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Abstract

This paper investigates the application of Data-based Reduced Order Models, the Random Batch Method
(RBM) and Model Predictive Control (MPC) in Converter-Dominated Power Systems. The study evaluates
their effectiveness in handling stiff systems, marking a pioneering effort in this domain. Several challenges
emerge, particularly concerning the accuracy of approximations due to the stiffness of the state matrix A:
block-wise decomposition strategies face limitations in accurately approximating the original, as evidenced
by simulation results. This limitation questions the effectiveness of block-wise strategies, highlighting the
need for alternative decomposition methods. Spectral decomposition showed potential but prompts a search
for more efficient alternatives. Also, we show that combining MPC with RBM is a promising approach
for optimal control problems constrained by state trajectories, as the latter efficiently handles large time
horizons T by breaking down the time into smaller sub-intervals, and although a marginal improvement of
the RBM-MPC over RBM was found, we have concluded that does not justify the increased computation
time, emphasizing the need to understand factors influencing error accumulation. Furthermore, the study
identifies a relationship between the RBM, the number of discretization points, and the switching parameter
K, where increasing these parameters enhances accuracy but may lead to deterioration in quality. These
results are in line with the theoretical framework. Overall, the study highlights the necessity for continued
investigation to optimize control strategies for stiff systems such as power systems.

Introduction

The integration of renewable energy sources and
power electronic converters into modern power
systems has brought forth a myriad of challenges
associated with system dynamics. Effectively man-
aging these complexities is imperative to ensure
the stability and reliability of Converter-Dominated
Power Systems.

Data-based Reduced Order Models ([9], [8], [3])
offer a promising approach by simplifying the com-
plex system dynamics into more manageable forms

without compromising essential characteristics. In
the context of Converter-Dominated Power Systems,
the RBM stands out for its ability to handle large-
scale problems by decomposing them into smaller,
more tractable subproblems ([2], [4], [6], [6], [7],
[11]). Unlike traditional deterministic methods,
RBM embraces the stochastic nature of renewable
energy sources and system uncertainties, offering a
more realistic depiction of the dynamic behavior of
the power system.

The fundamental concept underlying the RBM
involves the creation of random matrices by gener-
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ating batches representing the indices of a previous
decomposition of the state matrix of the system (see
Section 4.1). This only can be done, presumably, in
the context of linear optimal control. and due to the
non-linearity of the considered model, we need to
linearize it (Section 2).

The primary focus of this study is to evaluate
the effectiveness of these methodologies in handling
stiff systems—a critical aspect that has not been
extensively explored in the literature. Stiff systems,
characterized by widely varying timescales in their
dynamics, present significant challenges for numeri-
cal approximation and control . The stiffness of the
state matrix A in such systems complicates accurate
approximation, particularly when using block-wise
decomposition strategies. This research highlights
the limitations of these traditional strategies and
explores alternative approaches, including spectral
decomposition, to improve accuracy.

This paper aims to explore as well the application
of the RBM in tandem with optimal control tech-
niques, such as the MPC, for Converter-Dominated
Power Systems. The combined approach aims to
capitalize on the strengths of both methodologies,
addressing found challenges while optimizing control
actions to enhance system performance. However,
the study also uncovers the trade-offs involved, such
as increased computational time versus marginal
improvements in accuracy.

To implement the RBM and optimal control strate-
gies, we turn to Python, a versatile programming lan-
guage with extensive libraries and tools for scientific
computing and control system analysis. Python fa-
cilitates the implementation of complex algorithms,
making it an ideal choice for exploring the syner-
gies between RBM and optimal control in the con-
text of power systems. In the upcoming sections, we
will delve into the technical aspects of implementing
RBM and MPC using Python, providing a practical
guide for researchers and practitioners in the field.

1 Converter-Dominated Power
Systems

A Converter-Dominated Power System typically
involves the integration of renewable energy sources,
such as wind and solar, through power electronic
converters. These converters play a crucial role
in converting the variable and intermittent output
from renewable sources into a form suitable for the
power grid. Additionally, grid-forming converters
may be employed to actively control the voltage and
frequency of the system.

These power systems typically include three
elements:

- A power grid. Power grids are networks of
interconnected components that work together to
generate, transmit, and distribute electrical energy.

- A converter, particularly an inverter. Converters
are devices that transform electrical energy from
one form to another, often involving the conversion
between alternating current (AC) and direct current
(DC). The inverters convert DC from sources like
solar panels or batteries into AC for grid integration.
In our case, we consider a synchronverter, which is a
type of inverter that mimics synchronous generators,
which offers a mechanism for power systems to con-
trol grid-connected renewable energy and facilitates
smart grid integration.

- A controller. Due to the very nature of the syn-
chronverter, it provides an outer-loop controller [13].
Therefore, we can control the amplitude, frequency,
and phase angle of the generated voltage, allowing
for precise adjustment to match grid requirements.

2 Mathematical Model

We consider only one synchronverter (1 converter +
1 controller). With that, the model is the following
ODE system:
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Figure 1: Diagram of the considered power system
(adapted from [1])
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dig
dt = 1

Lg
(v0 −Rgig − vg)− jωgig

dii
dt = 1

Lf
(mVdc −Rf ii − v0)− jωgii

dv0
dt = 1

Cf
(ii − ig)− jωgv0

d(Mf if )
dt = 1

K [Qref −Q+Kq(v̂ref − v̂c0)]
dωsv

dt = 1
Ta

[
Pm

ωsv
− Pe

ωsv
−KD(ωsv − ωref )

]
dδθsv
dt = ωsv − ωg,

(1)

where

Pm = Pref +Kw(ωref − ωsv),

voc =

[
cos(δθsv) sin(δθsv)
− sin(δθsv) cos(δθsv)

] [
vd0
vq0

]
,

v̂co =
√

v2oc,0 + v2oc,1,

iic =

[
cos(δθsv) sin(δθsv)
− sin(δθsv) cos(δθsv)

] [
idi
iqi

]
,

Pe = voc,0iic,0 + voc,1iic,1,

Q = −voc,0iic,1 + voc,1iic,0,

m =

[
cos(δθsv) − sin(δθsv)
sin(δθsv) cos(δθsv)

] [ωsv·Mf if
Vdc

0

]
,

md = m,0,

mq = m,1.

j is the imaginary unit. v0, ig, vg,m and ii have
two components: one in the d-axis (real part) and
the other in the q-axis (imaginary part). We can
therefore convert the complex ODE system into a
real one, by introducing the variables vq0, v

d
0 , i

d
g, i

q
g,

etc. The variables highlighted in blue, orange
and red represent the states, the controls and the
parameters, respectively.

Physically, the variables represent:

Lf , Cf , Rf - Inductance, capacitance and resis-
tance of the inverter, respectively.

Vdc - DC voltage
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v0 - Output voltage

Lg, Cg, Rg - Inductance, capacitance and resis-
tance of the grid, respectively.

ig - grid current

vg - grid voltage

ωsv - controller frequency

m - modulation index from the controller

ii - input current of the inverter

Mf if - reactive power of the controller

δθsv - angle between the grid and the controller
reference plane

Q,Qref , v̂ref ,K and Kref - variables governing the
RPC part of the synchronverter (voltage regulator).

ωref , Kω - variables governing the droop of the
synchronverter (frequency regulator).

Pref ,KD, Ta - variables governing the inertia sim-
ulator of the synchronverter.

2.1 Linearized model

In order to combine the framework of Linear-
Quadratic Optimal control with our RBM method-
ology, we need to define our state matrix A. Due
to the non-linearity of the model defined in (1), our
next step was to linearize the system.

We can find a steady-state point x0 of (1) for u0

= (398
√
2, 0, 1375000, 0, 100π, 563). We obtain

the linearized model by evaluating the gradient with
respect to the controls u and the states x in x0:

x′ = f(x, u) ≈∇xf(x0, u0)x+∇uf(x0, u0)u

Ax+Bu, x(0) = x0,

where f is defined as the right-hand side of (1).
As initial condition, we also choose x0.

The state and control matrices A and B are illus-
trated in the Appendix A. Note that the size of A
and B is 9x9 and 9x6, respectively.

3 Optimal Control Problem

We consider the classical (finite-dimensional) LQ op-
timal control problem in which we want to find the
control u∗(t) that minimizes

J(x(t),u(t)) =
1

2

∫ T

0

(x(t)− xd(t))
TQ(x(t)− xd(t))+

1

2

∫ T

0

u(t)TRu(t),

(2)

subject to the dynamics

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (3)

with xd being the reference trajectory and Q and R
the weighting matrices. In our case, we set Q and R
as the identity matrix.

In this context, x(t) and xd(t) evolve in RN , while
u(t) evolves in Rq. For scenarios with a large N ,
conventional problem-solving involves gradient-based
techniques like gradient descent or conjugate gradi-
ents. The gradients required for these methods are
efficiently computed as

(∇J(u))(t) = B⊤φ(t) +Ru(t),

where the adjoint state φ(t) adheres to

−φ̇(t) = A⊤φ(t)+Q(x(t)−xd(t)), φ(T ) = 0.

It’s important to note that determining φ(t)
involves integrating backward in time from the
final condition φ(T ) = 0. Additionally, x(t) in the
ordinary differential equation for φ(t) represents the
solution of the state equation, where u(t) signifies
the point at which the gradient is computed. This
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implies that both the forward dynamics for x(t) and
the backward dynamics for φ(t) must be solved in
each iteration.

Practical implementation necessitates the dis-
cretization of the aforementioned equations in time.
This approach becomes computationally demanding
when A lacks sparsity and is of significant size, cou-
pled with a large number of points in the time grid.
These computational challenges will be discussed in
more detail below.

The subsequent sections will delve into the specifics
of the RBM methodology, optimal control strategies,
and their combined application to address the chal-
lenges in power system control.

4 Random Batch Method

The RBM is a numerical approach used in the
context of optimization and sampling for solving
various problems, including optimization problems,
machine learning, and computational mathematics.
It involves using random batches or subsets of data
to approximate quantities, gradients, or solutions to
problems. The method has been particularly applied
in the field of optimization, where it can be employed
to approximate the objective function, gradients, or
Hessian matrix using randomly selected subsets of
the data ([7], [5], [4], [11]).

4.1 The proposed randomized time-
splitting method

In order to implement the RBM, we need to split
the matrix following the method of [11] and [10].

Decomposition of Matrix A

Decompose the matrix A into M submatrices Am:

A =

M∑
m=1

Am (4)

Assignment of Probabilities

For each of the 2M subsets of {1, 2, ...,M},
denoted as {S1, S2, ..., S2M }, assign probabilities
p1, p2, ..., p2M such that:

2M∑
l=1

pl = 1 (5)

and

πm =
∑
l∈Lm

pl > 0, (6)

Lm = {l ∈ {1, 2, ..., 2M}/m ∈ Sl},

for all m ∈ {1, 2, ...,M}.

Time Interval Division

Divide the considered time interval [0, T ] into N
sub-intervals [tn−1, tn), n ∈ {1, ..., N}:

0 = t0 < t1 < ... < tN−1 < tN = T (7)

and choose an index ωn according to the prob-
ability distribution of the assigned probabilities
p1, p2, ..., p2M in each sub-interval independently.
Store the selected indices as

ω := (ω1, ω2, ..., ωN ). (8)

Matrix Definition

For the selected ω, define a matrix Ah(ω, t):

Ah(ω, t) =
∑

m∈Sωk

Am

πm
(9)

for t ∈ [tn−1, tn), n ∈ {1, ..., N}. It can be easily
proven that E(Ah(ω, t)) = A [11].

Solution Computation

Replace the matrix A by Ah(ω, t) in Equations (1)
and (2). Now compute the solution xh(ω, t) of the
dynamics:

ẋh(ω, t) = Ah(ω, t)xh(ω, t) +Bu(t), xh(ω, 0) = x0

(10)
for a given control u(t).
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4.2 The batch

From the very definition of Ah(ω, t), we can see that
it is piece-wise constant, since ω is fixed. Then, it can
take exactly N different values, being N the number
of timestep. So, we can define a vector with N ran-
dom components, where each component is a random
number between 0 and M − 1. That is the so-called
batch. We can, therefore, select one value of Ah(ω, t)
in each timestep by selecting the component of the
batch associated with that timestep.

Shift parameter of the batch K

As in [11], we can study the RBM by constructing
different methods of generating the batch. One way
to do this is by choosing the period of the random-
ization of the batch components. For example, if we
choose K = 2, the batch changes values each 2 in-
dices.

5 Technicalities of the electri-
cal model

The initial idea was to split the 9 x 9 matrix A in 3
x 3 blocks:

A =

B1 B2 B3

B4 B5 B6

B7 B8 B9

 ,

so A =
∑6

i=1 Ai, with

A1 =

B1 0 0
0 0 0
0 0 0

 , A2 =

 0 B2 0
B4 0 0
0 0 0

 ,

A3 =

 0 0 B3

0 0 0
B7 0 0

 , A4 =

0 0 0
0 B5 0
0 0 0

 ,

A5 =

0 0 0
0 0 B6

0 B8 0

 , A6 =

0 0 0
0 0 0
0 0 B9

 .

With that in mind, the simulations of the RBM
for the first state and control follow (Figures 2 and 3).

Figure 2: RBM for the state 0 for 5, 50 and 500 trials
with the block-wise decomposition

The black lines represent the state/control of the
original matrix A. However, the obtained results
are unsatisfactory as the approximations do not
effectively represent the solution, regardless of the
number of trials. This supports the idea that A is
not conducive to being split into blocks, as confirmed
in Discussions. Because of that, we opt for a spectral
decomposition.

The eigenvalues of the state matrix A are:
−6.42 ± 5692.42j,−6.42 ± 5064.10j,−14.42 ±
314.16j,−39.44,−23.64 and −4.65 · 10−3. All eigen-
values have real negative part. Note that this is
an extremely stiff matrix, where cond(A) > 108.
This is further reinforced by the clear difference be-
tween the largest and the smallest eigenvalue module.

5.1 Initial matrix decomposition

Since det(A) ̸= 0, we can use the eigenvalue decom-
position
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Figure 3: RBM for the control 0 for 5, 50 and 500
trials with the block-wise decomposition

A = QΛQ−1, sp(A) = {λ1, λ2, ..., λ9}.

where Q is the matrix of eigenvectors and Λ is the
diagonal matrix of eigenvalues. The spectral decom-
position is then formulated as:

Λ = Λs1 + Λs2 + Λs3 ,

Λs1 = diag(λ5, λ9, λ8, 0, 0, ..., 0),

Λs2 = diag(0, 0, 0, λ6, λ7, 0, 0, ..., 0),

Λs3 = diag(0, 0, ..., 0, λ1, λ2, λ3, λ4)

Then, the initial matrix splitting is:

A =

3∑
i=1

Ai = A1 +A2 +A3, (11)

where

A1 = QΛs1Q
−1,

A2 = QΛs2Q
−1,

A3 = QΛs3Q
−1.

5.2 Assignment of Probabilities

We assign the same probability to every singleton in
the set of all subsets of {1,2,...,M}, and zero to any
other subset:

pl =

{
1/3 if Sl ∈ {{1}, {2}, {3}}
0 otherwise

(12)

6 Algorithm of the RBM

Initialization:

� Define time step differences: h = ∆t = t1 − t0.

� Set maximum iterations: max iters = 500.

� Set tolerance for convergence: tol = 1e− 6.

Iterations:

For each iteration from 1 to max iters:

� Calculate states xsol0 using the function
CalculateStatesRandom with parameters
A,B, u0, tgrid,X0, and batches.

� Compute the cost function J0 using the
function CostFunction with parameters
Q,R, xd, xsol0, u0, tgrid, and ∆t.

� Compute ϕ using the function ComputePhiRBM

with parameters A,Q, xsol0, xd, tgrid, and
batches.

� Compute the gradient of the cost function ∇J
as gradJ = BTϕ+ 2Ru0.

� Compute the inner product G of ∇J with itself
over time: G = InnerProduct(gradJ, gradJ,∆t).

� Calculate states dx using the function
CalculateStatesRandom with parameters
A,B, gradJ, tgrid, zeros like(X0), and batches.

� Compute the Hessian matrix H using the func-
tion Hessian with parameters Q,R, dx, gradJ,
and ∆t.

� Compute the step size step = G
H /2.
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Figure 4: Plot of the eigenvalues, with the 3 sets of eigenvalues associated to the 3 subspaces

� Update the control input u1 as u1 = u0− step ·
gradJ.

� Update the states xsol1 as xsol1 = xsol0−step ·
dx.

� Compute the new cost function J1 using
the function CostFunction with parameters
Q,R, xd, xsol1, u1, tgrid, and ∆t.

Convergence Check:

If ||J1 − J0|| < tol · |J0|, return the current control
input u1 and the initial cost J0 as the solution.

Update Control Input:

Update the control input for the next iteration: u0 =
u1.

Stop criterion

� If the maximum number of iterations is reached
without convergence, print ’Not converged’ and

set the control input u0 to None.

� Return the final control input u0 and the initial
cost J0.

7 Model Predictive Control for
Power Systems

The Model Predictive Control (MPC) approach is
explored as a robust control strategy for Converter-
Dominated Power Systems.

� Let τi := τi, i ≥ 0, in the subsequent steps.

� Beginning at i = 0, we forecast over [τi, τi +
T ], and obtain an optimal control u∗(t), which
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Algorithm 1 Algorithm for the RBM

procedure ComputeControlRBM(A,X0, B, u0, Q,R, xd, tgrid, batches)
dt← diff(tgrid)
max iters← 500
tol← 1e− 6
for ← 1 to max iters do

xsol0← CalculateStatesRandom(A,B, u0, tgrid,X0, batches)
J0← CostFunction(Q,R, xd, xsol0, u0, tgrid, dt)
ϕ← ComputePhiRBM(A,Q, xsol0, xd, tgrid, batches)
gradJ ← BTϕ+ 2Ru0
G← InnerProduct(gradJ, gradJ, dt)
dx← CalculateStatesRandom(A,B, gradJ, tgrid, zeros like(X0), batches)
H ← Hessian(Q,R, dx, gradJ, dt)
step← G

H /2
u1← u0− step · gradJ
xsol1← xsol0− step · dx
J1← CostFunction(Q,R, xd, xsol1, u1, tgrid, dt)
if |J1− J0| < tol · |J0| then

return u1, J0
end if
u0← u1

end for
print(’Not converged’)
u0← None
return u0, J0

end procedure
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vdg vqg Pref

Qref ωref v̂ref

idg iqg idi

iqi vd0 vq0

ωsv δθsv Mf if

Figure 5: Solution for the states and the optimal controls
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vdg vqg Pref

Qref ωref v̂ref

idg iqg idi

iqi vd0 vq0

ωsv δθsv Mf if

Figure 6: RBM for the states (red) and controls (blue). The black line is the average of the trials in each
figure. K = 1, N = 500, number of trials 20.
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vdg vqg Pref

Qref ωref v̂ref

idg iqg idi

iqi vd0 vq0

ωsv δθsv Mf if

Figure 7: RBM + MPC for the states (red) and controls (blue), with the optimal τ . The black line is the
average of the trials in each figure. K = 1, N = 500, number of trials 20.
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minimizes

JT, τi(u(t)) =

∫ τi+T

τi

(
x(t)TQx(t)+

u(t)TRu(t)

)
dt,

where x(t) fulfills

ẋ(t) = Ax(t) +Bu(t), x(0) = x0. (8)

� We now apply u∗ to the true dynamics and ob-
tain, like this, the state x∗

ẋ∗(t) = Ax∗(t) +Bu∗(t), x∗(0) = x0, (9)

which we set to the MPC trajectory x∗
MPC on

t ∈ [τi, τi+1]:

x∗
MPC(t) := x∗(t), for t ∈ [τi, τi+1]. (10)

� This procedure is repeated: Starting from the
state x∗

MPC(τ1), we obtain u∗(t) over [τ1, τ1+T ]
and consequently x∗(t) over [τ1, τ1 + T ], which
yields x∗

MPC on [τ1, τ2].

In summary, the MPC algorithm can be described
as follows:

1. Initialize the state: x∗
M (0) = x0, i = 0.

2. Set the number of steps as ⌈T/τ⌉.

3. For i ∈ {0, 1, 2, ..., steps} :

a) Compute u∗(t) on [τi, τi + T ].

b) Determine x∗(t) on [τi, τi+1] by solving

ẋ∗(t) = Ax∗(t) +Bu∗(t).

c) Set x∗
MPC(t) := x∗(t) on [τi, τi+1].

7.1 RBM - MPC

In this section, we approximate the optimal trajecto-
ries, x(t), associated with the optimal control u∗ of
(2) using the RBM-MPC strategy, which integrates
Model Predictive Control (MPC) with the Random

Batch Method (RBM). This approach predicts the
optimal control for reduced-order dynamics and ap-
plies it iteratively. Initially proposed by [6] for non-
linear, multi-agent systems, we adapt this method to
our linearized model, as discussed in Section 3.

Figure 8: MAE of the RBM-MPC states vs τ

As noted in this Section, the MPC depends of the
parameter τ , which can be thought as the number of
subintervals into which we divide the time interval
[0, T ]. Therefore, we ought to search the best choice
for this parameter, so our simulations are the most
accurate. This can be done in two different ways:
either we minimize the error with respect to our
states or to our controls. We opted to minimize it
with respect to the states.

Figure 8 shows the MAE of the RBM-MPC states
vs τ . We find that the best choice is τ = 8.

8 Discussion

Dependence of the RBM with respect
to N,K and the number of trials

It is evident that as the value of the number of
discretization points (N), and the number of trials
increase, the RBM achieves more accurate approxi-
mations of states and controls. Conversely, when the
parameter K is larger, the quality of approximations
deteriorates (Figures 9− 18).
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This observation aligns with the theoretical
framework. Let us define h = K∆t. Obviously,
h as an upper bound on the length of the dis-
cretized time interval, since K ≥ 1. The expected
error of the RBM is proportional to

√
h ([7], [11]),

therefore the error also is expected to increase with h:

E(|xh(t)− x(t)|) ≤
√
E(|xh(t)− x(t)|2) ≤√

hVar(Ah)(||A||t2 + 2t)(|x0|+ |Bu|L1(0,T ;RN )),

where in the second inequality, we have used
Theorem 1 of [11].

The same goes for the controls (Theorem 4 of [11]):

E(|uh(t)− u(t)|) ≤
√
E(|uh(t)− u(t)|)2 ≤

1

α

√
C[A,B,x0,Q,R,xd,T ]hVar(Ah),

where α is the parameter that defines the
α−convexity of the functional, which follows from the
dynamics being lineal.

Figure 9: N = 150,K = 1

Differences between RBM and MPC

Exploring the relative performance of the RBM and
MPC necessitates a detailed examination of error
characteristics and their implications for control

Figure 10: N = 150,K = 1

Figure 11: N = 800,K = 1

Figure 12: N = 800,K = 1
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Figure 13: N = 150,K = 5

Figure 14: N = 150,K = 5

Figure 15: N = 150,K = 2

Figure 16: N = 150,K = 2

Figure 17: N = 150,K = 3

Figure 18: N = 150,K = 3
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strategies in electrical networks. Drawing upon
empirical observations and theoretical insights, we
delve into the discrepancies between RBM and MPC,
particularly in terms of error dynamics.

The RBM yields reasonable approximations to
the original control problem, as corroborated by
theoretical studies. Notably, the mean of RBM trials
closely approximates the solution, underscoring its
efficacy in capturing the system dynamics and the
optima controls.

Figure 19: MAE for the states and controls with re-
spect to the number of trials using the RBM.

Similarly, MPC simulations produce comparable, if
slightly better results, with the predicted trajectories
closely aligning with the desired control objectives.
The accuracy of MPC solutions reinforces its utility
in devising effective control strategies for electrical
networks.

Initial conjectures suggested that MPC might
exhibit considerably reduced oscillations compared
to RBM due to its piece-wise methodology. How-
ever, Figures 6 and 7 show comparable oscillatory
behavior between RBM and MPC trials, challenging
preconceived notions of MPC’s superiority in damp-
ing oscillations. To discern the underlying factors
contributing to error behavior, simulations were con-

ducted to analyze the discrepancy between the mean
of the randomized solutions and the deterministic so-
lution (Figures 19 and 20). Surprisingly, both RBM
and MPC exhibited similar error trends, indicating
that MPC did not overwhelmingly outperform RBM
in this regard. The MAE after 250 trials is, indeed,
smaller for the MPC + RBM than for the RBM, but
the difference is practically unnoticeable. This parity
in error dynamics encourages the need for a nuanced
understanding of the underlying mechanisms driving
error accumulation in both methodologies.

Despite variations in error characteristics, both
RBM and MPC offer viable approaches to control op-
timization in electrical networks. Understanding the
nuances in error behavior is crucial for analyzing the
robustness and effectiveness of both methodologies.

Figure 20: MAE for the states and controls with re-
spect to the number of trials using RBM+MPC, for
the optimal τ .

Furthermore, analysis of the MAE unveiled intrigu-
ing trends. While both RBM and MPC + RBM ini-
tially exhibited satisfactory error levels, a mild in-
crease in error magnitude, particularly for state vari-
ables, was observed in the RBM when the number
of trials is 250 (Figure 19). This phenomenon hints
either at potential numerical challenges or inherent
stochasticity behavior, reminiscent of the loss func-
tion diminishment in neural networks, possibly at-
tributed to the stochastic nature of the RBM.
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Computational time

We examine the computation time of the RBM using
three significant examples: the 1D heat equation, the
3D heat equation, and the electrical model detailed in
Section 2, which represents the most critical scenario:

Figure 21: Computational time for the state and con-
trol matrices in the 1D heat equation

The left graphs depict the computation time for
the state matrix, while the right graphs illustrate the
computation time for the control matrix. Notably,
the control matrix requires more computation time
due to its computation via the gradient algorithm.
These three examples were chosen for specific
reasons: they demonstrate cases where RBM either
reduces computation time (as observed in the 3D
heat problem), increases it (as in the electrical
model), or has minimal impact on it (as seen in the
1D heat problem) [11].

The reasons behind these varied outcomes lie in
two main factors that influence RBM: the structure

of the state matrix A and its prior decomposition
(splitting). For both the 1D and 3D heat problems,
insights from literature suggest that the denser inter-
connections in the 3D case contribute to its reduced
computation time compared to the more straight-
forward 1D case. Specifically, in the 1D scenario,
each spatial node connects with only two neighbor-
ing nodes, whereas in 3D, each node connects with
six others, resulting in a denser matrix structure
A. Moreover, the 3D case benefits significantly from
a block-wise decomposition, which substantially re-
duces computation time (as evident in the second row
of figures).

Figure 22: Computational time for the state and con-
trol matrices in the 3D heat equation

An intriguing question arises: is it possible to
find a way to reduce the 1D case, or does the
interconnection structure of the nodes inherently
prevent RBM from computationally improving the
problem’s resolution? Knowing this will help to
address the electrical model problem. Notably,
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Figure 23: Computational time for the state and con-
trol matrices in the electrical model

the increased computational time observed in the
electrical model stems from the use of spectral
decomposition (Section 5), which results in a denser
matrix structure compared to the original. Although
the method converges since all submatrices are
dissipative, the increased density makes it harder for
the computer to perform the calculations. Therefore,
this decomposition is not suitable, and another must
be found. But what if we encounter a situation
similar to the 1D heat case? It could be that the
very structure of the electrical model does not
allow for sufficiently sparse submatrices to achieve
a noticeable reduction. In that case, there are two
possibilities: either find a more complex model that
permits a matrix where reduction is possible, or
move to a three-dimensional electric PDE model,
analogous to the 3D heat problem, where better
results are obtained.

In the next Subsection, we explore other block-wise
decompositions to see if it is possible to solve these
problems, while mantaining a small error.

Other decompositions

The deterministic approach

We can search for other block decompositions
to approximate the original system. The initial
block decomposition (Section 5) did not adequately
approximate the original problem. Presumably,
this occurred because most of the submatrices were
empty, resulting in solutions that did not effectively
approximate the original problem. To address this,
we added the zero submatrices to the other subma-
trices, creating a new, shorter array of submatrices
where none of them are zero. Additionally, we
combined them in such a way that none of their
eigenvalues are positive.

The resulting approximations, while improved
compared to the previous block decomposition,
still exhibit limitations. The main challenge lies
in the persistence of stiffness within the reduced
matrix systems, thereby complicating convergence
for gradient-based algorithms unless the number
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of discretization points is substantially increased.
Moreover, due to this block decomposition approach,
subsystems often exhibit increased stiffness com-
pared to the original solution, necessitating a higher
number of discretization points. For instance, with
the initial decomposition, a minimum of K = 300
points are needed for the gradient to descend and
converge. Figure 24 shows the first state and the
first control as an example.

The RBM is somewhat similar to the original
solution, but not quite accurate. Things get worse
in the last state, where the RBM is totally different
(Figure 24):

Therefore, while this decomposition approach
presents some improvements, it remains the best
block decomposition identified thus far. However,
this does not imply that an optimal block decomposi-
tion does not exist; rather, it underscores the need to
identify one where all subsystems associated with the
submatrices exhibit similar stiffness characteristics as
the original. This consideration is crucial, especially
for future computational time analyses, as a valid de-
composition that complicates gradient descent algo-
rithms may increase computation time. This aspect
remains underexplored in the literature, highlighting
the significance of addressing additional challenges
posed by stiff systems.

The non-deterministic approach: random
block-wise decomposition

In this method, the state matrix A is decomposed
into 3x3 blocks using a randomized approach rather
than a deterministic one, based on adjacent blocks.
The procedure follows these steps:

1. First, I permute the rows and columns of A, sim-
ply permuting the set {1, 2, ..., 9} twice:

A′ = PAQ

where P andQ are permutation matrices derived
from the set {1, 2, ..., 9}.

Figure 24: RBM for the first and last state and the
first control
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2. Then, I proceed to decompose by adjacent
blocks, but this is done based on the new per-
muted matrix:

A′ =

A′
11 A′

12 A′
13

A′
21 A′

22 A′
23

A′
31 A′

32 A′
33


where each A′

ij is a 3x3 block.

3. Reintroduce each 3x3 block back into a new 9x9
matrix B, preserving its position from the per-
muted matrix:

Bij = A′
ij

Thus, B is formed by reassembling the 3x3
blocks from A′ into the positions they corre-
spond to in A.

Figure 25: MAE for the states using the non-
deterministic approach of the prior decomposition of
A

This approach, however, did not lead to significant
improvements, since the MAE for the states is ap-
proximately 8 for 20 trials (Figure 25).

Making the system more complex

Here we assess the of RBM and MPC methodologies
when we increase the size of the system. In order to
do that, we just plug two more converters and two

more regulators (see Apendix B), making the state
matrix A 19x19:

A =


A0,0 A0,1 · · · A0,18

A1,0 A1,1 · · · A1,18

...
...

. . .
...

A18,0 A18,1 · · · A18,18


We tested the two mentioned decompositions: the

spectral and the block-wise decomposition.

Spectral decomposition

We see that the RBM did not decrease the compu-
tational time, even when the size of the system has
increased (Figure ). The MAE, however, is much big-
ger now for the states (Figure 26).

Figure 26: MAE for the states and controls with re-
spect to the number of trials using the RBM.

Block-wise decomposition

Next, we proceed to the decomposition of a 19x19 ma-
trix into various non-overlapping blocks. Since A is
no more square, we have to modify the methodology
of splitting A. The blocks used in this decomposition
are of sizes 5x5, 5x4, 4x5, and 4x4.
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Figure 27: Computational time for the state and con-
trol matrices

5x5 Blocks

The 5x5 blocks are placed in the top-left of the ma-
trix:

Block5x5 =


A0,0 A0,1 A0,2 A0,3 A0,4

A1,0 A1,1 A1,2 A1,3 A1,4

A2,0 A2,1 A2,2 A2,3 A2,4

A3,0 A3,1 A3,2 A3,3 A3,4

A4,0 A4,1 A4,2 A4,3 A4,4



Block5x4 =


A0,15 A0,16 A0,17 A0,18

A1,15 A1,16 A1,17 A1,18

A2,15 A2,16 A2,17 A2,18

A3,15 A3,16 A3,17 A3,18

A4,15 A4,16 A4,17 A4,18



4x5 Blocks

The 4x5 blocks fill the bottom-left corner:

Block4x5 =


A15,0 A15,1 A15,2 A15,3 A15,4

A16,0 A16,1 A16,2 A16,3 A16,4

A17,0 A17,1 A17,2 A17,3 A17,4

A18,0 A18,1 A18,2 A18,3 A18,4



4x4 Blocks

Finally, the 4x4 blocks occupy the bottom-right cor-
ner:

Block4x4 =


A15,15 A15,16 A15,17 A15,18

A16,15 A16,16 A16,17 A16,18

A17,15 A17,16 A17,17 A17,18

A18,15 A18,16 A18,17 A18,18


The results for that decomposition were analogous

that of the simplest model: the RBM did not con-
verge, since the functional explodes for any number
of discretization points.

9 Open Problems and Perspec-
tives

While the RBM and MPC show promise in address-
ing uncertainties in Converter-Dominated Power Sys-
tems, several open problems and avenues for future
research exist.

9.1 Computational Cost Reduction
with RBM

It remains to be seen whether the RBM effectively
reduces the computational cost of electrical network
models. While the RBM shows promise in provid-
ing reasonable approximations to the original con-
trol problem (2)-(3), its impact on computational ef-
ficiency requires further investigation. Particularly,
assessing RBM’s performance in more complex sys-
tems is essential to ascertain its potential for decreas-
ing computational burden, especially concerning the
MPC, which exhibits considerable execution time.

9.2 Treatment of Stiff Problems

Dealing with stiff problems poses a significant chal-
lenge for both RBM and MPC algorithms. The lack
of clarity regarding the prior decomposition of ma-
trices and the selection of adaptive step methods
exacerbates computational complexity and runtime.
Overcoming these hurdles requires devising robust al-
gorithms capable of efficiently handling stiff systems
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while maintaining computational tractability. Addi-
tionally, exploring alternative strategies to improve
convergence rates and mitigate computational time in
stiff problem formulations is imperative for enhanc-
ing the efficacy of RBM and MPC in addressing linear
and non-linear electrical network dynamics.

9.3 Discrepancy Between Theory and
Practice

The stark contrast between control theory and prac-
tical implementation presents notable challenges, pri-
marily attributed to numerical difficulties. While the-
oretical frameworks offer insights into optimal con-
trol strategies, translating these concepts into prac-
tical applications is often conditioned by numerical
complexities and computational limitations. Bridg-
ing the gap between theory and practice necessitates
the development of robust algorithms and method-
ologies capable of addressing real-world constraints
while maintaining mathematical rigor.

Conclusions

The RBM and MPC demonstrate significant promise
in handling the control of Converter-Dominated
Power Systems. This study pioneers the assessment
of Data-based Reduced Order Models, specifically
RBM and MPC, in managing stiff systems. Our
findings underscore their potential but also highlight
challenges that warrant further exploration. With
the simulations we have carried out, we can state
that:

- The inadequacy of the approximations to accu-
rately capture the solution suggests a fundamental
limitation: the non-sparsity of the state matrix A
(See the Appendix) seems to hinder its effective
division into blocks. This observation challenges
the applicability of block-wise strategies in this con-
text, since the approximations to the deterministic
solutions with this decomposition are not accurate
(Figures 2 and 3).

- Managing the time splitting method poses
challenges, particularly in the context of non-sparse
matrices, where determining the most suitable
technique for the prior decomposition of the state
matrix A is not straightforward. Although spec-
tral decomposition has shown promise in yielding
favorable results (Figures 5−20), the quest for an
alternative, potentially more efficient method to
partition A remains unresolved. The selection of
the optimal method for decomposing A is a pivotal
factor in improving the overall efficacy of the time
splitting approach.

- Combining the Model Predictive Control (MPC)
with the Random Batch Method (RBM) is a
promising technique to address optimal control
problems constrained by state trajectories. This
method involves breaking down the time into smaller
sub-intervals, enabling the efficient resolution of
problems, particularly when dealing with a sizable
time horizon T . We observed that our initial belief
that the MPC would lead to smoother control tra-
jectories compared to the RBM was proven wrong,
since Figures 19 and 20 showed similar error control
trends in both RBM and MPC. Moreover, when
we compared the mean of randomized solutions
to the deterministic solution, we found that the
improvement of the RBM-MPC over the RBM is
very marginal, which does not compensate for the
increased computation time. These findings empha-
size the importance of understanding the factors
influencing error accumulation in both methods.

- The relationship between the RBM, the number
of discretization points N , and the switching param-
eter K is evident: an increase in these parameters
leads to enhanced accuracy in approximations for
states and controls. However, a larger value of K is
associated with a deterioration in the quality of these
approximations, in line with the analytical results.
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State and control Matrices

A =



−15.45 57.17 0 0 2128.99 0 0 0 0
−1726.44 −15.45 0 0 0 2078.63 0 0 0

0 0 −11.82 57.17 −5322.49 0 5272.42 −266.42 5208.30
0 0 −1726.44 −11.82 0 −5196.58 6100.30 6953.81 6026.11

−3881.86 0 3881.86 0 0 55.82 0 0 0
0 −3975.91 0 3975.91 −1768.27 0 0 0 0
0 0 −0.06 −0.00 −0.06 −0.00 −41.77 0 0
0 0 0 0 0 0 1308.99 0 0
0 0 −0 0 0 −0 0 −0 0



B =



−3.78 0 0 0 0 0
0 −20.79 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0.13 0
0 0 0 0 0 0
0 0 0 0 0 0


General formulation for the Converter-Dominated Power System
Model



dig
dt = 1

Lg
(v0 −Rgig − vg)− jωgig

diki
dt = 1

Lk
f

(mkV k
dc −Rf i

k
i − v0)− jωgi

k
i

dv0
dt = 1

CT
(iT − ig)− jωgv0

d(Mf i
k
f )

dt = 1
Kk

[
Qref −Qk +Kq(v̂

k
ref − v̂c0)

]
dωk

sv

dt = 1
Tk
a

[
Pk

m

ωk
sv
− Pk

e

ωk
sv
−KD(ωk

sv − ωk
ref )

]
dδθk

sv

dt = ωk
sv − ωg,

(13)

where CT =
∑

k C
k
f and iT =

∑
k i

k
f . Note that k ∈ {1, 2, ..., n} represents the index of each converter. This

notation is used to differentiate between multiple converters in the system, allowing for a clear representation
of their individual variables.
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