defines an equivalent norm onV. This
follows from the fact that the operatorA is invertible, has a compact
resolvent, and its first eigenvalue is strictly positive.

We claim that

V =
{
ϕ ∈ H1

0(Ω) : Lϕ ∈ L2(Ω), ∂νϕ ∈ L2(∂Ω) and Nsϕ ∈ L2(RN \Ω)
}

.

It suffices to show that ∂νϕ ∈ L2(∂Ω) and Nsϕ ∈ L2(RN \Ω) for every
ϕ ∈ V. Indeed, let ϕ ∈ V. We have two cases.
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Notion of weak solutions

Proof
• Case 0 < s < 1/2. Since ϕ ∈ H1

0(Ω) ↪→ Hs0(Ω), it follows from the
regularity result that (−∆)sϕ ∈ L2(Ω).

Thus, Nsϕ ∈ L2(RN \Ω). As Lu ∈ L2(Ω), this also implies that
∆ϕ ∈ L2(Ω).

SinceΩ is assumed to be smooth, using the well-known elliptic
regularity results for the Laplace operator, we have that ϕ ∈ H2(Ω).
Thus, ∂νϕ ∈ H1/2(∂Ω) ↪→ L2(∂Ω).

• Case 1/2 6 s < 1. Since ϕ ∈ H1
0(Ω), it follows that (−∆)sϕ ∈ H1−2s(Ω).

Hence, ∆ϕ ∈ H1−2s(Ω) and this implies that ϕ ∈ H3−2s(Ω).

Thus, ∂νϕ ∈ H3/2−2s(∂Ω) ↪→ L2(∂Ω) if 3/2 − 2s > 0.
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Notion of weak solutions

Since ϕ ∈ H3−2s(Ω), it follows that if 3 − 4s > 0, then (−∆)sϕ ∈ L2().

Since Lϕ ∈ L2(Ω), we can deduce that ∆ϕ ∈ L2(Ω). From elliptic regularity
for the Laplace operator operator we can conclude that ϕ ∈ H2(Ω).

Thus, ∂νϕ ∈ H1/2(∂Ω) ↪→ L2(∂Ω).

Since we have assumed that 0 < s 6 3/4, it follows that 3/2 − 2s > 0. and
3 − 4s > 0.

Thus, we can conclude that ∂νϕ ∈ L2(∂Ω) and Nsϕ ∈ L2(RN \Ω). The
claim is proved.

Step 2: Apply the Babuška-Lax-Milgram theorem to finish the proof.
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Notion of weak solutions

Definition 4 (Weak solution to the mixed local-nonlocal
parabolic problem)

Let z2 ∈ H1((0, T);H1(RN \Ω) and z1 ∈ L2((0, T);H1/2(∂Ω)) be such that
z2|Γ = z1. Let z̃ ∈ H1((0, T);H1(RN) be such that z̃ = z2 in Σ. A function

ψ ∈ L2((0, T);H1(RN)) ∩H1((0, T);H−1(Ω)) is said to be a weak solution of
the system (12c) if ψ− z̃ ∈ L2((0, T);H1

0(Ω)) ∩H1((0, T);H−1(Ω)) and the
identity

〈ψt, ζ〉H−1(Ω),H1
0(Ω) +

ˆ
Ω

∇ψ · ∇ζ dx+ F(ψ, ζ) = 0 (17)

holds, for every ζ ∈ H1
0(Ω) and almost every t ∈ (0, T).
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Notion of weak solutions

Weak solution to the mixed local-nonlocal Dirichlet problem
Let z2 and z1 be as in Definition 4. Then, the system (12c) has a unique weak
solution ψ ∈ L2((0, T);H1(RN)) ∩H1((0, T);H−1(Ω)) in the sense of
Definition 4. In addition, there is a constant C > 0 such that

‖ψ‖L2((0,T);H1(RN))∩H1((0,T);H−1(Ω) 6 C‖z2‖H1((0,T);H1(RN\Ω)) (18)

Remark 5
• It is worthwhile noticing that the regularity of (z1, z2) ∈ L2(Γ)× L2(Σ) is

not enough to have a weak solution in the sense of Definition 4.

• Therefore we need a new notion of solutions.
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Notion of weak solutions

Definition 6 (Very-weak solution to the Dirichlet problem)

Let z1 ∈ L2(Γ) and z2 ∈ L2(Σ). A function ψ ∈ L2((0, T)×RN) is said to be a
very weak-solution (or a solution by transposition) to the system (12c) if the
identity
ˆ
Q

ψ
(
−ϕt + Lϕ

)
dx dt = −

ˆ
Γ

z1∂νϕ dσdt−
ˆ
Σ

z2Nsϕ dxdt, (19)

holds, for every ϕ ∈ L2((0, T),V) ∩H1((0, T);L2(Ω)) with ϕ(·, T) = 0 a.e. in
Ω.
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Notion of weak solutions

Existence of very-weak solutions
Let 0 < s 6 3/4, z1 ∈ L2(Γ), and z2 ∈ L2(Σ). Then, there exists a unique
very-weak solution ψ ∈ L2((0, T)×RN) to (12c) according to Definition 6,
and there is a constant C > 0 such that

‖ψ‖L2((0,T)×RN) 6 C
(
‖z1‖L2(Γ) + ‖z2‖L2(Σ)

)
. (20)

Moreover, if z1 and z2 are as in Definition 4, then the following assertions
hold.

1 Every weak solution of (12c) is also a very-weak solution.

2 Every very-weak solution of (12c) that belongs to
L2((0, T);H1(RN)) ∩H1((0, T);H−1(Ω)) is also a weak solution.
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Mixed local-nonlocal optimal control problem

Dirichlet boundary-exterior control problem
In view of the above existence result, the following (solution-map)
control-to-state map is well-defined

S : L2(Γ)× L2(Σ)→ L2(Q), (z1, z2) 7→ S(z1, z2) = ψ

and is linear and continuous. We also notice that for
(z1, z2) ∈ ZD B L2(Γ)× L2(Σ), we have that ψ B S(z1, z2) ∈ L2

(
(0, T)×RN

)
.

As a result we can write the reduced Dirichlet boundary-exterior control
problem

min
(z1,z2)∈Zad

J((z1, z2)) B min
(z1,z2)∈Zad

(
J(S(z1, z2)) +

1
2
‖(z1, z2)‖2

ZD

)
(21)

with
J(S(z1, z2)) B

1
2
‖ψ((z1, z2)) − z

1
d‖2
L2(Q).
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Mixed local-nonlocal optimal control problem

Existence: Dirichlet boundary-exterior control problem
Let 0 < s 6 3/4, z1 ∈ L2(Γ), and z2 ∈ L2(Σ). Let Zad be a closed and convex
subset of ZD, and let ψ = ψ(z1, z2) satisfy

ψt + Lψ = 0 in Q,
ψ = z1 on Γ ,
ψ = z2 in Σ,
ψ(·, 0) = 0, in Ω,

(22)

in the very-weak sense. Then, there exists a unique control (z1, z2) ∈ Zad

solution of
inf

(z1,z2)∈ZD

J((z1, z2)). (23)
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The adjoint operator S∗

The adjoint operator S∗ : L2(Q)→ L2(Γ)× L2(Σ) of the control-to-state map S
(solution-map) is given by

η 7→ S∗η = (−∂νp,−Nsp).

where p ∈ L2
(
(0, T);H1

0(Ω)
)
∩H1

(
(0, T);L2(Ω)

)
is the weak solution to the

parabolic problem 
−pt + L p = η in Q,
p = 0 in Γ ,
p = 0 in Σ,
p(T , ·) = 0 inΩ.

(24)
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Sketch of the proof.

According to the definition of S∗ we have ∀η ∈ L2(Q) and
∀(z1, z2) ∈ L2(Γ)× L2(Σ),

(η,Sz)L2(Ω) = (S∗η, z)L2(RN\Ω) .

Testing (24) with Sz and using the fact that Sz is a very-weak solution of (12c),
we arrive at

(η,φ)L2(Q) = (φ,−pt + L p)L2(Q) = (S∗z,η)L2(Q)

=(z1,∂νp)L2(Γ) + (−z2,Nsp)L2(Σ).

This yields the asserted result. �
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First Order Necessary Optimality Conditions for (21)
Let 0 < s 6 3/4. Let ZD be an open set in L2 (Σ) such that Zad ⊂ ZD. Let
ψ 7→ J(ψ) : L2(Q)→ R be Fréchet differentiable with J′(ψ) ∈ L2(Q). Let
(z̄1, z̄2) be a minimizer of (21). Then,

(∂νp+ ξz1, z1 − z1)L2(Γ) + (Nsp+ ξz2, z2 − z2)L2(Σ) > 0, ∀(z1, z2) ∈ Zad,
(25)

where p ∈ L2
(
(0, T);H1

0(Ω)
)
∩H1

(
(0, T);H−1(Ω)

)
solves the adjoint equation

− pt + L p = J′(ψ) in Q, p = 0 in Σ, p(·, T) = 0 in Ω. (26)

Equivalently we can write (25) as

(z̄1, z̄2) = PZad

(
−

1
ξ
∂νp̄,−

1
ξ
Nsp̄

)
(27)

where PZad
is the projection onto the set Zad. If J is convex then (25) is also a

sufficient condition.
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Future perspectives:
• Numerical approximations and simulation of the optimal control

problem.

• Question of null and approximate controllability of the problem with
Dirichlet, Neumann and Robin type boundary conditions.

• Investigate Turnpike property for the mixed local-nonlocal problem.
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Thank you !
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