Skip to content
  • enzuazua
  • Events Calendar
  • Jobs
cmc.deusto.eus
  • Home
  • About us
    • About DeustoCCM
    • Head of DeustoCCM
    • Team
    • Past Members
  • Research
    • Projects
    • ERC CoDeFeL
    • Computational Mathematics Research Group
    • DyCon Blog
    • DyCon Toolbox
    • Industrial & Social TransferenceContents related to the industrial and social transference aspects of the work in the Chair of Computational Mathematics.
  • Publications
    • Publications (All)
    • Publications by year
      • Publications 2025
      • Publications 2024
      • Publications 2023
      • Publications 2022
      • Publications 2021
      • Publications 2020
      • Publications 2019
      • Publications 2018
      • Publications 2017
      • Publications 2016
    • AcceptedAccepted to be released
    • SubmittedSubmitted publications
  • Activities
    • Events calendar
    • Seminars
    • Highlights
    • Our Latest
    • Courses
    • Past Events
    • enzuazua
    • Gallery
  • Jobs
  • Contact

SHAP values through General Fourier Representations: Theory and Applications

R. Morales (2025) SHAP values through General Fourier Representations: Theory and Applications

Abstract. This article establishes a rigorous spectral framework for the mathematical analysis of SHAP values. We show that any predictive model defined on a discrete or multi-valued input space admits a generalized Fourier expansion with respect to an orthonormalisation tensor-product basis constructed under a product probability measure. Within this setting, each SHAP attribution can be represented as a linear functional of the model’s Fourier coefficients.
Two complementary regimes are studied. In the deterministic regime, we derive quantitative stability estimates for SHAP values under Fourier truncation, showing that the attribution map is Lipschitz continuous with respect to the distance between predictors. In the probabilistic regime, we consider neural networks in their infinite-width limit and prove convergence of SHAP values toward those induced by the corresponding Gaussian process prior, with explicit error bounds in expectation and with high probability based on concentration inequalities.
We also provide a numerical experiment on a clinical unbalanced dataset to validate the theoretical findings.

arxiv: 2511.00185

  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • The Mathematics of Scientific Machine Learning and Digital Twins
  • DeustoCCM Seminar: Research on Control Problems of Several Types of Infinite-Dimensional Systems
  • DeustoCCM Seminar: Developing Mathematical and Physical Tools for Multiscale Dynamical Systems. Applications to Neurophysiological Data
Copyright 2016 - 2025 DeustoCCM — cmc.deusto.eus. All rights reserved. Chair of Computational Mathematics, University of Deusto
Scroll to Top
  • Aviso Legal
  • Política de Privacidad
  • Política de Cookies
  • Configuración de Cookies
WE USE COOKIES ON THIS SITE TO ENHANCE USER EXPERIENCE. We also use analytics. By navigating any page you are giving your consent for us to set cookies.    more information
Privacidad