Universal approximation and convexified training in neural networks

Kang Liu

Université Bourgogne Europe

DeustoCCM Seminar 01/07/2025

Table of Contents

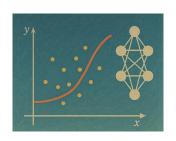
- Introduction to UAP of NNs
- 2 UAP in dynamical systems: SA-NODE
 - Theory
 - Training, optimization, and numerical simulations
- 3 Sparse optimization and mean-field relaxation
 - Mean-filed (convex) relaxation
 - Algorithms and numerical simulations

Examples of Machine Learning

Classification

Regression

Generation



Why it works: Universal approximation property (UAP),

$$f(x) \approx f_{\Theta}(x)$$
;

• How it works : Optimization (training),

$$\inf_{\Theta} \sum_{i=1}^{N} \mathsf{Loss} \big(f_{\Theta}(x_i), f(x_i) \big) + r \big(\Theta \big).$$

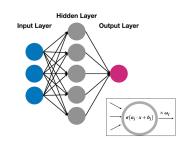
Shallow (One-hidden-layer) Neural Network

Formulation:

$$f(x;\Theta) = \sum_{i=1}^{P} w_i \, \sigma(\langle a_i, x \rangle + b_i),$$

where

- $\Theta = \{(w_i, a_i, b_i) \in \mathbb{R}^{d+2}\}_{i=1}^{P}$;
- ullet σ is an activation function.



UAP: A Historical Overview

Qualitative Results

- Wiener (1932)
- Cybenko (1989)
- Hornik (1991)
- •
- Pinkus (1999)

Quantitative Bounds

- Barron (1993)
- Bach (2017)
- Klusowski-Barron (2018)
- E-Ma-Wu (2022)
- Siegel-Xu (2024)...

Qualitative UAP

Universal approximation property [Pinkus 1999, Acta Numer.]

Fix any compact set $X \subseteq \mathbb{R}^d$. Let σ be a non-polynomial continuous function. For any function $f \in \mathcal{C}(X)$ and $\epsilon > 0$, there exists $P \in \mathbb{N}_+$ and parameters $\Theta = (\omega_i, a_i, b_i)_{i=1}^P$ such that

$$||f - f_{\mathsf{shallow}}(\cdot, \Theta)||_{\mathcal{C}(X)} \le \epsilon.$$

Quantitative UAP I: Barron Space

Fix the domain $X = [-1,1]^d$, and let σ denote the ReLU activation function.

Definition: Barron Space $S_B(X)$

A function $f \in \mathcal{C}(X)$ belongs to the **Barron space** $\mathcal{S}_{\mathsf{B}}(X)$ if there exists a probability measure $\mu \in \mathcal{P}(\mathbb{R}^{d+2})$ such that

$$f(x) = \int_{\mathbb{R}^{d+2}} w \, \sigma(\langle a, x \rangle + b) \, d\mu(w, a, b), \quad \forall x \in X.$$

Sufficient Condition [Klusowski-Barron 2018, IEEE Trans. Inf. Theory]

If $f \in \mathcal{C}(X)$ admits an extension $\widetilde{f} \in \mathcal{C}(\mathbb{R}^d)$ whose Fourier transform satisfies

$$\mathbf{v}_{\mathbf{f},\mathbf{2}}\coloneqq\int_{\mathbb{R}^d}\|\omega\|^2\left|\mathcal{F}(\widetilde{f})(\omega)\right|\ d\omega<\infty,$$

then $f \in S_B(X)$.

Sobolev embedding into Barron Space: $H^{k}(X) \subseteq S_{B}(X)$ if $k > \frac{d}{2} + 2$.

Quantitative UAP II: L^{∞} Approximation Rate

L^{∞} -Approximation Rate [Klusowski-Barron 2018, IEEE Trans. Inf. Theory]

If $f \in \mathcal{C}(X)$ has an extension \widetilde{f} to \mathbb{R}^d such that $v_{f,2} < \infty$. Then, for every integer $P \ge 3$ there exist $(w_i, a_i, b_i) \in \mathbb{R}^{n+2}$, for $i = 1, \dots, P$, such that

$$\left\| f - \sum_{i=1}^{P} w_i \, \sigma \big(\langle a_i, \, \cdot \, \rangle + b_i \big) \right\|_{L^{\infty}(X)} \leq \frac{C_d \, v_{f,2}}{\sqrt{P}}, \quad \text{and}$$

$$\operatorname{Lip} \left(\sum_{i=1}^{P} w_i \, \sigma \big(\langle a_i, \, \cdot \, \rangle + b_i \big) \right) \leq \| \nabla f(0) \| + 2 \, v_{f,2},$$

where $C_d > 0$ depends only on the dimension d.

Key elements in the proof:

- ② Let $\mathcal{P}_P(\mathbb{R}^{d+2})$ be the set of empirical measures supported on at most P points. Find an upper bound of the following Minimax problem:

$$\inf_{\mu_{\boldsymbol{P}} \in \mathcal{P}_{\boldsymbol{P}}(\mathbb{R}^{d+2})} \sup_{x \in X} \left| \int_{\mathbb{R}^{d+2}} w \, \sigma(\langle a, x \rangle + b) \, d(\mu - \mu_{\boldsymbol{P}}) \right| \, \leq \, \, \mathcal{O}\left(\frac{1}{\boldsymbol{P}^{r}}\right)$$

Core estimate: $r \ge 1/2$. The analysis is based on techniques from *geometric discrepancy theory*.

Acta Math., 177 (1996), 55-73 © 1996 by Institut Mittag-Leffler, All rights reserved

Improved upper bounds for approximation by zonotopes

by

JIŘÍ MATOUŠEK

Charles University Prague, Czech Republic

1. Introduction

A zonotope in \mathbb{R}^n is a special type of a convex polytope; it is defined as a Minkowski sum of finitely many segments. That is, a zonotope is a set in \mathbb{R}^n of the form $\{x_1, x_2, \dots, x_m = x_n \in \mathbb{R}^n\}$, where I_1, \dots, I_m are segments in \mathbb{R}^n . A convex body that can be approximated by zonotopes arbitrarily closely is called a zonoid. Several authors have recently studied the following question: what is the minimum number, N_i of summands of a zonotope needed to approximate a given zonoid Z in \mathbb{R}^n with error at most z (the means that $Z \subseteq A \subseteq I(1+z) Z$, where A is the approximating zonotope, and we assume that the center of symmetry of Z is the origin). Here we consider the dimension n fixed, and we investigate the dependence of N on z (we assume that $n \geqslant 3$, as the case n = 2 is simple—see [4].

Other quantitative UAP results using this technique:

- Bach (2017), Journal of Machine Learning Research;
- Siegel (2025), Constructive Approximation.

Outline

- Introduction to UAP of NNs
- UAP in dynamical systems: SA-NODE
 - Theory
 - Training, optimization, and numerical simulations
- 3 Sparse optimization and mean-field relaxation
 - Mean-filed (convex) relaxation
 - Algorithms and numerical simulations

Semi-autonomous Neural ODE

• Consider an ODE system in \mathbb{R}^d with an unknown vector field f:

$$\begin{cases} \dot{\boldsymbol{z}}_{z_0} = \boldsymbol{f}(\boldsymbol{z}_{z_0}, t), & t \in (0, T), \\ \boldsymbol{z}_{z_0}(0) = z_0. \end{cases}$$

We propose the following SA-NODE to approximate it:

$$\begin{cases} \dot{\mathbf{x}}_{z_0} = \sum_{i=1}^P W_i \circ \sigma(A_i^1 \mathbf{x}_{z_0} + A_i^2 t + B_i), & t \in (0, T), \\ \mathbf{x}_{z_0}(0) = z_0. \end{cases}$$

with

- o the Hadamard product,
- $V_i \in \mathbb{R}^d$.
- $W_i \in \mathbb{R}^a$, $A_i^1 \in \mathbb{R}^{d \times d}$, $A_i^2 \in \mathbb{R}^d$
- \triangleright $B_i \in \mathbb{R}^d$

UAP of SA-NODE I: ODE

Assume that

$$f \in \mathcal{H}^k_{loc}(\mathbb{R}^d \times [0, T]; \mathbb{R}^d), \quad \text{with } k > (d+1)/2 + 2.$$
 (2.1)

Theorem 1 [Li-L.-Liverani-Zuazua 2024]

Let (2.1) hold true. Fix any compact set $K \subseteq \mathbb{R}^d$. For any $P \ge 3$, there exist parameters $(W_i, A_i^1, A_i^2, B_i)_{i=1}^P$ such that

$$\|\mathbf{z}_{z_0}(t)-\mathbf{x}_{z_0}(t)\|_{L^{\infty}([0,T];\mathbb{R}^d)}\leq \frac{C_{T,K,f}}{\sqrt{P}},\quad \forall z_0\in K,$$

where $C_{T,K,f}$ is a constant independent of P.

Key proof steps:

- A priori estimate on the SA-NODE domain via bootstrapping;
- Apply L^{∞} approximation of f [Klusowski–Barron 2018];
- Use Grönwall's inequality.

UAP of SA-NODE II: Continuity Equation

Continuity equation

$$\begin{cases} \partial_t \rho(x,t) + \operatorname{div}_x(f(x,t)\rho(x,t)) = 0, & (x,t) \in \mathbb{R}^d \times [0,T], \\ \rho(\cdot,0) = \rho_0 \in \mathcal{P}(\mathbb{R}^d). \end{cases}$$
 (2.2)

• Neural counterpart: ρ_{Θ} satisfies (2.2) with f replaced by

$$f_{\Theta}(x,t) = \sum_{i=1}^{P} W_i \circ \sigma(A_i^1 x + A_i^2 t + B_i).$$

Theorem 2 [Li-L.-Liverani-Zuazua 2024]

Let (2.1) hold true. Assume that ρ_0 has compact support set. Then, for any $P \ge 3$, there exist parameters $\Theta = \{(W_i, A_i^1, A_i^2, B_i)\}_{i=1}^P$ such that

$$\sup_{t \in [0,T]} \mathbb{W}_1 \big(\rho \big(\cdot, t \big), \rho_{\Theta} \big(\cdot, t \big) \big) \leq \frac{C_{T,f,\rho_0}}{\sqrt{P}},$$

where C_{T,f,ρ_0} is a constant independent of P and W_1 is the Wasserstein-1 distance.

 $\textbf{Key proof steps:} \quad \text{Theorem } 1 + \text{Superposition principle of the continuity equation}.$

Outline

- Introduction to UAP of NNs
- 2 UAP in dynamical systems: SA-NODE
 - Theory
 - Training, optimization, and numerical simulations
- 3 Sparse optimization and mean-field relaxation
 - Mean-filed (convex) relaxation
 - Algorithms and numerical simulations

True dynamic system

system SA-NODE

 $\begin{cases} \dot{z}_{z_0} = f(z_{z_0}, t), & t \in (0, T), \\ z_{z_0}(0) = z_0. \end{cases} \begin{cases} \dot{x}_{z_0} = \sum_{i=1}^P W_i \circ \sigma(A_i^1 x_{z_0} + A_i^2 t + B_i), & t \in (0, T), \\ x_{z_0}(0) = z_0. \end{cases}$

Optimal control problem for learning (continuous) $\inf_{\Theta} L(\Theta) = \int_0^T \int_K \| \mathbf{z}_{z_0}(t) - \mathbf{x}_{z_0}(t) \|^2 d\mathbf{z}_0 dt + \lambda \ \left\| \sum_{i=1}^P |W_i| \circ \|A_i^1\|_{\ell^2} \right\| \ .$

Lipschitz constant of SA-NODE

In practice, we observe N trajectories, \mathbf{z}^k , of \mathbf{z} from N different initial positions.

 $\inf_{\Theta} \hat{\mathcal{L}}(\Theta) = rac{\Delta t}{N} \sum_{k=1}^N \sum_{l=1}^M \left(oldsymbol{z}^k(t_l) - oldsymbol{x}^k(t_l,\Theta)
ight)^2 + \lambda \left\| \sum_{i=1}^P |W_i| \circ \|A_i^1\|_{\ell^2}
ight\|,$

where x^k is the solution of SA-NODE with the same initial position as z^k .

Adjoint method, backpropagation, and SGD

Theorem 3 (Gradient of L)

Let $\widetilde{f}(\Theta, x, t) = f_{\Theta}(x, t)$ and let $g(\Theta) = \left\| \sum_{i=1}^{P} |W_i| \circ \|A_i^1\|_{\ell^2} \right\|$. It holds that

$$\nabla \textit{L}(\Theta) = \int_{K} \int_{0}^{T} \frac{\partial \widetilde{f}}{\partial \Theta} (\Theta, \textit{\textbf{x}}_{\textit{z}_{0}}(t), t)^{\top} \textit{\textbf{a}}_{\textit{z}_{0}}(t) dt dz_{0} + \lambda \nabla g(\Theta), \quad \text{for } \Theta \text{ a.e.,}$$

where a_{z_0} satisfies the adjoint equation (backpropagation)

$$\begin{cases} -\dot{\boldsymbol{a}}_{z_0}(t) = \frac{\partial \tilde{f}}{\partial x}(\Theta, \boldsymbol{x}_{z_0}(t), t)^{\top} \boldsymbol{a}_{z_0}(t) + 2(\boldsymbol{x}_{z_0}(t) - \boldsymbol{z}_{z_0}(t)), & t \in [0, T], \\ \boldsymbol{a}_{z_0}(T) = 0, & z_0 \in K. \end{cases}$$

Discrete version:

$$\nabla \hat{\mathcal{L}}(\Theta) = \frac{1}{N} \sum_{k=1}^{N} \underbrace{\left(\Delta t \sum_{l=1}^{M} \frac{\partial \widetilde{f}}{\partial \Theta} (\Theta, \boldsymbol{x}^{k}(t_{l}), t_{l})^{\top} \boldsymbol{a}^{k}(t_{l}) \right)}_{\nabla \hat{\mathcal{L}}_{L}(\Theta)} + \lambda \nabla g(\Theta).$$

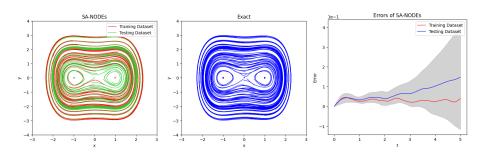
SGD:

$$\Theta^{m+1} = \Theta^m - \tau^m \left(\nabla \hat{\mathcal{L}}_k(\Theta^m) + \lambda \nabla g(\Theta^m) \right)_{k \sim \mathsf{Uni}\{1,\dots,N\}}.$$

Numerical Example I

Forced Duffing oscillator:

$$\begin{cases} \dot{z}_1 = z_2, \\ \dot{z}_2 = z_1 - z_1^3 + \delta \cos(\omega t). \end{cases}$$



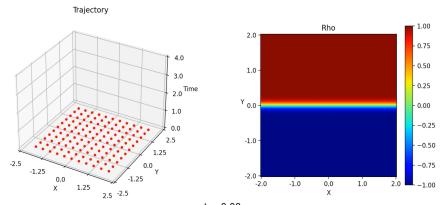
Numerical Example II

Doswell frontogenesis [Doswell 1984]:

$$\begin{cases} \partial_t \rho + \operatorname{div} \left(\left(-yg(r), xg(r) \right) \rho \right) = 0, & (x, y, t) \in \mathbb{R}^2 \times [0, T], \\ \rho(\cdot, 0) = \rho_0, & \end{cases}$$

where

$$g(r) = \frac{1}{r} \overline{v} \operatorname{sech}^2(r) \tanh(r), \quad r = \sqrt{x^2 + y^2}.$$



t = 0.00

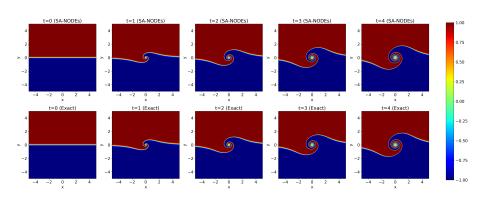
Numerical Example II

Doswell frontogenesis [Doswell 1984]:

$$\begin{cases} \partial_t \rho + \operatorname{div} \left(\left(-yg(r), xg(r) \right) \rho \right) = 0, & (x, y, t) \in \mathbb{R}^2 \times [0, T], \\ \rho(\cdot, 0) = \rho_0, & \end{cases}$$

where

$$g(r) = \frac{1}{r} \overline{v} \operatorname{sech}^2(r) \tanh(r), \quad r = \sqrt{x^2 + y^2}.$$



Outline

- Introduction to UAP of NNs
- UAP in dynamical systems: SA-NODE
 - Theory
 - Training, optimization, and numerical simulations
- 3 Sparse optimization and mean-field relaxation
 - Mean-filed (convex) relaxation
 - Algorithms and numerical simulations

Training problems for shallow NNs

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- NNs architecture:
 - ▶ feature (input): $\mathbf{x} \in \mathbb{R}^d$;
 - ▶ parameter (control): $\Theta = (\omega, a, b) \in \mathbb{R}^{P \times (d+2)}$;
 - prediction (output):

$$f_{\mathsf{shallow}}(\mathsf{x},\Theta) = \sum_{p=1}^{P} \omega_p \sigma(\langle \mathsf{a}_p,\mathsf{x} \rangle + \mathsf{b}_p).$$

Training problem for shallow NNs

Let ℓ be a proper, convex and l.s.c. function. Consider the following optimization:

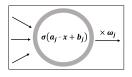
$$\inf_{(\omega,a,b)} \frac{1}{N} \sum_{i=1}^{N} \ell \left(y_i - \sum_{p=1}^{P} \omega_p \sigma(\langle a_p, x_i \rangle + b_p) \right) + \underbrace{R(\omega, a, b)}_{\text{Regularization}}.$$

Design of the regularization term

• A well-known principle ¹ in machine learning is the following:

"sparsity" mitigates "overfitting".

• In shallow NNs, the number of activated neurons is $\|\omega\|_{\ell^0}$.



• The function $\|\omega\|_{\ell^0}$ is non-convex. A practical replacement from compressed sensing 2 :

$$\|\omega\|_{\ell^0} \mapsto \|\omega\|_{\ell^1}.$$

¹Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov. "Dropout: A simple way to prevent Neural Networks from overfitting". In JMLR, 2014.

²Candes and Romberg. "Quantitative robust uncertainty principles and optimally sparse decompositions". In FOCM, 2006.

Optimization via Mean-Field Relaxation

Primal Problem

Optimization problem based on sparsity:

$$\inf_{(\omega,a,b)} \frac{1}{N} \sum_{i=1}^{N} \ell \left(y_i - \sum_{p=1}^{P} \omega_p \sigma(\langle a_p, x_i \rangle + b_p) \right) + \underbrace{\lambda \sum_{p=1}^{P} |\omega_p|}_{\text{Regularization for sparsity}}. \tag{P}$$

Observation: the non-convexity arises from the non-linearity of neural networks.

$$\sum_{p=1}^P \omega_p \sigma(\langle a_p, x \rangle + b_p) \quad \xrightarrow{\text{Mean-field relaxation}} \quad \int_{\mathbb{R}^{d+1}} \sigma(\langle a, x \rangle + b) \, d\mu(a,b).$$

Relaxed Problem

$$\inf_{\mu} \frac{1}{N} \sum_{i=1}^{N} \ell \left(y_i - \int_{\mathbb{R}^{d+1}} \sigma(\langle a, x_i \rangle + b) \, d\mu \right) + \lambda \, \|\mu\|_{\mathsf{TV}}. \tag{PR}$$

Free of relaxation gap

Theorem (L.-Zuazua, 2025)

Under mild assumptions 1 on σ and the constraint domain Ω for (a_p, b_p) , if $P \geq N$, then

$$val(P) = val(PR).$$

Moreover, the extreme points of the solution sets of relaxed problems have the following form:

$$\mu^* = \sum_{i=1}^{N} \omega_j^* \delta_{(a_j^*, b_j^*)}.$$

Key proof steps:

- Existence of solutions: finite-sample representation property from [Pinkus, 1999].
- "Representer Theorem" from [Fisher-Jerome, 1975].

¹An example of (σ, Ω) : σ is the ReLU function and Ω is the unit ball.

A generalization bound

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N / \{(x_i', y_i')\}_{i=1}^{N'}$
- **Predictions** on testing set by the shallow NN with parameter ⊖:

$$\{(\mathbf{x}_i', f_{\mathsf{shallow}}(\mathbf{x}_i', \boldsymbol{\Theta}))\}_{i=1}^{N'}$$

Empirical measures:

$$m_{\mathsf{train}} = \frac{1}{N} \sum_{i=1}^{N} \delta_{(\mathsf{x}_i, \mathsf{y}_i)}, \quad m_{\mathsf{test}} = \frac{1}{\mathsf{N}'} \sum_{i=1}^{\mathsf{N}'} \delta_{(\mathsf{x}_i', \mathsf{y}_i')}, \quad m_{\mathsf{pred}}(\Theta) = \frac{1}{\mathsf{N}'} \sum_{i=1}^{\mathsf{N}'} \delta_{(\mathsf{x}_i', f_{\mathsf{shallow}}(\mathsf{x}_i', \Theta))}.$$

A generalization bound

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N / \{(x_i', y_i')\}_{i=1}^{N'}$
- **Predictions** on testing set by the shallow NN with parameter ⊖:

$$\{(\mathbf{x}_i', f_{\mathsf{shallow}}(\mathbf{x}_i', \boldsymbol{\Theta}))\}_{i=1}^{N'}$$

Empirical measures:

$$m_{ ext{train}} = rac{1}{N} \sum_{i=1}^N \delta_{(\mathbf{x}_i, y_i)}, \quad m_{ ext{test}} = rac{1}{N'} \sum_{i=1}^{N'} \delta_{(\mathbf{x}_i', y_i')}, \quad m_{ ext{pred}}(\Theta) = rac{1}{N'} \sum_{i=1}^{N'} \delta_{(\mathbf{x}_i', f_{ ext{shallow}}(\mathbf{x}_i', \Theta))}.$$

Theorem (L.-Zuazua, 2025)

Let $W_1(\cdot,\cdot)$ denote the Wassernstein-1 distance. If σ is 1-Lipschitz, then for any Θ ,

$$W_1(m_{\mathsf{test}}, m_{\mathsf{pred}}(\Theta)) \leq \underbrace{2W_1(m_{\mathsf{train}}, m_{\mathsf{test}})}_{+r(\Theta)} + r(\Theta), \quad \mathsf{where}$$

$$r(\Theta) = rac{1}{N} \sum_{i=1}^{N} |f_{\mathsf{shallow}}(x_i, \Theta) - y_i| + W_1(m_{\mathsf{train}}, m_{\mathsf{test}}) \sum_{j=1}^{P} |\omega_j| \|a_j\|.$$

Bias from training

"Standard deviation"

Outline

- Introduction to UAP of NNs
- UAP in dynamical systems: SA-NODE
 - Theory
 - Training, optimization, and numerical simulations
- 3 Sparse optimization and mean-field relaxation
 - Mean-filed (convex) relaxation
 - Algorithms and numerical simulations

Guideline for numerical algorithms

The relaxed problem is convex, but in an infinite-dimensional space.

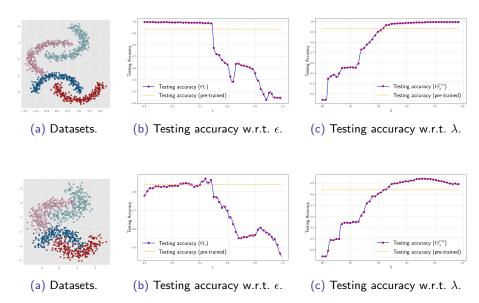
$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} |\phi_i \, \mu - y_i|,$$

where $\phi_i \mu = \int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b)$.

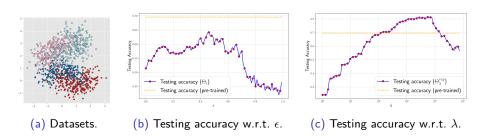
Two numerical scenarios

- **1** When $dim(\Omega) = d + 1$ is small: Discretization, then Optimization.
 - \triangleright Discretize Ω by a mesh, then optimize by the simplex method.
- ② When $dim(\Omega) = d + 1$ is great: Optimization, Discretization, then Sparsification.
 - Write the gradient flow associated with (PR);
 - ► The SGD algorithm on an overparameterized (P) (a large P) is seen as a discretization of the gradient flow;
 - ► Filter the overparameterized result by our Sparsification algorithm.

Classification in 2-D



Classification in 2-D

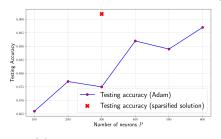


Conclusion:

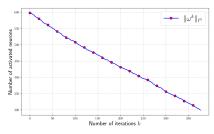
- If the datasets have clear separable boundaries, take $\lambda \to \infty$;
- If the datasets have heavily overlapping areas, consider a particular range of $\lambda \sim W_1^{-1}(m_{\text{train}}, m_{\text{test}})$.

Classification in a high-dimensional space

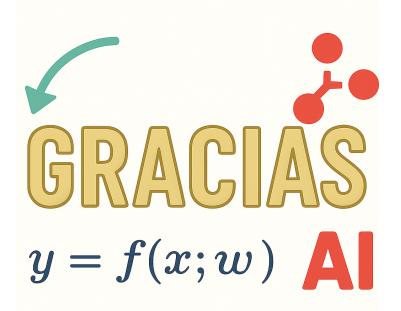
- The Mnist dataset, vectors in $\mathbb{R}^{28 \times 28}$
- Training data: 300 samples of numbers 0, 1, and 2.
- Testing data: 1000 samples of numbers 0, 1, and 2.



(a) Testing accuracy w.r.t. P.



(b) $\|\omega\|_{\ell^0}$ w.r.t. the iteration number.



Low-dimensional scenario

Discretization of the domain:

$$\Omega \to \Omega_h = \{(a_j, b_j)\}_{j=1}^M$$
.

Discretized problems:

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1}, \tag{PD}$$

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j)$.

Error estimates:

$$|val(PD) - val(PR)| = \mathcal{O}(d_{Hausdorff}(\Omega, \Omega_h)).$$

- Equivalent to linear programming problems, solvable using the simplex method.
 - ▶ Advantage: Terminates at an extreme point of the solution set, which corresponds to a solution of the primal problems.
 - Limitation: Suffer from the curse of dimensionality.

High-dimensional scenario

• Apply the SGD algorithm to the following overparameterized problem:

$$\inf_{\Theta \in (\mathbb{R} imes \Omega)^{\bar{P}}} \|\omega\|_{\ell^1} + rac{\lambda}{N} \sum_{i=1}^N \ell \left(\sum_{j=1}^{\bar{P}} \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i
ight),$$

where \bar{P} is large ¹.

• Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous solution, obtaining one with fewer than *N* activated neurons.

This approach is free from the curse of dimensionality but lacks rigorous convergence analysis.

¹The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc.