## Nonlinear Feedback Control Design for Fluid Mixing

> Weiwei Hu ${ }^{a}$, Carlos Rautenberg ${ }^{b}$ and Xiaoming Zheng ${ }^{\text {c }}$
> University of Georgia ${ }^{a}$
> George Mason University ${ }^{b}$
> Central Michigan University ${ }^{\text {c }}$

## DeustoCCM Seminar

DeustoTech, Bilbao, Spain

July 26, 2022
*This project is supported by NSF DMS-181357 and DMS-2111486.

## Mixing phenomena

Mixing is to disperse one material or field in another medium. It occurs in many natural phenomena and industrial applications.


Mixing in painting


Mixing in baking

## Mixing phenomena



Spreading of a pollutant in the atmosphere


Mixing of temperature，salt，and nutrient in ocean＊．

[^0]
## Mixing phenomena



Microfluidic mixing: controllable and fast mixing is critical for practical development of microfluidic and lab-on-chip devices*.


Optimal mixing?
*https://www.elveflow.com/microfluidic-reviews/microfluidic-flow-control/microfluidic-mixers-a-short-review/

## Outline

- Feedback control for fluid mixing
- instantaneous control design (sub-optimal)
- Asymptotic behavior of the nonlinear closed-loop system
- Numerical Implementation


## Mixing modeled by transport equation

Consider the transport equation in an open bounded and connected domain $\Omega \subset \mathbb{R}^{d}$, where $d=2,3$, with a regular boundary $\Gamma$

$$
\frac{\partial \theta}{\partial t}+v \cdot \nabla \theta=0, \quad \theta(0)=\theta_{0}, \quad x \in \Omega
$$

- $\theta$ : mass concentration or density distribution
- $v$ : incompressible velocity field with no-penetration $B C$, that is,

$$
\nabla \cdot v=0,\left.\quad v \cdot n\right|_{\Gamma}=0
$$

- $\|\theta(t)\|_{L^{p}}=\left\|\theta_{0}\right\|_{L^{p}}, p \in[1, \infty], t>0$.


## Mixing modeled by transport equation

Consider the transport equation in an open bounded and connected domain $\Omega \subset \mathbb{R}^{d}$, where $d=2,3$, with a regular boundary $\Gamma$

$$
\frac{\partial \theta}{\partial t}+v \cdot \nabla \theta=0, \quad \theta(0)=\theta_{0}, \quad x \in \Omega
$$

- $\theta$ : mass concentration or density distribution
- $v$ : incompressible velocity field with no-penetration $B C$, that is,

$$
\nabla \cdot v=0,\left.\quad v \cdot n\right|_{\Gamma}=0
$$

- $\|\theta(t)\|_{L^{p}}=\left\|\theta_{0}\right\|_{L^{p}}, p \in[1, \infty], t>0$.



## Mix-norm: negative Soblev norm

- Mix-norm: consider the 1D periodic interval $[0, L]$. Define

$$
d(\theta, x, w)=\frac{1}{w} \int_{x-w / 2}^{x+w / 2} \theta(y) d y
$$

for all $x, w \in[0, L]$. The mix-norm $M(\theta)$ is then obtained by averaging $d^{2}$ over $x$ and $w$ :

$$
M^{2}(\theta)=\frac{1}{L^{2}} \int_{0}^{L} \int_{0}^{L} d^{2}(\theta, x, w) d x d w
$$

[^1]
## Mix-norm: negative Soblev norm

- Mix-norm: consider the 1D periodic interval $[0, L]$. Define

$$
d(\theta, x, w)=\frac{1}{w} \int_{x-w / 2}^{x+w / 2} \theta(y) d y
$$

for all $x, w \in[0, L]$. The mix-norm $M(\theta)$ is then obtained by averaging $d^{2}$ over $x$ and $w$ :

$$
M^{2}(\theta)=\frac{1}{L^{2}} \int_{0}^{L} \int_{0}^{L} d^{2}(\theta, x, w) d x d w \sim\|\theta\|_{H^{-1 / 2}}^{2}
$$

In fact, any $H^{-\alpha}$-norm for $\alpha>0$, which quantifies the weak convergence, can be used as a mix-norm.

[^2]
## Mixing in Stokes flows

## Consider

$$
\frac{\partial \theta}{\partial t}+v \cdot \nabla \theta=0, \quad x \in \Omega
$$

where the velocity field is govern by

$$
\frac{\partial v}{\partial t}-\nu \Delta v+\nabla p=0, \quad \nabla \cdot v=0,\left.\quad v \cdot n\right|_{\Gamma}=0
$$

- p: pressure; $\nu$ : viscosity

[^3]
## Mixing in Stokes flows

Consider

$$
\frac{\partial \theta}{\partial t}+v \cdot \nabla \theta=0, \quad x \in \Omega
$$

where the velocity field is govern by

$$
\frac{\partial v}{\partial t}-\nu \Delta v+\nabla p=0, \quad \nabla \cdot v=0,\left.\quad v \cdot n\right|_{\Gamma}=0
$$

- p: pressure; $\nu$ : viscosity

Motivated by the observation that moving walls accelerate mixing compared to fixed walls with no-slip boundary condition*, we consider the Navier slip boundary control for mixing

$$
\left.v \cdot n\right|_{\Gamma}=0 \quad \text { and } \quad(2 \nu n \cdot \mathbb{D}(v) \cdot \tau+k v \cdot \tau) \mid\ulcorner=g \cdot \tau
$$

- $n$ and $\tau$ are the outward unit normal and tangential vectors to the boundary $\Gamma$
- $\mathbb{D}(v)=\frac{1}{2}\left(\nabla v+(\nabla v)^{T}\right)$ : deformation tensor
- $k>0$ : coefficient of friction
- $g$ : control input function

[^4]
## Forward Model Simulations ( $\nu=1$ and $k=0.5$ )



Fig. 1. $\Omega=\left\{(x, y): x^{2}+y^{2}<1\right\}$ and $g=\cos (\phi) \tau$. [a]: sample of velocity field. The maximum magnitude is roughly 0.4 . [b, c, d, e]: $\theta$ at $t=0,20,50,100$. [f]: $\left(H^{1}(\Omega)\right)^{\prime}$ norms of $\theta$ in time. All the contour figures of $\theta$ are using the data when the mesh size $h=0.025$.

## Forward Model Simulations ( $\nu=1$ and $k=0.5$ )



Fig. 2: $g=\sin (\phi) \tau$. [a]: sample of velocity field. The maximum magnitude is roughly 0.4. [b,c,d,e]: $\theta$ at $t=0,20,50,100$. [f]: $\left(H^{1}(\Omega)\right)^{\prime}$ norms of $\theta$ in time. All the contour figures of $\theta$ are using the data when the mesh size $h=0.025$.

## Forward Model Simulations ( $\nu=1$ and $k=0.5$ )



Fig. 3: $g=\cos (\phi) \tau+\sin (\phi) \tau$. [a]: sample of velocity field. The maximum magnitude is roughly 0.4 . [b,c,d,e]: $\theta$ at $t=0,20,50,100$. [f]: $\left(H^{1}(\Omega)\right)^{\prime}$ norms of $\theta$ in time. All the contour figures of $\theta$ are using the data when the mesh size $h=0.025$.

## Problem formulation: optimal bilinear control

- Minimize

$$
J(g)=\frac{1}{2}\|\theta(T)\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2}+\frac{\gamma}{2}\|g\|_{U_{a d}}^{2}, \quad \gamma>0, \quad(P),
$$

for a given $T>0$, subject to

$$
\left\{\begin{array}{l}
\frac{\partial \theta}{\partial t}+v \cdot \nabla \theta=0, \\
\frac{\partial v}{\partial t}-\nu \Delta v+\nabla p=0, \\
\nabla \cdot v=0
\end{array}\right.
$$

with Navier slip boundary control:

$$
\left.v \cdot n\right|_{\Gamma}=0 \quad \text { and }\left.\quad(2 \nu n \cdot \mathbb{D}(v) \cdot \tau+k v \cdot \tau)\right|_{\Gamma}=g \cdot \tau
$$

and initial conditions $\theta(0)=\theta_{0}$ and $v(0)=v_{0}$. Here $\gamma>0$ is the control weight and $U_{a d}$ stands for the set of admissible controls.

## Problem formulation: optimal bilinear control

## - Minimize

$$
J(g)=\frac{1}{2}\|\theta(T)\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2}+\frac{\gamma}{2}\|g\|_{U_{a d}}^{2}, \quad \gamma>0, \quad(P),
$$

for a given $T>0$, subject to

$$
\left\{\begin{array}{l}
\frac{\partial \theta}{\partial t}+v \cdot \nabla \theta=0, \\
\frac{\partial v}{\partial t}-\nu \Delta v+\nabla p=0, \\
\nabla \cdot v=0,
\end{array}\right.
$$

with Navier slip boundary control:

$$
\left.v \cdot n\right|_{\Gamma}=0 \quad \text { and }\left.\quad(2 \nu n \cdot \mathbb{D}(v) \cdot \tau+k v \cdot \tau)\right|_{\Gamma}=g \cdot \tau
$$

and initial conditions $\theta(0)=\theta_{0}$ and $v(0)=v_{0}$. Here $\gamma>0$ is the control weight and $U_{a d}$ stands for the set of admissible controls.

- Procedures: (1) Prove the well-posedness of problem (P); (2) Identify the set of admissible controls; (3) Prove the existence of an optimal control and establish the optimality conditions.


## Challenges in analysis and computation

- Nonlinearity: The nonlinear coupling due to advection essentially leads to a nonlinear control and non-convex optimization problem.
- Zero diffusivity: Differentiability leads to a high-order regularity required for the velocity field.
- Boundary Control:
(1) Creation of vorticity on the domain boundary;
(2) Compatibility conditions may come into play even in the case of non-smooth solutions.


## Challenges in analysis and computation

- Nonlinearity: The nonlinear coupling due to advection essentially leads to a nonlinear control and non-convex optimization problem.
- Zero diffusivity: Differentiability leads to a high-order regularity required for the velocity field.
- Boundary Control:
(1) Creation of vorticity on the domain boundary;
(2) Compatibility conditions may come into play even in the case of non-smooth solutions.
- Computation:
(1) Mass conservation of scalar transport in incompressible flows;
(2) Small-scale structures and large gradients of the scalar field will develop in the mixing process.


## Well-posedness of problem (P)

- Cost functional:

$$
\begin{equation*}
J(g)=\frac{1}{2}\|\theta(T)\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2}+\frac{\gamma}{2}\|g\|_{U_{a d}}^{2}, \quad \gamma>0 \tag{P}
\end{equation*}
$$

Consider

$$
(-\Delta+I) \eta=\theta,\left.\quad \frac{\partial \eta}{\partial n}\right|_{\Gamma}=0
$$

Let $\Lambda=(-\Delta+I)^{1 / 2}$. Then

$$
\|\theta\|_{\left(H^{1}(\Omega)\right)^{\prime}}=\left\|\Lambda^{-1} \theta\right\|_{L^{2}(\Omega)}=\|\Lambda \eta\|_{L^{2}(\Omega)}=\|\eta\|_{H^{1}(\Omega)}
$$

## Well-posedness of problem (P)

- Cost functional:

$$
\begin{equation*}
J(g)=\frac{1}{2}\|\theta(T)\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2}+\frac{\gamma}{2}\|g\|_{U_{a d}}^{2}, \quad \gamma>0 \tag{P}
\end{equation*}
$$

Consider

$$
(-\Delta+I) \eta=\theta,\left.\quad \frac{\partial \eta}{\partial n}\right|_{\Gamma}=0
$$

Let $\Lambda=(-\Delta+I)^{1 / 2}$. Then

$$
\|\theta\|_{\left(H^{1}(\Omega)\right)^{\prime}}=\left\|\Lambda^{-1} \theta\right\|_{L^{2}(\Omega)}=\|\Lambda \eta\|_{L^{2}(\Omega)}=\|\eta\|_{H^{1}(\Omega)}
$$

- Define

$$
\begin{aligned}
& V_{n}^{s}(\Omega)=\left\{v \in H^{s}(\Omega): \operatorname{div} v=0,\left.\quad v \cdot n\right|_{\Gamma}=0\right\}, \quad s \geq 0 \\
& V_{n}^{s}(\Gamma)=\left\{g \in H^{s}(\Gamma):\left.g \cdot n\right|_{\Gamma}=0\right\}, \quad s \geq 0
\end{aligned}
$$

- For $\left(\theta_{0}, v_{0}\right) \in L^{\infty}(\Omega) \times V_{n}^{0}(\Omega)$, there exists $g \in L^{2}\left(0, T ; V_{n}^{0}(\Gamma)\right)$ such that $J$ is finite.


## Theorem (Existence, H., AMO (2018))

Assume that $\left(\theta_{0}, v_{0}\right) \in L^{\infty}(\Omega) \times V_{n}^{0}(\Omega)$. There exists an optimal solution $g \in L^{2}\left(0, T ; V_{n}^{0}(\Gamma)\right)$ to problem ( $P$ ).

## First-order optimality system via an approximating control approach

- To summarize, if $\left(g^{o p t}, v^{o p t}, \theta^{o p t}\right)$ is the optimal solution, then it satisfies

State Equations $\left\{\begin{array}{l}\partial_{t} \theta+v \cdot \nabla \theta=0, \quad \theta(0)=\theta_{0}, \\ \partial_{t} v-\nu \Delta v+\nabla p=0, \quad \nabla \cdot v=0, \quad v(0)=v_{0}, \\ \left.v \cdot n\right|_{\Gamma=0} \text { and } \quad(2 \nu n \cdot \mathbb{D}(v) \cdot \tau+k v \cdot \tau) \mid\ulcorner=g \cdot \tau,\end{array}\right.$
Adjoint Equations $\left\{\begin{array}{l}-\partial_{t} \rho-v \cdot \nabla \rho=0, \quad \rho(T)=\Lambda^{-2} \theta(T), \\ -\partial_{t} w-\nu \Delta w+\nabla q=\theta \nabla \rho, \quad \nabla \cdot w=0, \quad w(T)=0, \\ w \cdot n \mid\ulcorner=0 \quad \text { and } \quad(2 \nu n \cdot \mathbb{D}(w) \cdot \tau+k w \cdot \tau) \mid\ulcorner=0,\end{array}\right.$
Optimality Condition: $\left.\quad g=\frac{1}{\gamma} w \right\rvert\, г$.

## First-order optimality system via an approximating control approach

- To summarize, if $\left(g^{o p t}, v^{o p t}, \theta^{o p t}\right)$ is the optimal solution, then it satisfies

$$
\begin{array}{ll}
\text { State Equations } & \left\{\begin{array}{l}
\partial_{t} \theta+v \cdot \nabla \theta=0, \quad \theta(0)=\theta_{0}, \\
\partial_{t} v-\nu \Delta v+\nabla p=0, \quad \nabla \cdot v=0, \quad v(0)=v_{0}, \\
\left.v \cdot n\right|_{r}=0 \quad \text { and }\left.\quad(2 \nu n \cdot \mathbb{D}(v) \cdot \tau+k v \cdot \tau)\right|_{\ulcorner }=g \cdot \tau,
\end{array}\right. \\
\text { Adjoint Equations }\left\{\begin{array}{l}
-\partial_{t} \rho-v \cdot \nabla \rho=0, \quad \rho(T)=\Lambda^{-2} \theta(T), \\
-\partial_{t} w-\nu \Delta w+\nabla q=\theta \nabla \rho, \quad \nabla \cdot w=0, \quad w(T)=0, \\
\left.w \cdot n\right|_{\ulcorner=0} \text { and }\left.(2 \nu n \cdot \mathbb{D}(w) \cdot \tau+k w \cdot \tau)\right|_{r}=0,
\end{array}\right.
\end{array}
$$

Optimality Condition: $\quad g=\left.\frac{1}{\gamma} w\right|_{\Gamma}$.

## Theorem (Uniqueness, H. (AMO, 2019) )

For $d=2$ and $\gamma>0$ sufficiently large, there exists at most one optimal controller to problem ( $P$ ).

- Numerical results can be found in https://arxiv.org/abs/2108.09533
(H.-Zheng '21)


## Construction of feedback laws

- Recall that

$$
\text { State equations } \quad\left\{\begin{array}{l}
\partial_{t} \theta=-v \cdot \nabla \theta, \quad \theta(0)=\theta_{0} \\
\partial_{t} v=A v+B g, \quad v(0)=v_{0}
\end{array}\right.
$$

where $A=\mathbb{P} \Delta$ and $B$ is the control input operator.

## Construction of feedback laws

- Recall that

$$
\text { State equations } \quad \begin{cases}\partial_{t} \theta=-v \cdot \nabla \theta, & \theta(0)=\theta_{0} \\ \partial_{t} v=A v+B g, & v(0)=v_{0}\end{cases}
$$

where $A=\mathbb{P} \Delta$ and $B$ is the control input operator.

- Instantaneous control design: consider a uniform partition of [0, T] and let $\delta=\frac{T}{n}$ for $n \in \mathbb{N}$. Using Euler's semi-implicit in time for discretizing the state equations in $t$ gives

$$
\left\{\begin{array}{l}
\theta^{i+1}=\theta^{i}-\delta v^{i+1} \cdot \nabla \theta^{i}  \tag{1}\\
(-\Delta+l) \eta^{i+1}=\theta^{i+1},\left.\quad \frac{\partial \eta^{i+1}}{\partial n}\right|_{r}=0 \\
v^{i+1}=v^{i}+\delta A v^{i+1}+B g^{i+1}
\end{array}\right.
$$

- Consider now the cost functional for one time step

$$
J\left(g^{i+1}\right)=\frac{1}{2}\left\|\Lambda^{-1} \theta^{i+1}\right\|_{L^{2}}^{2}+\frac{\gamma}{2}\left\|g^{i+1}\right\|_{U_{a d}}^{2}
$$

- This method is closely tied to receding horizon control (RHC) or model predictive control (MPC) with finite time horizon (cf. Hinze-Kunisch '97, Hinze-Volkwein '02).


## Construction of feedback laws (cont'd)

- Let $\left(\rho^{i+1}, w^{i+1}\right)$ be the adjoint state of $\left(\theta^{i+1}, v^{i+1}\right)$. Applying the Euler-Lagrange method leads to

$$
\begin{equation*}
\rho^{i+1}=\eta^{i+1}, \quad(I-\delta A) w^{i+1}=\delta \mathbb{P}\left(\theta^{i} \nabla \rho^{i+1}\right) \tag{2}
\end{equation*}
$$

and the optimality condition

$$
\begin{equation*}
\gamma g^{i+1}+B^{*} w^{i+1}=0 \tag{3}
\end{equation*}
$$

The optimality system (1)-(3) admits a unique solution due to the quadratic cost functional and the uniqueness of (1).

## Construction of feedback laws (cont'd)

- Let $\left(\rho^{i+1}, w^{i+1}\right)$ be the adjoint state of $\left(\theta^{i+1}, v^{i+1}\right)$. Applying the Euler-Lagrange method leads to

$$
\begin{equation*}
\rho^{i+1}=\eta^{i+1}, \quad(I-\delta A) w^{i+1}=\delta \mathbb{P}\left(\theta^{i} \nabla \rho^{i+1}\right) \tag{2}
\end{equation*}
$$

and the optimality condition

$$
\begin{equation*}
\gamma g^{i+1}+B^{*} w^{i+1}=0 \tag{3}
\end{equation*}
$$

The optimality system (1)-(3) admits a unique solution due to the quadratic cost functional and the uniqueness of (1).

- Compute $\left(g^{i+1}, v^{i+1}, \theta^{i+1}\right)$ recursively by setting $g_{0}^{i}=0$, which turns out to be the semi-implict time discretization of the closed-loop system

$$
\left\{\begin{array}{l}
\partial_{t} \theta=-v \cdot \nabla \theta, \quad \theta(0)=\theta_{0} \\
\partial_{t} v=A v+B g, \quad v(0)=v_{0} \\
g=-\gamma^{-1} \delta B^{*}(I-\delta A)^{-1} \mathbb{P}(\theta \nabla \eta) \quad \text { (sub-optimal) }
\end{array}\right.
$$

## Well-posedness and stability of the closed-loop system

- The closed-loop system reads

$$
\left\{\begin{array}{l}
\partial_{t} \theta=-v \cdot \nabla \theta, \quad \theta(0)=\theta_{0} \\
\partial_{t} v=A v+B g, \quad v(0)=v_{0} \\
g=-\gamma^{-1} \delta B^{*}(I-\delta A)^{-1} \mathbb{P}(\theta \nabla \eta) \quad \text { (sub-optimal) }
\end{array}\right.
$$

where $\eta=(I-\Delta)^{-1} \theta, \gamma$ and $\delta$ are the fixed parameters.

- Let $B=\mathbb{P}$ (internal control). Then

$$
\partial_{t} v=A v-\gamma^{-1} \delta(I-\delta A)^{-1} \mathbb{P}(\theta \nabla \eta)
$$

## Well-posedness and stability of the closed-loop system

- The closed-loop system reads

$$
\left\{\begin{array}{l}
\partial_{t} \theta=-v \cdot \nabla \theta, \quad \theta(0)=\theta_{0} \\
\partial_{t} v=A v+B g, \quad v(0)=v_{0} \\
g=-\gamma^{-1} \delta B^{*}(I-\delta A)^{-1} \mathbb{P}(\theta \nabla \eta) \quad \text { (sub-optimal) }
\end{array}\right.
$$

where $\eta=(I-\Delta)^{-1} \theta, \gamma$ and $\delta$ are the fixed parameters.

- Let $B=\mathbb{P}$ (internal control). Then

$$
\partial_{t} v=A v-\gamma^{-1} \delta(I-\delta A)^{-1} \mathbb{P}(\theta \nabla \eta)
$$

- Applying energy estimates yields

$$
\frac{d}{d t} \text { Total Energy }=\frac{d}{d t}\|\theta\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2}+\frac{\gamma}{\delta} \frac{d}{d t}\|v\|_{H^{1}(\Omega)}^{2} \leq-C\|v\|_{H^{1}(\Omega)}^{2}<0
$$

## Well-posedness and stability (cont'd)

- Well-posedness: For $\left(\theta_{0}, v_{0}\right) \in\left(L^{\infty}(\Omega) \cap H^{1}(\Omega)\right) \times V_{n}^{2}(\Omega)$, there exists a unique solution to the closed-loop system.
- Convergence results:
(1) $\|v\|_{L^{2}},\|\nabla v\|_{L^{2}},\|A v\|_{L^{2}},\left\|\partial_{t} v\right\|_{L^{2}} \rightarrow 0$ as $t \rightarrow+\infty$;
(2) $\|\theta\|_{\left(H^{1}(\Omega)\right)^{\prime}} \rightarrow c_{0}$ as $t \rightarrow \infty$, and $c_{0}<\sqrt{\frac{\gamma}{\delta}\left\|v_{0}\right\|_{L^{2}}^{2}+\left\|\theta_{0}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2}}$;
(3) $\|g\|_{L^{2}} \rightarrow 0$ as $t \rightarrow+\infty$;
(4) $\|\theta \nabla \eta-\nabla p\|_{\left(H^{2}(\Omega)\right)^{\prime}} \rightarrow 0$ as $t \rightarrow+\infty$.


## Numerical simulation of the closed-loop system



Fig. 5. $\theta_{0}=\tanh (y / 0.1)$. Density evolution for $t \in[0,2], h=0.0125, \delta=0.1, \gamma=1 \mathrm{e}-6$

## Ongoing work

- Investigate the optimality of the feedback laws
- Justify the polynomial decay rate of the mix-norm $\|\theta\|_{\left(H^{1}(\Omega)\right)^{\prime}}$ in time and its relation to the control actuation
- Analyze the asymptotic behavior of the closed-loop system by localized internal control and Navior slip boundary control



## Thank you for your attention! Questions?


[^0]:    ＊http：／／www．waterencyclopedia．com／Mi－Oc／Ocean－Mixing．html

[^1]:    *Mathew-Mezic-Petzold '05, Lin-Thiffeault-Doering '10, Thiffeault '11, etc:

[^2]:    *Mathew-Mezic-Petzold '05, Lin-Thiffeault-Doering '10, Thiffeault '11, etc

[^3]:    *'Chakravarthy-Ottino '96, Thiffeault-Gouillart-Dauchot '11, etc.

[^4]:    *Chakravarthy-Ottino '96, Thiffeault-Gouillart-Dauchot '11, etc.

