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Mixing phenomena

Mixing is to disperse one material or field in another medium. It occurs in
many natural phenomena and industrial applications.

Mixing in painting Mixing in baking
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Mixing phenomena

Spreading of a pollutant in the atmosphere

Mixing of temperature, salt, and nutrient in
ocean∗.

∗http://www.waterencyclopedia.com/Mi-Oc/Ocean-Mixing.html
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Mixing phenomena

Microfluidic mixing: controllable and fast
mixing is critical for practical development of
microfluidic and lab-on-chip devices∗.

Optimal mixing?

∗https://www.elveflow.com/microfluidic-reviews/microfluidic-flow-
control/microfluidic-mixers-a-short-review/

4



Outline

Feedback control for fluid mixing

instantaneous control design (sub-optimal)

Asymptotic behavior of the nonlinear closed-loop system

Numerical Implementation
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Mixing modeled by transport equation

Consider the transport equation in an open bounded and connected
domain Ω ⊂ Rd , where d = 2, 3, with a regular boundary Γ

∂θ

∂t
+ v · ∇θ = 0, θ(0) = θ0, x ∈ Ω.

θ: mass concentration or density distribution

v : incompressible velocity field with no-penetration BC, that is,

∇ · v = 0, v · n|Γ = 0.

‖θ(t)‖Lp = ‖θ0‖Lp , p ∈ [1,∞], t > 0.
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Mix-norm: negative Soblev norm

Mix-norm: consider the 1D periodic interval [0, L]. Define

d(θ, x ,w) =
1

w

∫ x+w/2

x−w/2

θ(y) dy

for all x ,w ∈ [0, L]. The mix-norm M(θ) is then obtained by averaging d2

over x and w :

M2(θ) =
1

L2

∫ L

0

∫ L

0

d2(θ, x ,w) dx dw

∼ ‖θ‖2
H−1/2

In fact, any H−α-norm for α > 0, which quantifies the weak convergence,
can be used as a mix-norm.

∗Mathew-Mezic-Petzold ’05, Lin-Thiffeault-Doering ’10, Thiffeault ’11, etc
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Mixing in Stokes flows

Consider

∂θ

∂t
+ v · ∇θ = 0, x ∈ Ω,

where the velocity field is govern by

∂v

∂t
− ν∆v +∇p = 0, ∇ · v = 0, v · n|Γ = 0.

p: pressure; ν: viscosity

Motivated by the observation that moving walls accelerate mixing compared to fixed
walls with no-slip boundary condition∗, we consider the Navier slip boundary control for
mixing

v · n|Γ = 0 and (2νn · D(v) · τ + kv · τ)|Γ = g · τ.

n and τ are the outward unit normal and tangential vectors to the boundary Γ

D(v) = 1
2
(∇v + (∇v)T ): deformation tensor

k > 0: coefficient of friction

g : control input function

∗Chakravarthy-Ottino ’96, Thiffeault-Gouillart-Dauchot ’11, etc.
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Forward Model Simulations (ν = 1 and k = 0.5)
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Fig. 1. Ω = {(x , y) : x2 + y2 < 1} and g = cos(φ)τ . [a]: sample of velocity field. The
maximum magnitude is roughly 0.4. [b, c, d, e]: θ at t=0, 20, 50, 100. [f]: (H1(Ω))′ norms of
θ in time. All the contour figures of θ are using the data when the mesh size h = 0.025.
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Forward Model Simulations (ν = 1 and k = 0.5)
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Fig. 2: g = sin(φ)τ . [a]: sample of velocity field. The maximum magnitude is roughly 0.4.
[b,c,d,e]: θ at t=0, 20, 50, 100. [f]: (H1(Ω))′ norms of θ in time. All the contour figures of θ
are using the data when the mesh size h = 0.025.
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Forward Model Simulations (ν = 1 and k = 0.5)
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Fig. 3: g = cos(φ)τ + sin(φ)τ . [a]: sample of velocity field. The maximum magnitude is
roughly 0.4. [b,c,d,e]: θ at t=0, 20, 50, 100. [f]: (H1(Ω))′ norms of θ in time. All the contour
figures of θ are using the data when the mesh size h = 0.025.
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Problem formulation: optimal bilinear control

Minimize

J(g) =
1

2
‖θ(T )‖2

(H1(Ω))′ +
γ

2
‖g‖2

Uad
, γ > 0, (P),

for a given T > 0, subject to
∂θ
∂t + v · ∇θ = 0,
∂v
∂t − ν∆v +∇p = 0,
∇ · v = 0,

with Navier slip boundary control:

v · n|Γ = 0 and (2νn · D(v) · τ + kv · τ)|Γ = g · τ,

and initial conditions θ(0) = θ0 and v(0) = v0. Here γ > 0 is the control
weight and Uad stands for the set of admissible controls.

Procedures: (1) Prove the well-posedness of problem (P); (2) Identify the
set of admissible controls; (3) Prove the existence of an optimal control and
establish the optimality conditions.
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Challenges in analysis and computation

Nonlinearity: The nonlinear coupling due to advection essentially leads to a
nonlinear control and non-convex optimization problem.

Zero diffusivity: Differentiability leads to a high-order regularity required for
the velocity field.

Boundary Control:

1 Creation of vorticity on the domain boundary;
2 Compatibility conditions may come into play even in the case of

non-smooth solutions.

Computation:

1 Mass conservation of scalar transport in incompressible flows;
2 Small-scale structures and large gradients of the scalar field will

develop in the mixing process.
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Well-posedness of problem (P)

Cost functional:

J(g) =
1

2
‖θ(T )‖2

(H1(Ω))′ +
γ

2
‖g‖2

Uad
, γ > 0. (P)

Consider

(−∆ + I )η = θ,
∂η

∂n
|Γ = 0.

Let Λ = (−∆ + I )1/2. Then

‖θ‖(H1(Ω))′ = ‖Λ−1θ‖L2(Ω) = ‖Λη‖L2(Ω) = ‖η‖H1(Ω).

Define

V s
n (Ω) = {v ∈ Hs(Ω) : div v = 0, v · n|Γ = 0}, s ≥ 0,

V s
n (Γ) = {g ∈ Hs(Γ) : g · n|Γ = 0}, s ≥ 0.

For (θ0, v0) ∈ L∞(Ω)× V 0
n (Ω), there exists g ∈ L2(0,T ;V 0

n (Γ)) such that J is
finite.

Theorem (Existence, H., AMO (2018))

Assume that (θ0, v0) ∈ L∞(Ω)× V 0
n (Ω). There exists an optimal solution

g ∈ L2(0,T ;V 0
n (Γ)) to problem (P).
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First-order optimality system via an approximating control
approach

To summarize, if (g opt , v opt , θopt) is the optimal solution, then it satisfies

State Equations


∂tθ + v · ∇θ = 0, θ(0) = θ0,
∂tv − ν∆v +∇p = 0, ∇ · v = 0, v(0) = v0,
v · n|Γ = 0 and (2νn · D(v) · τ + kv · τ)|Γ = g · τ,

Adjoint Equations


−∂tρ− v · ∇ρ = 0, ρ(T ) = Λ−2θ(T ),
−∂tw − ν∆w +∇q = θ∇ρ, ∇ · w = 0, w(T ) = 0,
w · n|Γ = 0 and (2νn · D(w) · τ + kw · τ)|Γ = 0,

Optimality Condition: g = 1
γ
w |Γ.

Theorem (Uniqueness, H. (AMO, 2019) )

For d = 2 and γ > 0 sufficiently large, there exists at most one optimal controller to
problem (P).

Numerical results can be found in https://arxiv.org/abs/2108.09533
(H.-Zheng ’21)
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Construction of feedback laws

Recall that

State equations

{
∂tθ = −v · ∇θ, θ(0) = θ0,
∂tv = Av + Bg , v(0) = v0,

where A = P∆ and B is the control input operator.

Instantaneous control design: consider a uniform partition of [0,T ] and let
δ = T

n
for n ∈ N. Using Euler’s semi-implicit in time for discretizing the state

equations in t gives 
θi+1 = θi − δv i+1 · ∇θi ,
(−∆ + I )ηi+1 = θi+1, ∂ηi+1

∂n
|Γ = 0,

v i+1 = v i + δAv i+1 + Bg i+1.

(1)

Consider now the cost functional for one time step

J(g i+1) =
1

2
‖Λ−1θi+1‖2

L2 +
γ

2
‖g i+1‖2

Uad
.

This method is closely tied to receding horizon control (RHC) or model predictive
control (MPC) with finite time horizon (cf. Hinze-Kunisch ’97, Hinze-Volkwein ’02).
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Construction of feedback laws (cont’d)

Let (ρi+1,w i+1) be the adjoint state of (θi+1, v i+1). Applying the Euler-Lagrange
method leads to

ρi+1 = ηi+1, (I − δA)w i+1 = δP(θi∇ρi+1), (2)

and the optimality condition

γg i+1 + B∗w i+1 = 0. (3)

The optimality system (1)–(3) admits a unique solution due to the quadratic cost
functional and the uniqueness of (1).

Compute (g i+1, v i+1, θi+1) recursively by setting g i
0 = 0, which turns out to be the

semi-implict time discretization of the closed-loop system
∂tθ = −v · ∇θ, θ(0) = θ0,
∂tv = Av + Bg , v(0) = v0,
g = −γ−1δB∗(I − δA)−1P(θ∇η) (sub-optimal).
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Well-posedness and stability of the closed-loop system

The closed-loop system reads
∂tθ = −v · ∇θ, θ(0) = θ0,
∂tv = Av + Bg , v(0) = v0,
g = −γ−1δB∗(I − δA)−1P(θ∇η) (sub-optimal),

where η = (I −∆)−1θ, γ and δ are the fixed parameters.

Let B = P (internal control). Then

∂tv = Av − γ−1δ(I − δA)−1P(θ∇η).

Applying energy estimates yields

d

dt
Total Energy =

d

dt
‖θ‖2

(H1(Ω))′ +
γ

δ

d

dt
‖v‖2

H1(Ω) ≤ −C‖v‖
2
H1(Ω) < 0.
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Well-posedness and stability (cont’d)

Well-posedness: For (θ0, v0) ∈ (L∞(Ω) ∩ H1(Ω))× V 2
n (Ω), there exists a unique

solution to the closed-loop system.

Convergence results:

1 ‖v‖L2 , ‖∇v‖L2 , ‖Av‖L2 , ‖∂tv‖L2 → 0 as t → +∞;

2 ‖θ‖(H1(Ω))′ → c0 as t →∞, and c0 <
√

γ
δ ‖v0‖2

L2 + ‖θ0‖2
(H1(Ω))′ ;

3 ‖g‖L2 → 0 as t → +∞;
4 ‖θ∇η −∇p‖(H2(Ω))′ → 0 as t → +∞.
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Numerical simulation of the closed-loop system
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Fig. 5. θ0 = tanh(y/0.1). Density evolution for t ∈ [0, 2], h = 0.0125, δ = 0.1, γ =1e-6
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Ongoing work

Investigate the optimality of the feedback laws

Justify the polynomial decay rate of the mix-norm ‖θ‖(H1(Ω))′ in time and its
relation to the control actuation

Analyze the asymptotic behavior of the closed-loop system by localized
internal control and Navior slip boundary control
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Thank you for your attention!
Questions?
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