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MOTIVATION



Motivation: Selective Harmonic Modulation (SHM)

This study has been conducted in the context of the research project CON-
VADP (Elkartek program of the Basque Government - participants: Fun-
dación Deusto, Universidad de Mondragón, Tecnalia and Ingeteam).

Scope of CONVADP

To develop new technologies
to increase the power density
in electronic converters for high
and low power applications, in-
cluding energy extraction from
eolic turbines or photovoltaic
panels, drivers for boats and
electrical vehicles.

Employment of a converter in an eolic turbine.
Source: nutechwindparts.com

A widely-employed technique is the Selective Harmonic Modulation.
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Selective Harmonic Modulation

Objective of SHM

To generate a control signal with a desired harmonic spectrum by modu-
lating some specific lower-order Fourier coefficients. This signal is con-
structed as a step function with a finite number of switches, taking values
only in a given finite set.

IMPORTANT FEATURES:

Waveform: the sequence of
values that the function takes
in its domain.

Switching angles:, the se-
quence of points where the
signal switches from one
value to following one.
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SHM AS AN OPTIMAL CONTROL
PROBLEM



Mathematical formulation of SHM

U = {u1, . . . , uL} ⊂ R, L ≥ 2

u1 = −1, uL = 1 and u` < u`+1, for all ` ∈ {1, . . . , L}.

GOAL: construct a step function u(t) : [0,2π)→ U with a finite number of
switches, such that some of its lower-order Fourier coefficients take specific
values prescribed a priori.

Half-wave symmetry

u(t + π) = −u(t) for all t ∈ [0, π).

• u 7→ u|[0,π)

• u(t) =
∑
j∈N
j odd

aj cos( jt) +
∑
j∈N
j odd

bj sin( jt) aj =
2
π

∫ π

0
u(τ) cos( jτ)dτ

bj =
2
π

∫ π

0
u(τ) sin( jτ)dτ
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Mathematical formulation of SHM

Weconsiderpiecewise constant functionswith a finite number of switches.

u(t) =
K∑

k=0

skχ[φk,φk+1)(t), K ∈ N

Waveform:

S = {sk}Kk=0 with sk ∈ U and sk 6= sk+1 for all k ∈ {0, . . . ,K}

Switching angles:

Φ = {φk}Kk=1 such that 0 = φ0 < φ1 < . . . < φK < φK+1 = π
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Mathematical formulation of SHM

In practical engineering applications, due to technical limitations, it is prefer-
able to employ signals taking consecutive values in U .

Staircase property

We say that a piecewise constant signal u fulfills the staircase property
if its waveform S satisfies

(smin
k , smax

k ) ∩ U = ∅, for all k ∈ {0, . . . ,K − 1},

where smin
k := min{sk, sk+1} and smax

k := max sk, sk+1.

Remark

Note that when U = {−1, 1} (bilevel problem), this property is satis-
fied by any piece-wise linear function u : [0, π)→ U .
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Mathematical formulation of SHM

SHM PROBLEM
Let Ea and Eb be finite sets of odd numbers of cardinality |Ea| = Na and
|Eb| = Nb respectively. For any two given vectors aT ∈ RNa and bT ∈ RNb ,
we want to construct a function u : [0, π)→ U in staircase form such that
the vectors a ∈ RNa and b ∈ RNb , defined as

a =
(
aj
)
j∈Ea

and b =
(
bj
)
j∈Eb

satisfy

a = aT and b = bT .
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Optimal control for SHM

We propose to formulate the SHM problem as an optimal control one.

The Fourier coefficients of the signal u(t) are identified with the ter-
minal state of a controlled dynamical system ofNa+Nb components
defined in the time-interval [0, π).

The control of the system is the signal u(t), defined as a function
[0, π)→ U , which has to steer the state from the origin to the desired
values of the prescribed Fourier coefficients.

D. J. Oroya-Villalta, C. Esteve-Yagüe and U.B. - Multilevel Selective Harmonic Modulation via
optimal control, 2021.
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Optimal control for SHM

Step 1: dynamical system for the Fourier coefficients

For all u ∈ L∞([0, π);R) we have aj = ya(π) and bj = yb(π) with

ya(t) =
2
π

∫ t

0
u(τ) cos( jτ)dτ ∈ C([0, π);R)

yb(t) =
2
π

∫ t

0
u(τ) sin( jτ)dτ ∈ C([0, π);R)

Fundamental theorem of calculus

The functions ya(·) and yb(·) are the unique solutions to the differen-
tial equationẏa(t) =

2
π

cos( jt)u(t), t ∈ [0, π)

ya(0) = 0

ẏb(t) =
2
π

sin( jt)u(t), t ∈ [0, π)

yb(0) = 0
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Optimal control for SHM

Step 1: dynamical system for the Fourier coefficients

Hence, for Ea, Eb, aT , and bT given, the SHM problem can be reduced to:

SHM problem - dynamical system formulation

Find a staircase control function u such that the corresponding solution
y ∈ C([0, π);RNa+Nb) to the dynamical systemẏ(t) =

2
π
D(t)u(t), t ∈ [0, π)

y(0) = 0

satisfies y(π) = [aT ;bT ]>, where

D(t) =

[
Da(t)
Db(t)

]
, Da(t) =


cos(e1at)
cos(e2at)

...
cos(eNa

a t)

 ∈ RNa , Db(t) =


sin(e1bt)
sin(e2bt)

...
sin(eNb

b t)

 ∈ RNb

Ea = {e1a, e2a, e3a, . . . , eNa
a }, Eb = {e1b, e2b, e3b, . . . , e

Nb
b }
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Optimal control for SHM

Step 2: time reversion

We can reverse the time using the transformation x(t) = y(π − t). In this
way, the SHM problem turns into the following null controllability one.

SHM via null controllability

Let U , Ea, Eb and the targets aT and bT be
given. We look for a staircase function

u : [0, π)→ [−1, 1]

such that the solution to the initial-value
problemẋ(t) =

2
π
C(t)u(t), t ∈ [0, π)

x(0) = [aT ,bT ]> =: x0

with C = −D satisfies x(π) = 0.

Evolution in the time horizon [0, π) of the
dynamics x with Ea = Eb = {1, 3}.
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Optimal control for SHM

Step 3: optimal control problem for SHM

Aad :=
{
u : [0, π)→ [−1, 1] measurable satisfying the staircase property

}
Optimal control problem for SHM

Let U , Ea, Eb and the targets aT and bT be given. We look for an admissible
control u ∈ Aad solution to the following optimal control problem:

min
u∈Aad

1
2
‖x(π)‖2. (OCP1)

Remark

The cost functional (OCP1) is quadratic and the existence of at least
one minimizer is ensured for any target [aT ,bT ]>.

Such aminimizer solves the SHM problem if and only if theminimum
of (OCP1) is zero. Otherwise, the target [aT ,bT ]> is unreachable.

Due to the limitations on the size of controls (u ∈ U ) and the time
horizon (T = π), not every target [aT ,bT ]> ∈ RNa+Nb is reachable.
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Optimal control for SHM

Step 4: penalized optimal control problem for SHM

The optimal control problem (OCP1) is defined on the non-convex set Aad

to take into account the staircase constraints on u.

In order to have a convex optimal control problem, we add a penaliza-
tion term for the control to the cost functional, and remove the staircase
constraint on the control.

Penalized OCP for SHM
Fix ε > 0 and a convex functionL ∈ C([−1, 1];R). Let Ea, Eb and the targets
aT and bT be given. We look for a control

u ∈ A :=
{
u : [0, π)→ [−1, 1] measurable

}
solution to the following optimal control problem:

min
u∈A

(
1
2
‖x(π)‖2 + ε

∫ π

0
L(u(t))dt

)
. (OCP2)

The staircase property for u can be ensured by a suitable choice of the
penalization term L.
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Multilevel SHM

THEOREM
Let U and x0 be given. For any α > 0 and β ∈ R, set the function

P(u) = α(u− β)2.

Consider (OCP2) with

L(u) =

{
λ`(u) if u ∈ [u`, u`+1)

P(1) if u = uL
for all ` ∈ {1, . . . , L− 1},

λ`(u) :=
(u− u`)P(u`+1) + (u`+1 − u)P(u`)

u`+1 − u`
.

Assume in addition that L has a unique minimum in [−1, 1]. Then, (OCP2)
admits a unique minimizer uε which has the multilevel and staircase
structure. Moreover, uε is continuous with respect to x0 in the strong
topology of L1(0, π). Finally, the associated optimal trajectory xε satisfies
‖xε(π)‖2RN ≤ 4πε‖L‖∞.
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Proof (sketch)

Existence and uniqueness of the minimizer: they can be obtained via a
standard argument since the functional is convex with respect to the control,
the admissible controls in A are uniformly bounded and the dynamical
constraints are linear.
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Proof (sketch)

Existence and uniqueness of the minimizer: they can be obtained via a
standard argument since the functional is convex with respect to the control,
the admissible controls in A are uniformly bounded and the dynamical
constraints are linear.

Continuity of solutions: the argument uses the fact that the optimal solu-
tions are uniformly bounded in BV(0, π) ↪→ L1(0, π) with compact embed-
ding. More details can be found in

D. J. Oroya-Villalta, C. Esteves-Yagüe and U. B., Multilevel Selective Harmonic Modulation via

optimal control, 2021.
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Proof (sketch)

Multilevel structure and staircase property: introduce the Hamiltonian

H(t,p, u) = εL(u)− µ(t)u(t), µ(t) :=
2
π

(
p(t) · D(t)

)
and derive the optimality conditions via Pontryagin’s Maximum Principle.

1. The adjoint system reads asṗ
∗(t) = −∇xH(u(t),p∗(t), t) = 0, t ∈ [0, π)

p∗(π) = x∗(π)
→ p∗(t) = x∗(π).

2. Optimality condition:

u∗(t) ∈ argmin
|u|≤1

[
εL(u)− µ∗(t)u

]
µ∗(t) :=

2
π

(
x∗(π) · D(t)

)
=
∑
j∈Ea

a∗j (π) cos( jt) +
∑
j∈Eb

b∗j (π) sin( jt).

With our choice of L(u), the above argmin is a singleton for a.e. t ∈ [0, π),
except for a finite number of times (the switching angles).
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Proof (sketch)

Staircase property:

H(u) = εL(u)− µ(t)u
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ADJOINT FORMULATION



Adjoint formulation of the SHM problem

Applying the Fenchel-Rockafellar theory, we can build the following dual
problem

pε,π = argmin
pπ∈RN

Jε(pπ)

Jε(pπ) =

∫ π

0
L?
(
C>(t)pπ

)
dt +

ε

2
‖pπ‖2RN + 〈x0,pπ〉,

where

C(R) 3 L?(v) = sup
u∈R

(
uv− L(u)

)
is the convex conjugate of L and is still a piece-wise linear function.
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Adjoint formulation of the SHM problem

THEOREM
For any ε > 0, there exists a unique minimizer pε,π ∈ RN of the functional
Jε. Moreover, this minimizer is related with the minimizer uε of (OCP2)
through the formulas

uε(t) ∈ ∂L?
(
C>(t)pε,π

)
, for a.e. t ∈ [0, π)

and

xε(π) = −εpε,π.

U. B. and E. Zuazua, Selective Harmonic Modulation by duality, 2021.
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NUMERICAL EXPERIMENTS



Numerical experiments

Control set

Test 1: U = {−1,0, 1}

Test 2: U =

{
−1,− 1

2
,0,

1
2
, 1
}

Common parameters

Ea = Eb = {1, 5, 7, 11, 13}

aT = bT = (m,0,0,0,0)
m ∈ [−0.8,0.8]

ε = 10−6

For all the experiments, we plot the function

Φ : [−0.8,0.8]× [0, π] −→ U
(m, t) 7−→ u∗m(t),

where for each m ∈ [−0.8,0.8], u∗m(·) represents the solution to the SHM
problem with the desired target frequencies.
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Test case 1
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Test case 1 - error

‖xε(π)‖2R10 for all values of the modulation indexm ∈ [−0.8,0.8].
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Test case 2
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GENERALIZATION



Multilevel control for ODE systems

The concept of multilevel control can be generalized to linear finite-
dimensional controlled systems{

x′(t) = Ax(t) + Bu(t), t ∈ (0,T)

x(0) = x0
satisfying the Kalman rank condition.

U. B. and E. Zuazua, Multilevel control by duality, 2021.
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Multilevel control for ODE systems

Conservative or dissipative dynamics: we can construct a multilevel and
staircase control solving

p∗T,ml = argmin
pT∈RN

Jml(pT)

{
−p′(t) = A>p(t), t ∈ (0,T)

p(T) = pT

Jml(pT) =

∫ T

0
L(B>p(t))dt + 〈x0,p(0)〉RN ,

provided that the time horizon T is large enough.

CONTROL

u∗ml ∈ ∂
(
L(B>p∗ml)

)
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Multilevel control for ODE systems

General dynamics: for general dynamics that satisfy the Kalman rank con-
dition but are neither purely conservative nor purely dissipative, we can
construct a multilevel and staircase control for any T > 0 solving

p∗T,ml = argmin
pT∈RN

Jml(pT)

Jml(pT) =
1
2

(∫ T

0
L(B>p(t))dt

)2

+ 〈x0,p(0)〉RN .

CONTROL

u∗ml ∈ ΛT,ml∂
(
L(B>p∗ml)

)
with ΛT,ml :=

∫ T

0
L(B>p∗ml(t))dt
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Numerical experiments

A =

(
0 1
−1 0

)
B =

(
0
1

)
x0 =

(
−1
1/2

)
T = 4

Control set

R =

{
− 1,2

} Control set

R =

{
− 3

2
,− 1

2
,
3
4
,
3
2

}
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OPEN PROBLEMS



Open problems

Minimal number of switching angles

In practical applications, to optimize the converters’ performance,
it is required to maintain the number of switches in the SHM signal
the lowest possible.

Characterization of the solvable set

It would be interesting to have a full characterization of the solvable
set for the SHMproblem, thus determining the entire range of Fourier
coefficients which can be reached by means of our approach.
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